bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2024‒02‒11
fifty-four papers selected by
Christian Frezza, Universität zu Köln



  1. EMBO J. 2024 Feb 09.
      Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.
    Keywords:  Cell Death; Inflammation; Mitochondria; NF-κB; Ubiquitin
    DOI:  https://doi.org/10.1038/s44318-024-00044-1
  2. FEBS Lett. 2024 Feb 04.
      Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.
    Keywords:  autophagy; endoplasmic reticulum (ER); lipid droplets (LDs); membrane contact sites; metabolic adaptation; mitochondria; mitochondrial shape; organelle-network; starvation
    DOI:  https://doi.org/10.1002/1873-3468.14813
  3. Mol Cell. 2024 Jan 31. pii: S1097-2765(24)00048-0. [Epub ahead of print]
      Lysosomes are central to metabolic homeostasis. The microphthalmia bHLH-LZ transcription factors (MiT/TFEs) family members MITF, TFEB, and TFE3 promote the transcription of lysosomal and autophagic genes and are often deregulated in cancer. Here, we show that the GATOR2 complex, an activator of the metabolic regulator TORC1, maintains lysosomal function by protecting MiT/TFEs from proteasomal degradation independent of TORC1, GATOR1, and the RAG GTPase. We determine that in GATOR2 knockout HeLa cells, members of the MiT/TFEs family are ubiquitylated by a trio of E3 ligases and are degraded, resulting in lysosome dysfunction. Additionally, we demonstrate that GATOR2 protects MiT/TFE proteins in pancreatic ductal adenocarcinoma and Xp11 translocation renal cell carcinoma, two cancers that are driven by MiT/TFE hyperactivation. In summary, we find that the GATOR2 complex has independent roles in TORC1 regulation and MiT/TFE protein protection and thus is central to coordinating cellular metabolism with control of the lysosomal-autophagic system.
    Keywords:  E3 ligases; GATOR2; MiT/TFEs; TORC1; autophagy; lysosome; pancreatic ductal adenocarcinoma; renal cell carcinoma; ubiquitination
    DOI:  https://doi.org/10.1016/j.molcel.2024.01.012
  4. Elife. 2024 Feb 09. pii: e86478. [Epub ahead of print]13
      Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked β-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (ogt-1) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in C. elegans, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of ogt-1 mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the ogt-1 mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the ogt-1 mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in ogt-1 animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.
    Keywords:  C. elegans; cell biology; cell metabolism; neuron regeneration; neuroscience; one-carbon metabolism
    DOI:  https://doi.org/10.7554/eLife.86478
  5. Cell Metab. 2024 Jan 30. pii: S1550-4131(24)00008-1. [Epub ahead of print]
      Severe forms of malaria are associated with systemic inflammation and host metabolism disorders; however, the interplay between these outcomes is poorly understood. Using a Plasmodium chabaudi model of malaria, we demonstrate that interferon (IFN) γ boosts glycolysis in splenic monocyte-derived dendritic cells (MODCs), leading to itaconate accumulation and disruption in the TCA cycle. Increased itaconate levels reduce mitochondrial functionality, which associates with organellar nucleic acid release and MODC restraint. We hypothesize that dysfunctional mitochondria release degraded DNA into the cytosol. Once mitochondrial DNA is sensitized, the activation of IRF3 and IRF7 promotes the expression of IFN-stimulated genes and checkpoint markers. Indeed, depletion of the STING-IRF3/IRF7 axis reduces PD-L1 expression, enabling activation of CD8+ T cells that control parasite proliferation. In summary, mitochondrial disruption caused by itaconate in MODCs leads to a suppressive effect in CD8+ T cells, which enhances parasitemia. We provide evidence that ACOD1 and itaconate are potential targets for adjunct antimalarial therapy.
    Keywords:  PD-1; PD-L1; Plasmodium chabaudi; TCA cycle; cGAS-STING; immuno checkpoint markers; inate immunity; itaconate; itaconic acid; lymphocytes; malaria; metabolism; methylenesuccinic acid; mitochondria; mitochondrial DNA; monocyte-derived dendritic cells; mtDNA
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.008
  6. NAR Cancer. 2024 Mar;6(1): zcae004
      Metabolic reprogramming is a hallmark of cancer that facilitates changes in many adaptive biological processes. Mutations in the tricarboxylic acid cycle enzyme fumarate hydratase (FH) lead to fumarate accumulation and cause hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC is a rare, inherited disease characterized by the development of non-cancerous smooth muscle tumors of the uterus and skin, and an increased risk of an aggressive form of kidney cancer. Fumarate has been shown to inhibit 2-oxoglutarate-dependent dioxygenases (2OGDDs) involved in the hydroxylation of HIF1α, as well as in DNA and histone demethylation. However, the link between fumarate accumulation and changes in RNA post-transcriptional modifications has not been defined. Here, we determine the consequences of fumarate accumulation on the activity of different members of the 2OGDD family targeting RNA modifications. By evaluating multiple RNA modifications in patient-derived HLRCC cell lines, we show that mutation of FH selectively affects the levels of N6-methyladenosine (m6A), while the levels of 5-formylcytosine (f5C) in mitochondrial tRNA are unaffected. This supports the hypothesis of a differential impact of fumarate accumulation on distinct RNA demethylases. The observation that metabolites modulate specific subsets of RNA-modifying enzymes offers new insights into the intersection between metabolism and the epitranscriptome.
    DOI:  https://doi.org/10.1093/narcan/zcae004
  7. Proc Natl Acad Sci U S A. 2024 Feb 13. 121(7): e2310479121
      Metabolic reprogramming is critical during clear cell renal cell carcinoma (ccRCC) tumorigenesis, manifested by accumulation of lipid droplets (LDs), organelles that have emerged as new hallmarks of cancer. Yet, regulation of their biogenesis is still poorly understood. Here, we demonstrate that MYC inhibition in ccRCC cells lacking the von Hippel Lindau (VHL) gene leads to increased triglyceride content potentiating LD formation in a glutamine-dependent manner. Importantly, the concurrent inhibition of MYC signaling and glutamine metabolism prevented LD accumulation and reduced tumor burden in vivo. Furthermore, we identified the hypoxia-inducible lipid droplet-associated protein (HILPDA) as the key driver for induction of MYC-driven LD accumulation and demonstrated that conversely, proliferation, LD formation, and tumor growth are impaired upon its downregulation. Finally, analysis of ccRCC tissue as well as healthy renal control samples postulated HILPDA as a specific ccRCC biomarker. Together, these results provide an attractive approach for development of alternative therapeutic interventions for the treatment of this type of renal cancer.
    Keywords:  HILPDA; MYC; clear cell renal cell carcinoma; glutamine; lipid droplets
    DOI:  https://doi.org/10.1073/pnas.2310479121
  8. Nat Cell Biol. 2024 Feb 08.
      Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.
    DOI:  https://doi.org/10.1038/s41556-023-01343-1
  9. Nature. 2024 Feb;626(7998): 271-279
      Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.
    DOI:  https://doi.org/10.1038/s41586-023-06866-z
  10. Cell Metab. 2024 Jan 31. pii: S1550-4131(24)00009-3. [Epub ahead of print]
      The finding that animals with circadian gene mutations exhibit diet-induced obesity and metabolic syndrome with hypoinsulinemia revealed a distinct role for the clock in the brain and peripheral tissues. Obesogenic diets disrupt rhythmic sleep/wake patterns, feeding behavior, and transcriptional networks, showing that metabolic signals reciprocally control the clock. Providing access to high-fat diet only during the sleep phase (light period) in mice accelerates weight gain, whereas isocaloric time-restricted feeding during the active period enhances energy expenditure due to circadian induction of adipose thermogenesis. This perspective focuses on advances and unanswered questions in understanding the interorgan circadian control of healthful metabolism.
    Keywords:  circadian; diabetes; epigenetics; insulin; metabolism; molecular clock; obesity; sleep; thermogenesis; transcription
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.009
  11. Nat Commun. 2024 Feb 08. 15(1): 1203
      DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.
    DOI:  https://doi.org/10.1038/s41467-024-45350-8
  12. Am J Pathol. 2024 Feb 05. pii: S0002-9440(24)00044-0. [Epub ahead of print]
      The nerve injury induced protein 2 (NINJ2) belongs to a family of homophilic adhesion molecules and was initially found to be involved in nerve regeneration. However, the role of NINJ2 in other cellular process are not well studied. Here, by generating a Ninj2-deficient mouse model, we showed that mice deficient in Ninj2 have a short lifespan and are prone to spontaneous tumors, systemic inflammation and metabolic defects. To better understand the metabolic traits that contributes to these phenotypes, we performed comprehensive carbohydrate and lipid metabolic analyses. Carbohydrate metabolic analyses showed that NINJ2-deficiency led to defects in monosaccharide metabolism along with accumulation of multiple disaccharides and sugar alcohols. Lipidomic analyses showed that Ninj2 deficiency altered patterns of several lipids, including triglycerides, phospholipids and ceramides. To identify a cellular process that associated with these metabolic defects, we examined the role of NINJ2 in pyroptosis, a programmed cell death that links cancer, inflammation and metabolic disorders. We found that loss of NINJ2 promotes pyroptosis by activating the NLRP3 inflammasome. Taken together, these data reveal a critical role of NINJ2 in tumorigenesis, inflammatory response, and metabolism via pyroptosis.
    Keywords:  NLRP3; Ninj2; inflammatory response; metabolism; pyroptosis
    DOI:  https://doi.org/10.1016/j.ajpath.2024.01.013
  13. Nat Commun. 2024 Feb 06. 15(1): 1124
      The recovery of mitochondrial quality control (MQC) may bring innovative solutions for neuroprotection, while imposing a significant challenge given the need of holistic approaches to restore mitochondrial dynamics (fusion/fission) and turnover (mitophagy and biogenesis). In diabetic retinopathy, this is compounded by our lack of understanding of human retinal neurodegeneration, but also how MQC processes interact during disease progression. Here, we show that mitochondria hyperfusion is characteristic of retinal neurodegeneration in human and murine diabetes, blunting the homeostatic turnover of mitochondria and causing metabolic and neuro-inflammatory stress. By mimicking this mitochondrial remodelling in vitro, we ascertain that N6-furfuryladenosine enhances mitochondrial turnover and bioenergetics by relaxing hyperfusion in a controlled fashion. Oral administration of N6-furfuryladenosine enhances mitochondrial turnover in the diabetic mouse retina (Ins2Akita males), improving clinical correlates and conferring neuroprotection regardless of glycaemic status. Our findings provide translational insights for neuroprotection in the diabetic retina through the holistic recovery of MQC.
    DOI:  https://doi.org/10.1038/s41467-024-45387-9
  14. Hum Mol Genet. 2024 Feb 07. pii: ddae018. [Epub ahead of print]
      Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.
    Keywords:  Drosophila; complex I deficiency; mitochondria; neurotoxicity; proteostasis
    DOI:  https://doi.org/10.1093/hmg/ddae018
  15. Methods Mol Biol. 2024 ;2755 191-200
      Hypoxia is a crucial microenvironmental factor that defines tumor cell growth and aggressiveness. Cancer cells adapt to hypoxia by altering their metabolism. These alterations impact various cellular and physiological functions, including energy metabolism, vascularization, invasion and metastasis, genetic instability, cell immortalization, stem cell maintenance, and resistance to chemotherapy (Li et al. Technol Cancer Res Treat 20:15330338211036304, 2021). Hypoxia-inducible factor-1α (HIF-1α) is known to be a critical regulator of glycolysis that directly regulates the transcription of multiple key enzymes of the glycolysis pathway. Moreover, HIF-1α stabilization can be directly modulated by TCA-derived metabolites, including 2-ketoglutarate and succinate (Infantino et al, Int J Mol Sci 22(22), https://doi.org/10.3390/ijms22115703 , 2021). Overall, the molecular mechanisms underlying the adaptation of cellular metabolism to hypoxia impact the metabolic phenotype of cancer cells. Such adaptations include increased glucose uptake, increased lactate production, and increased levels of other metabolites that stabilize HIF-1α, leading to a vicious circle of hypoxia-induced tumor growth.
    Keywords:  HIF; Hypoxia; Metabolomics; Pancreatic cancer; Tandem mass spectrometry
    DOI:  https://doi.org/10.1007/978-1-0716-3633-6_14
  16. Nat Commun. 2024 Feb 07. 15(1): 1165
      The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
    DOI:  https://doi.org/10.1038/s41467-024-45280-5
  17. Cancer Res. 2024 Feb 08.
      Over the past decade, studies have increasingly shed light on a reciprocal relationship between cellular metabolism and cell fate, meaning that a cell's lineage both drives and is governed by its specific metabolic features. A recent study by Zhang and colleagues, published in Cell Metabolism, describes a novel metabolic-epigenetic regulatory axis that governs lineage identity in triple negative breast cancer (TNBC). Among the key findings, the authors demonstrate that the metabolic enzyme pyruvate kinase M2 (PKM2) directly binds to the histone methyltransferase enhancer of zeste homologue 2 (EZH2) in the nucleus to silence expression of a set of genes that includes the mitochondrial carnitine transporter SLC16A9. Perturbation of this metabolic-epigenetic regulatory mechanism induces a metabolic shift away from glycolysis and towards fatty acid oxidation. The ensuing influx of carnitine facilitates the deposition of the activating epigenetic mark H3K27Ac onto the promoter of GATA3, driving a committed luminal lineage state. Importantly, this metabolic-epigenetic axis represents a potentially targetable vulnerability for the treatment of TNBC, a subtype that currently lacks effective therapeutic strategies. These findings lend further support for the paradigm shift underlying our understanding of cancer metabolism: that a cellular fuel source functions not only to provide energy but also to direct the epigenetic regulation of cell fate.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-24-0460
  18. Nat Cell Biol. 2024 Feb 05.
      Cells convert complex metabolic information into stress-adapted autophagy responses. Canonically, multilayered protein kinase networks converge on the conserved Atg1/ULK kinase complex (AKC) to induce non-selective and selective forms of autophagy in response to metabolic changes. Here we show that, upon phosphate starvation, the metabolite sensor Pho81 interacts with the adaptor subunit Atg11 at the AKC via an Atg11/FIP200 interaction motif to modulate pexophagy by virtue of its conserved phospho-metabolite sensing SPX domain. Notably, core AKC components Atg13 and Atg17 are dispensable for phosphate starvation-induced autophagy revealing significant compositional and functional plasticity of the AKC. Our data indicate that, instead of functioning as a selective autophagy receptor, Pho81 compensates for partially inactive Atg13 by promoting Atg11 phosphorylation by Atg1 critical for pexophagy during phosphate starvation. Our work shows Atg11/FIP200 adaptor subunits bind not only selective autophagy receptors but also modulator subunits that convey metabolic information directly to the AKC for autophagy regulation.
    DOI:  https://doi.org/10.1038/s41556-024-01348-4
  19. Cell Metab. 2024 Jan 29. pii: S1550-4131(24)00005-6. [Epub ahead of print]
      Although the role of ferroptosis in killing tumor cells is well established, recent studies indicate that ferroptosis inducers also sabotage anti-tumor immunity by killing neutrophils and thus unexpectedly stimulate tumor growth, raising a serious issue about whether ferroptosis effectively suppresses tumor development in vivo. Through genome-wide CRISPR-Cas9 screenings, we discover a pleckstrin homology-like domain family A member 2 (PHLDA2)-mediated ferroptosis pathway that is neither ACSL4-dependent nor requires common ferroptosis inducers. PHLDA2-mediated ferroptosis acts through the peroxidation of phosphatidic acid (PA) upon high levels of reactive oxygen species (ROS). ROS-induced ferroptosis is critical for tumor growth in the absence of common ferroptosis inducers; strikingly, loss of PHLDA2 abrogates ROS-induced ferroptosis and promotes tumor growth but has no obvious effect in normal tissues in both immunodeficient and immunocompetent mouse tumor models. These data demonstrate that PHLDA2-mediated PA peroxidation triggers a distinct ferroptosis response critical for tumor suppression and reveal that PHLDA2-mediated ferroptosis occurs naturally in vivo without any treatment from ferroptosis inducers.
    Keywords:  ALOX12; GPAT3; PHLDA2; ROS; cystine starvation; ferroptosis; lipid peroxidation; phosphatidic acid; phosphatidylethanolamine; tumor suppression
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.006
  20. Mol Cancer Res. 2024 Feb 06.
      Although suppressed cAMP levels have been linked to cancer for nearly five decades, the molecular basis remains uncertain. Here, we identify endosomal pH as a novel regulator of cytosolic cAMP homeostasis and a promoter of transformed phenotypic traits in colorectal cancer (CRC). Combining experiments and computational analysis, we show that the Na+/H+ exchanger NHE9 contributes to proton leak and causes luminal alkalinization, which induces resting [Ca2+], and in consequence, represses cAMP levels, creating a feedback loop that echoes nutrient deprivation or hypoxia. Higher NHE9 expression in cancer epithelia is associated with a hybrid epithelial-mesenchymal (E/M) state, poor prognosis, tumour budding, and invasive growth in vitro and in vivo. These findings point to NHE9-mediated cAMP suppression as a pseudo-starvation-induced invasion state and potential therapeutic vulnerability in CRC. Our observations lay the groundwork for future research into the complexities of endosome-driven metabolic reprogramming and phenotype switching and the biology of cancer progression. Implications: Endosomal pH regulator NHE9 actively controls cytosolic Ca2+ levels to downregulate the adenylate cyclase-cAMP system, enabling colorectal cancer cells to acquire hybrid epithelial-mesenchymal characteristics and promoting metastatic progression.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-23-0606
  21. bioRxiv. 2024 Jan 25. pii: 2024.01.24.576953. [Epub ahead of print]
      PPTC7 is a mitochondrial-localized PP2C phosphatase that maintains mitochondrial protein content and metabolic homeostasis. We previously demonstrated that knockout of Pptc7 elevates mitophagy in a BNIP3- and NIX-dependent manner, but the mechanisms by which PPTC7 influences receptor-mediated mitophagy remain ill-defined. Here, we demonstrate that loss of PPTC7 upregulates BNIP3 and NIX post-transcriptionally and independent of HIF-1α stabilization. On a molecular level, loss of PPTC7 prolongs the half-life of BNIP3 and NIX while blunting their accumulation in response to proteasomal inhibition, suggesting that PPTC7 promotes the ubiquitin-mediated turnover of BNIP3 and NIX. Consistently, overexpression of PPTC7 limits the accumulation of BNIP3 and NIX protein levels in response to pseudohypoxia, a well-known inducer of mitophagy. This PPTC7-mediated suppression of BNIP3 and NIX protein expression requires an intact PP2C catalytic motif but is surprisingly independent of its mitochondrial targeting, indicating that PPTC7 influences mitophagy outside of the mitochondrial matrix. We find that PPTC7 exists in at least two distinct states in cells: a longer isoform, which likely represents full length protein, and a shorter isoform, which likely represents an imported, matrix-localized phosphatase pool. Importantly, anchoring PPTC7 to the outer mitochondrial membrane is sufficient to blunt BNIP3 and NIX accumulation, and proximity labeling and fluorescence co-localization experiments suggest that PPTC7 associates with BNIP3 and NIX within the native cellular environment. Importantly, these associations are enhanced in cellular conditions that promote BNIP3 and NIX turnover, demonstrating that PPTC7 is dynamically recruited to BNIP3 and NIX to facilitate their degradation. Collectively, these data reveal that a fraction of PPTC7 dynamically localizes to the outer mitochondrial membrane to promote the proteasomal turnover of BNIP3 and NIX.
    DOI:  https://doi.org/10.1101/2024.01.24.576953
  22. FASEB J. 2024 Feb 15. 38(3): e23454
      Mitochondria shape intracellular Ca2+ signaling through the concerted activity of Ca2+ uptake via mitochondrial calcium uniporters and efflux by Na+ /Ca2+ exchangers (NCLX). Here, we describe a novel relationship among NCLX, intracellular Ca2+ , and autophagic activity. Conditions that stimulate autophagy in vivo and in vitro, such as caloric restriction and nutrient deprivation, upregulate NCLX expression in hepatic tissue and cells. Conversely, knockdown of NCLX impairs basal and starvation-induced autophagy. Similarly, acute inhibition of NCLX activity by CGP 37157 affects bulk and endoplasmic reticulum autophagy (ER-phagy) without significant impacts on mitophagy. Mechanistically, CGP 37157 inhibited the formation of FIP200 puncta and downstream autophagosome biogenesis. Inhibition of NCLX caused decreased cytosolic Ca2+ levels, and intracellular Ca2+ chelation similarly suppressed autophagy. Furthermore, chelation did not exhibit an additive effect on NCLX inhibition of autophagy, demonstrating that mitochondrial Ca2+ efflux regulates autophagy through the modulation of Ca2+ signaling. Collectively, our results show that the mitochondrial Ca2+ extrusion pathway through NCLX is an important regulatory node linking nutrient restriction and autophagy regulation.
    Keywords:  NCLX; autophagy regulation; calcium transport; caloric restriction; hepatocytes; mitochondria
    DOI:  https://doi.org/10.1096/fj.202301368RR
  23. Sci Adv. 2024 Feb 09. 10(6): eadi2671
      The adult intestine is a regionalized organ, whose size and cellular composition are adjusted in response to nutrient status. This involves dynamic regulation of intestinal stem cell (ISC) proliferation and differentiation. How nutrient signaling controls cell fate decisions to drive regional changes in cell-type composition remains unclear. Here, we show that intestinal nutrient adaptation involves region-specific control of cell size, cell number, and differentiation. We uncovered that activation of mTOR complex 1 (mTORC1) increases ISC size in a region-specific manner. mTORC1 activity promotes Delta expression to direct cell fate toward the absorptive enteroblast lineage while inhibiting secretory enteroendocrine cell differentiation. In aged flies, the ISC mTORC1 signaling is deregulated, being constitutively high and unresponsive to diet, which can be mitigated through lifelong intermittent fasting. In conclusion, mTORC1 signaling contributes to the ISC fate decision, enabling regional control of intestinal cell differentiation in response to nutrition.
    DOI:  https://doi.org/10.1126/sciadv.adi2671
  24. bioRxiv. 2024 Jan 22. pii: 2024.01.21.576522. [Epub ahead of print]
      Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). Some QS-regulated phenotypes ( e.g. , secreted enzymes, chelators), are public goods exploitable by cells that stop producing them. We uncovered a phenomenon in which Vibrio cells optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically 'locked' at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating-mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). Methionine/THF synthesis genes are repressed at low cell density when glucose is plentiful and are de-repressed by LuxR at high cell density as glucose becomes limiting. In mixed cultures, QS mutant strains initially co-exist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links private and public goods within the QS regulon, preventing accumulation of QS-defective mutants.
    DOI:  https://doi.org/10.1101/2024.01.21.576522
  25. Cell Rep. 2024 Feb 01. pii: S2211-1247(24)00048-2. [Epub ahead of print]43(2): 113720
      LMNA gene mutation can cause muscular dystrophy, and post-translational modification plays a critical role in regulating its function. Here, we identify that lamin A is palmitoylated at cysteine 522, 588, and 591 residues, which are reversely catalyzed by palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) and depalmitoylase α/β hydrolase domain 7 (ABHD7). Furthermore, the metabolite lactate promotes palmitoylation of lamin A by inhibiting the interaction between it and ABHD7. Interestingly, low-level palmitoylation of lamin A promotes, whereas high-level palmitoylation of lamin A inhibits, murine myoblast differentiation. Together, these observations suggest that ABHD7-mediated depalmitoylation of lamin A controls myoblast differentiation.
    Keywords:  ABHD7; CP: Molecular biology; CP: Stem cell research; ZDHHC5; lactate; lamin A; myoblast differentiation; palmitoylation
    DOI:  https://doi.org/10.1016/j.celrep.2024.113720
  26. Mol Cell. 2024 Jan 29. pii: S1097-2765(24)00047-9. [Epub ahead of print]
      SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a "sequential" or "bypassing" mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.
    Keywords:  MD simulations; ligand binding; metabolite GPCR; metabolite signaling; metadynamics; molecular dynamics simulations; receptor activation; succinate receptor
    DOI:  https://doi.org/10.1016/j.molcel.2024.01.011
  27. Metab Eng. 2024 Feb 02. pii: S1096-7176(24)00014-4. [Epub ahead of print]82 60-68
      Bacteria need to adjust their metabolism and protein synthesis simultaneously to adapt to changing nutrient conditions. It's still a grand challenge to predict how cells coordinate such adaptation due to the cross-regulation between the metabolic fluxes and the protein synthesis. Here we developed a dynamic Constrained Allocation Flux Balance Analysis method (dCAFBA), which integrates flux-controlled proteome allocation and protein limited flux balance analysis. This framework can predict the redistribution dynamics of metabolic fluxes without requiring detailed enzyme parameters. We reveal that during nutrient up-shifts, the calculated metabolic fluxes change in agreement with experimental measurements of enzyme protein dynamics. During nutrient down-shifts, we uncover a switch of metabolic bottleneck from carbon uptake proteins to metabolic enzymes, which disrupts the coordination between metabolic flux and their enzyme abundance. Our method provides a quantitative framework to investigate cellular metabolism under varying environments and reveals insights into bacterial adaptation strategies.
    Keywords:  Dynamic simulation; Escherichia coli; Flux balance analysis; Proteome allocation
    DOI:  https://doi.org/10.1016/j.ymben.2024.01.008
  28. bioRxiv. 2024 Jan 26. pii: 2024.01.23.576771. [Epub ahead of print]
      Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. Here, we show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV)B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA. ZBP1 is significantly upregulated in the epidermis of adult and pediatric patients with autoimmune photosensitivity. Strikingly, lupus keratinocytes accumulate extensive cytosolic Z-DNA after UVB, and transfection of keratinocytes with Z-DNA results in stronger IFN production through cGAS-STING activation compared to B-DNA. ZBP1 knockdown abrogates UV-induced IFN responses, whereas overexpression results in a lupus-like phenotype with spontaneous Z-DNA accumulation and IFN production. Our results highlight Z-DNA and ZBP1 as critical mediators for UVB-induced inflammation and uncover how type I IFNs prime for cutaneous inflammation in photosensitivity. One Sentence Summary: ZBP1 and mitochondrial Z-DNA drive autoimmune photosensitivity via cGAS-STING activation.
    DOI:  https://doi.org/10.1101/2024.01.23.576771
  29. bioRxiv. 2024 Jan 22. pii: 2024.01.20.576443. [Epub ahead of print]
      Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that AMPD deficiency in mice primarily leads to hippocampal dentate gyrus degeneration despite causing a generalized reduction of brain GTP levels. Remarkably, we found that neurodegeneration resistant regions accumulate micron sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis. In contrast, IMPDH2 filaments are barely detectable in the hippocampal dentate gyrus, which shows a progressive neuroinflammation and neurodegeneration. Furthermore, using a human AMPD2 deficient neural cell culture model, we show that blocking IMPDH2 polymerization with a dominant negative IMPDH2 variant, impairs AMPD2 deficient neural progenitor growth. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation in neurons with available GTP precursor molecules, providing resistance to neurodegeneration. Our findings open the possibility of exploring the involvement of IMPDH2 assembly as a therapeutic intervention for neurodegeneration.
    DOI:  https://doi.org/10.1101/2024.01.20.576443
  30. Nat Commun. 2024 Feb 05. 15(1): 1073
      Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we demonstrate in ad libitum-fed mice that liquid carbohydrate loading for one week drives reductions in solid food intake, while nearly doubling total caloric intake. Similarly, in humans, simple carbohydrate intake is inversely correlated with dietary protein intake. Carbohydrate loading-induced protein dilution increases expression of hepatic fibroblast growth factor 21 (FGF21) independent of caloric intake, resulting in protection in two models of surgical stress: renal and hepatic ischemia-reperfusion injury. The protection is consistent across male, female, and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocks carbohydrate loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21 is associated with the induction of the canonical integrated stress response (ATF3/4, NF-kB), and oxidative metabolism (PPARγ). Together, these data support carbohydrate loading drinks prior to surgery and reveal an essential role of protein dilution via FGF21.
    DOI:  https://doi.org/10.1038/s41467-024-44866-3
  31. Proc Natl Acad Sci U S A. 2024 Feb 13. 121(7): e2320240121
      DNA structure can regulate genome function. Four-stranded DNA G-quadruplex (G4) structures have been implicated in transcriptional regulation; however, previous studies have not directly addressed the role of an individual G4 within its endogenous cellular context. Using CRISPR to genetically abrogate endogenous G4 structure folding, we directly interrogate the G4 found within the upstream regulatory region of the critical human MYC oncogene. G4 loss leads to suppression of MYC transcription from the P1 promoter that is mediated by the deposition of a de novo nucleosome alongside alterations in RNA polymerase recruitment. We also show that replacement of the endogenous MYC G4 with a different G4 structure from the KRAS oncogene restores G4 folding and MYC transcription. Moreover, we demonstrate that the MYC G4 structure itself, rather than its sequence, recruits transcription factors and histone modifiers. Overall, our work establishes that G4 structures are important features of transcriptional regulation that coordinate recruitment of key chromatin proteins and the transcriptional machinery through interactions with DNA secondary structure, rather than primary sequence.
    Keywords:  DNA; G-quadruplex; MYC; epigenetics; transcription
    DOI:  https://doi.org/10.1073/pnas.2320240121
  32. Genome Med. 2024 Feb 06. 16(1): 26
      BACKGROUND: Evolutionary models of breast cancer progression differ on the extent to which metastatic potential is pre-encoded within primary tumors. Although metastatic recurrences often harbor putative driver mutations that are not detected in their antecedent primary tumor using standard sequencing technologies, whether these mutations were acquired before or after dissemination remains unclear.METHODS: To ascertain whether putative metastatic driver mutations initially deemed specific to the metastasis by whole exome sequencing were, in actuality, present within rare ancestral subclones of the primary tumors from which they arose, we employed error-controlled ultra-deep sequencing (UDS-UMI) coupled with FFPE artifact mitigation by uracil-DNA glycosylase (UDG) to assess the presence of 132 "metastasis-specific" mutations within antecedent primary tumors from 21 patients. Maximum mutation detection sensitivity was ~1% of primary tumor cells. A conceptual framework was developed to estimate relative likelihoods of alternative models of mutation acquisition.
    RESULTS: The ancestral primary tumor subclone responsible for seeding the metastasis was identified in 29% of patients, implicating several putative drivers in metastatic seeding including LRP5 A65V and PEAK1 K140Q. Despite this, 93% of metastasis-specific mutations in putative metastatic driver genes remained undetected within primary tumors, as did 96% of metastasis-specific mutations in known breast cancer drivers, including ERRB2 V777L, ESR1 D538G, and AKT1 D323H. Strikingly, even in those cases in which the rare ancestral subclone was identified, 87% of metastasis-specific putative driver mutations remained undetected. Modeling indicated that the sequential acquisition of multiple metastasis-specific driver or passenger mutations within the same rare subclonal lineage of the primary tumor was highly improbable.
    CONCLUSIONS: Our results strongly suggest that metastatic driver mutations are sequentially acquired and selected within the same clonal lineage both before, but more commonly after, dissemination from the primary tumor, and that these mutations are biologically consequential. Despite inherent limitations in sampling archival primary tumors, our findings indicate that tumor cells in most patients continue to undergo clinically relevant genomic evolution after their dissemination from the primary tumor. This provides further evidence that metastatic recurrence is a multi-step, mutation-driven process that extends beyond primary tumor dissemination and underscores the importance of longitudinal tumor assessment to help guide clinical decisions.
    Keywords:  Breast cancer; Genomics; Metastasis; Metastatic driver mutation; Rare subclonal sequencing; Ultra-deep sequencing
    DOI:  https://doi.org/10.1186/s13073-024-01293-9
  33. Nat Commun. 2024 Feb 08. 15(1): 1192
      Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease  legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.
    DOI:  https://doi.org/10.1038/s41467-024-45223-0
  34. Proc Natl Acad Sci U S A. 2024 Feb 13. 121(7): e2316825121
      Climate change is a global concern for all life on our planet, including humans and plants. Plants' growth and development are significantly affected by abiotic stresses, including adverse temperature, inadequate or excess water availability, nutrient deficiency, and salinity. The circadian clock is a master regulator of numerous developmental and metabolic processes in plants. In an effort to identify new clock-related genes and outputs through bioinformatic analysis, we have revealed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) play a crucial role in regulating a wide range of abiotic stress responses and target ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR3 (ABF3), a key transcription factor in the plant hormone Abscisic acid (ABA)-signaling pathway. Specifically, we found that CCA1 and LHY regulate the expression of ABF3 under diel conditions, as well as seed germination under salinity. Conversely, ABF3 controls the expression of core clock genes and orchestrates the circadian period in a stress-responsive manner. ABF3 delivers the stress signal to the central oscillator by binding to the promoter of CCA1 and LHY. Overall, our study uncovers the reciprocal regulation between ABF3 and CCA1/LHY and molecular mechanisms underlying the interaction between the circadian clock and abiotic stress. This finding may aid in developing molecular and genetic solutions for plants to survive and thrive in the face of climate change.
    Keywords:  ABF; abiotic stress; circadian clock; seed germination
    DOI:  https://doi.org/10.1073/pnas.2316825121
  35. Science. 2024 Feb 09. 383(6683): eadj1415
      Lung adenocarcinoma (LUAD) and small cell lung cancer (SCLC) are thought to originate from different epithelial cell types in the lung. Intriguingly, LUAD can histologically transform into SCLC after treatment with targeted therapies. In this study, we designed models to follow the conversion of LUAD to SCLC and found that the barrier to histological transformation converges on tolerance to Myc, which we implicate as a lineage-specific driver of the pulmonary neuroendocrine cell. Histological transformations are frequently accompanied by activation of the Akt pathway. Manipulating this pathway permitted tolerance to Myc as an oncogenic driver, producing rare, stem-like cells that transcriptionally resemble the pulmonary basal lineage. These findings suggest that histological transformation may require the plasticity inherent to the basal stem cell, enabling tolerance to previously incompatible oncogenic driver programs.
    DOI:  https://doi.org/10.1126/science.adj1415
  36. Nature. 2024 Feb 07.
      
    Keywords:  Cancer; Chemistry; Climate change; Ecology; Technology
    DOI:  https://doi.org/10.1038/d41586-024-00379-z
  37. Nat Commun. 2024 Feb 09. 15(1): 1239
      Currently available genetically encoded H2O2 probes report on the thiol redox state of the probe, which means that they reflect the balance between probe thiol oxidation and reduction. Here we introduce the use of the engineered heme peroxidase APEX2 as a thiol-independent chemogenetic H2O2 probe that directly and irreversibly converts H2O2 molecules into either fluorescent or luminescent signals. We demonstrate sensitivity, specificity, and the ability to quantitate endogenous H2O2 turnover. We show how the probe can be used to detect changes in endogenous H2O2 generation and to assess the roles and relative contributions of endogenous H2O2 scavengers. Furthermore, APEX2 can be used to study H2O2 diffusion inside the cytosol. Finally, APEX2 reveals the impact of commonly used alkylating agents and cell lysis protocols on cellular H2O2 generation.
    DOI:  https://doi.org/10.1038/s41467-024-45511-9
  38. Cell Metab. 2024 Jan 23. pii: S1550-4131(24)00006-8. [Epub ahead of print]
      Tumors employ diverse strategies for immune evasion. Unraveling the mechanisms by which tumors suppress anti-tumor immunity facilitates the development of immunotherapies. Here, we have identified tumor-secreted fibroblast growth factor 21 (FGF21) as a pivotal immune suppressor. FGF21 is upregulated in multiple types of tumors and promotes tumor progression. Tumor-secreted FGF21 significantly disrupts anti-tumor immunity by rewiring cholesterol metabolism of CD8+T cells. Mechanistically, FGF21 sustains the hyperactivation of AKT-mTORC1-sterol regulatory-element-binding protein 1 (SREBP1) signal axis in the activated CD8+T cells, resulting in the augment of cholesterol biosynthesis and T cell exhaustion. FGF21 knockdown or blockade using a neutralizing antibody normalizes AKT-mTORC1 signaling and reduces excessive cholesterol accumulation in CD8+T cells, thus restoring CD8+T cytotoxic function and robustly suppressing tumor growth. Our findings reveal FGF21 as a "secreted immune checkpoint" that hampers anti-tumor immunity, suggesting that inhibiting FGF21 could be a valuable strategy to enhance the cancer immunotherapy efficacy.
    Keywords:  CD8(+)T; FGF21; cancer immunotherapy; cholesterol; mTORC1; tumor immune evasion
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.005
  39. Nature. 2024 Feb 07.
      
    Keywords:  CRISPR-Cas9 genome editing; Cancer; Immunology; Medical research
    DOI:  https://doi.org/10.1038/d41586-024-00305-3
  40. Proc Natl Acad Sci U S A. 2024 Feb 13. 121(7): e2305035121
      The energy metabolism of the brain is poorly understood partly due to the complex morphology of neurons and fluctuations in ATP demand over time. To investigate this, we used metabolic models that estimate enzyme usage per pathway, enzyme utilization over time, and enzyme transportation to evaluate how these parameters and processes affect ATP costs for enzyme synthesis and transportation. Our models show that the total enzyme maintenance energy expenditure of the human body depends on how glycolysis and mitochondrial respiration are distributed both across and within cell types in the brain. We suggest that brain metabolism is optimized to minimize the ATP maintenance cost by distributing the different ATP generation pathways in an advantageous way across cell types and potentially also across synapses within the same cell. Our models support this hypothesis by predicting export of lactate from both neurons and astrocytes during peak ATP demand, reproducing results from experimental measurements reported in the literature. Furthermore, our models provide potential explanation for parts of the astrocyte-neuron lactate shuttle theory, which is recapitulated under some conditions in the brain, while contradicting other aspects of the theory. We conclude that enzyme usage per pathway, enzyme utilization over time, and enzyme transportation are important factors for defining the optimal distribution of ATP production pathways, opening a broad avenue to explore in brain metabolism.
    Keywords:  ANLS; brain metabolism; genome-scale models; mathematical modeling; metabolism
    DOI:  https://doi.org/10.1073/pnas.2305035121
  41. Proc Natl Acad Sci U S A. 2024 Feb 13. 121(7): e2307143121
      Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.
    Keywords:  C. elegans; expansion compartment; lysosome; zinc homeostasis; zinc transporters
    DOI:  https://doi.org/10.1073/pnas.2307143121
  42. Curr Opin Biotechnol. 2024 Feb 03. pii: S0958-1669(24)00004-1. [Epub ahead of print]86 103068
      Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for designing MSI experiments and several current analytical challenges.
    DOI:  https://doi.org/10.1016/j.copbio.2024.103068
  43. Nat Commun. 2024 Feb 03. 15(1): 1021
      The epidermal growth factor receptor (EGFR) plays important roles in multiple cellular events, including growth, differentiation, and motility. A major mechanism of downregulating EGFR function involves its endocytic transport to the lysosome. Sorting of proteins into intracellular pathways involves cargo adaptors recognizing sorting signals on cargo proteins. A dileucine-based sorting signal has been identified previously for the sorting of endosomal EGFR to the lysosome, but a cargo adaptor that recognizes this signal remains unknown. Here, we find that phosphoglycerate kinase 1 (PGK1) is recruited to endosomal membrane upon its phosphorylation, where it binds to the dileucine sorting signal in EGFR to promote the lysosomal transport of this receptor. We also elucidate two mechanisms that act in concert to promote PGK1 recruitment to endosomal membrane, a lipid-based mechanism that involves phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and a protein-based mechanism that involves hepatocyte growth factor receptor substrate (Hrs). These findings reveal an unexpected function for a metabolic enzyme and advance the mechanistic understanding of how EGFR is transported to the lysosome.
    DOI:  https://doi.org/10.1038/s41467-024-45443-4
  44. Redox Biol. 2024 Jan 22. pii: S2213-2317(24)00030-2. [Epub ahead of print]70 103054
      Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.
    Keywords:  Acod1; Atherosclerosis; IRG1; Immunometabolism; Itaconate; Macrophage
    DOI:  https://doi.org/10.1016/j.redox.2024.103054
  45. Nat Chem. 2024 Feb 05.
      Cells harbour numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein- and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids, resulting in demixing via liquid-liquid phase separation. Proteins harbouring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modelling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
    DOI:  https://doi.org/10.1038/s41557-023-01423-7
  46. Am J Physiol Endocrinol Metab. 2024 Feb 07.
      The tricarboxylic acid (TCA) cycle metabolite fumarate non-enzymatically reacts with the amino acid cysteine to form S-(2-succino)cysteine (2SC), referred to as protein succination. The immunometabolite itaconate accumulates during lipopolysaccharide (LPS) stimulation of macrophages and microglia. Itaconate non-enzymatically reacts with cysteine residues to generate 2,3-dicarboxypropylcysteine (2,3-DCP), referred to as protein dicarboxypropylation. Since fumarate and itaconate levels dynamically change in activated immune cells, the levels of both 2SC and 2,3-DCP reflect the abundance of these metabolites and their capacity to modify protein thiols. We generated ethyl esters of 2SC and 2,3-DCP from protein hydrolysates and used stable isotope dilution mass spectrometry to determine the abundance of these in LPS-stimulated Highly Aggressively Proliferating Immortalized (HAPI) microglia). To quantify the stoichiometry of succination and dicarboxypropylation, reduced cysteines were alkylated with iodoacetic acid to form S-carboxymethylcysteine (CMC) which was then esterified. Itaconate derived 2,3-DCP, but not fumarate derived 2SC, increased in LPS-treated HAPI microglia. Stoichiometric measurements demonstrated that 2,3-DCP increased from 1.57 to 9.07% of total cysteines upon LPS stimulation. This methodology to simultaneously distinguish and quantify both 2SC and 2,3-DCP will have broad applications in the physiology of metabolic diseases. In addition, we find that available anti-2SC antibodies also detect the structurally similar 2,3-DCP, therefore 'succinate moiety' may better describe the antigen recognized.
    Keywords:  fumarate; immunometabolism; itaconate; microglia; protein modification
    DOI:  https://doi.org/10.1152/ajpendo.00354.2023
  47. Nat Struct Mol Biol. 2024 Feb 07.
      The orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, a sterol that binds adjacent to transmembrane helices 6 and 7 stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress Gs-mediated signaling. These mutants retain the ability to suppress GLI2 transcription factor accumulation in primary cilia, a key function of ciliary GPR161. By contrast, a protein kinase A-binding site in the GPR161 C terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the role of GPR161 function in other signaling pathways.
    DOI:  https://doi.org/10.1038/s41594-024-01223-8
  48. Cancer Discov. 2024 Feb 08. 14(2): 211-213
      Mutant p53 proteins are often highly expressed in human cancers and have been thought to have oncogenic driver gain-of-function (GOF) properties. Wang and colleagues show, surprisingly, that this is not the case because removing the TP53-mutant gene from human and mouse cancer cells using CRISPR technology has no effect on cancer cell growth in vitro or in vivo. See related article by Wang et al., p. 362 (10) .
    DOI:  https://doi.org/10.1158/2159-8290.CD-23-1362
  49. Nat Commun. 2024 Feb 03. 15(1): 1041
      Cellular senescence is a stress response with broad pathophysiological implications. Senotherapies can induce senescence to treat cancer or eliminate senescent cells to ameliorate ageing and age-related pathologies. However, the success of senotherapies is limited by the lack of reliable ways to identify senescence. Here, we use nuclear morphology features of senescent cells to devise machine-learning classifiers that accurately predict senescence induced by diverse stressors in different cell types and tissues. As a proof-of-principle, we use these senescence classifiers to characterise senolytics and to screen for drugs that selectively induce senescence in cancer cells but not normal cells. Moreover, a tissue senescence score served to assess the efficacy of senolytic drugs and identified senescence in mouse models of liver cancer initiation, ageing, and fibrosis, and in patients with fatty liver disease. Thus, senescence classifiers can help to detect pathophysiological senescence and to discover and validate potential senotherapies.
    DOI:  https://doi.org/10.1038/s41467-024-45421-w