bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2022‒07‒24
forty-two papers selected by
Christian Frezza
University Hospital Cologne


  1. Nature. 2022 Jul 20.
      Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple nutrients, including the essential amino acid leucine1. Recent work in cultured mammalian cells established the Sestrins as leucine-binding proteins that inhibit mTORC1 signalling during leucine deprivation2,3, but their role in the organismal response to dietary leucine remains elusive. Here we find that Sestrin-null flies (Sesn-/-) fail to inhibit mTORC1 or activate autophagy after acute leucine starvation and have impaired development and a shortened lifespan on a low-leucine diet. Knock-in flies expressing a leucine-binding-deficient Sestrin mutant (SesnL431E) have reduced, leucine-insensitive mTORC1 activity. Notably, we find that flies can discriminate between food with or without leucine, and preferentially feed and lay progeny on leucine-containing food. This preference depends on Sestrin and its capacity to bind leucine. Leucine regulates mTORC1 activity in glial cells, and knockdown of Sesn in these cells reduces the ability of flies to detect leucine-free food. Thus, nutrient sensing by mTORC1 is necessary for flies not only to adapt to, but also to detect, a diet deficient in an essential nutrient.
    DOI:  https://doi.org/10.1038/s41586-022-04960-2
  2. Nat Metab. 2022 Jul 21.
      Successful elimination of bacteria in phagocytes occurs in the phago-lysosomal system, but also depends on mitochondrial pathways. Yet, how these two organelle systems communicate is largely unknown. Here we identify the lysosomal biogenesis factor transcription factor EB (TFEB) as regulator for phago-lysosome-mitochondria crosstalk in macrophages. By combining cellular imaging and metabolic profiling, we find that TFEB activation, in response to bacterial stimuli, promotes the transcription of aconitate decarboxylase (Acod1, Irg1) and synthesis of its product itaconate, a mitochondrial metabolite with antimicrobial activity. Activation of the TFEB-Irg1-itaconate signalling axis reduces the survival of the intravacuolar pathogen Salmonella enterica serovar Typhimurium. TFEB-driven itaconate is subsequently transferred via the Irg1-Rab32-BLOC3 system into the Salmonella-containing vacuole, thereby exposing the pathogen to elevated itaconate levels. By activating itaconate production, TFEB selectively restricts proliferating Salmonella, a bacterial subpopulation that normally escapes macrophage control, which contrasts TFEB's role in autophagy-mediated pathogen degradation. Together, our data define a TFEB-driven metabolic pathway between phago-lysosomes and mitochondria that restrains Salmonella Typhimurium burden in macrophages in vitro and in vivo.
    DOI:  https://doi.org/10.1038/s42255-022-00605-w
  3. Mol Cell. 2022 Jul 13. pii: S1097-2765(22)00609-8. [Epub ahead of print]
      NAD+ kinases (NADKs) are metabolite kinases that phosphorylate NAD+ molecules to make NADP+, a limiting substrate for the generation of reducing power NADPH. NADK2 sustains mitochondrial NADPH production that enables proline biosynthesis and antioxidant defense. However, its molecular architecture and mechanistic regulation remain undescribed. Here, we report the crystal structure of human NADK2, revealing a substrate-driven mode of activation. We find that NADK2 presents an unexpected dimeric organization instead of the typical tetrameric assemblage observed for other NADKs. A specific extended segment (aa 325-365) is crucial for NADK2 dimerization and activity. Moreover, we characterize numerous acetylation events, including those on Lys76 and Lys304, which reside near the active site and inhibit NADK2 activity without disrupting dimerization, thereby reducing mitochondrial NADP(H) production, proline synthesis, and cell growth. These findings reveal important molecular insight into the structure and regulation of a vital enzyme in mitochondrial NADPH and proline metabolism.
    Keywords:  NAD kinases; NADK2; NADPH metabolism; crystal structure; mitochondrial metabolism; post-translational modifications; proline metabolism
    DOI:  https://doi.org/10.1016/j.molcel.2022.06.026
  4. Cell Mol Life Sci. 2022 Jul 17. 79(8): 428
      The citrate carrier (CIC) is an integral protein of the inner mitochondrial membrane which catalyzes the efflux of mitochondrial citrate (or other tricarboxylates) in exchange with a cytosolic anion represented by a tricarboxylate or a dicarboxylate or phosphoenolpyruvate. In this way, the CIC provides the cytosol with citrate which is involved in many metabolic reactions. Several studies have been carried out over the years on the structure, function and regulation of this metabolite carrier protein both in mammals and in many other organisms. A lot of data on the characteristics of this protein have therefore accumulated over time thereby leading to a complex framework of metabolic and physiological implications connected to the CIC function. In this review, we critically analyze these data starting from the multiple roles played by the mitochondrial CIC in many cellular processes and then examining the regulation of its activity in different nutritional and hormonal states. Finally, the metabolic significance of the citrate flux, mediated by the CIC, across distinct subcellular compartments is also discussed.
    Keywords:  Citrate; Intermediary metabolism; Metabolic network; Metabolite carrier; Mitochondria; Subcellular compartments
    DOI:  https://doi.org/10.1007/s00018-022-04466-0
  5. Sci Adv. 2022 Jul 22. 8(29): eabo0404
      Metastasizing cancer cells are able to withstand high levels of oxidative stress through mechanisms that are poorly understood. Here, we show that under various oxidative stress conditions, pancreatic cancer cells markedly expand NADPH and NADP+ pools. This expansion is due to up-regulation of glucose-6-phosphate dehydrogenase (G6PD), which stimulates the cytoplasmic nicotinamide adenine dinucleotide kinase (NADK1) to produce NADP+ while converting NADP+ to NADPH. G6PD is activated by the transcription factor TAp73, which is, in turn, regulated by two pathways. Nuclear factor-erythroid 2 p45-related factor-2 suppresses expression of the ubiquitin ligase PIRH2, stabilizing the TAp73 protein. Checkpoint kinases 1/2 and E2F1 induce expression of the TAp73 gene. Levels of G6PD and its upstream activators are elevated in metastatic pancreatic cancer. Knocking down G6PD impedes pancreatic cancer metastasis, whereas forced G6PD expression promotes it. These findings reveal an intracellular network that maintains redox homeostasis through G6PD-mediated increase in de novo NADP+ biosynthesis, which may be co-opted by tumor cells to enable metastasis.
    DOI:  https://doi.org/10.1126/sciadv.abo0404
  6. Sci Signal. 2022 Jul 05. 15(741): eabm7524
      The endoplasmic reticulum (ER) is the largest organelle of the cell and participates in multiple essential functions, including the production of secretory proteins, lipid synthesis, and calcium storage. Sustaining proteostasis requires an intimate coupling with energy production. Mitochondrial respiration evolved to be functionally connected to ER physiology through a physical interface between both organelles known as mitochondria-associated membranes. This quasi-synaptic structure acts as a signaling hub that tunes the function of both organelles in a bidirectional manner and controls proteostasis, cell death pathways, and mitochondrial bioenergetics. Here, we discuss the main signaling mechanisms governing interorganellar communication and their putative role in diseases including cancer and neurodegeneration.
    DOI:  https://doi.org/10.1126/scisignal.abm7524
  7. Proc Natl Acad Sci U S A. 2022 Jul 12. 119(28): e2122840119
      Chromophobe (Ch) renal cell carcinoma (RCC) arises from the intercalated cell in the distal nephron. There are no proven treatments for metastatic ChRCC. A distinguishing characteristic of ChRCC is strikingly high levels of reduced (GSH) and oxidized (GSSG) glutathione. Here, we demonstrate that ChRCC-derived cells exhibit higher sensitivity to ferroptotic inducers compared with clear-cell RCC. ChRCC-derived cells are critically dependent on cystine via the cystine/glutamate antiporter xCT to maintain high levels of glutathione, making them sensitive to inhibitors of cystine uptake and cyst(e)inase. Gamma-glutamyl transferase 1 (GGT1), a key enzyme in glutathione homeostasis, is markedly suppressed in ChRCC relative to normal kidney. Importantly, GGT1 overexpression inhibits the proliferation of ChRCC cells in vitro and in vivo, suppresses cystine uptake, and decreases levels of GSH and GSSG. Collectively, these data identify ferroptosis as a metabolic vulnerability in ChRCC, providing a potential avenue for targeted therapy for these distinctive tumors.
    Keywords:  chromophobe renal cell carcinoma; ferroptosis; gamma-glutamyl transferase 1; solute carrier family 7 member 11
    DOI:  https://doi.org/10.1073/pnas.2122840119
  8. Cell Chem Biol. 2022 Jul 21. pii: S2451-9456(22)00161-1. [Epub ahead of print]29(7): 1232-1244.e5
      During metabolism, carboxylic acids are often activated by conjugation to the thiol of coenzyme A (CoA). The resulting acyl-CoAs comprise a group of ∼100 thioester-containing metabolites that could modify protein behavior through non-enzymatic N-acylation of lysine residues. However, the importance of many potential acyl modifications remains unclear because antibody-based methods to detect them are unavailable and the in vivo concentrations of their respective acyl-CoAs are poorly characterized. Here, we develop cysteine-triphenylphosphonium (CysTPP), a mass spectrometry probe that uses "native chemical ligation" to sensitively detect the major acyl-CoAs present in vivo through irreversible modification of its amine via a thioester intermediate. Using CysTPP, we show that longer-chain (C13-C22) acyl-CoAs often constitute ∼60% of the acyl-CoA pool in rat tissues. These hydrophobic longer-chain fatty acyl-CoAs have the potential to non-enzymatically modify protein residues.
    Keywords:  acyl-CoA; acylation; coenzyme A; cysteine; native chemical ligation; thioester; thiol; triphenylphosphonium
    DOI:  https://doi.org/10.1016/j.chembiol.2022.04.005
  9. J Gen Physiol. 2022 Sep 05. pii: e202213167. [Epub ahead of print]154(9):
      Mitochondria are characterized by a high capacity to accumulate calcium thanks to the electrochemical gradient created by the extrusion of protons in the respiratory chain. Thereby calcium can enter crossing the inner mitochondrial membrane via MCU complex, a high-capacity, low-affinity transport mechanism. Calcium uptake serves numerous purposes, among them the regulation of three dehydrogenases of the citric cycle, apoptosis via permeability transition, and, in some cell types, modulation of cytosolic calcium transients. This Review is focused on mitochondrial calcium uptake in skeletal muscle fibers and aims to reanalyze its functional impact. In particular, we ask whether mitochondrial calcium uptake is relevant for the control of cytosolic calcium transients and therefore of contractile performance. Recent data suggest that this may be the case, at least in particular conditions, as modified expression of MCU complex subunits or of proteins involved in mitochondrial dynamics and ablation of the main cytosolic calcium buffer, parvalbumin.
    DOI:  https://doi.org/10.1085/jgp.202213167
  10. EMBO J. 2022 Jul 20. e110784
      The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long-lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.
    Keywords:  AIFM1; MIA40-CHCHD4; NDUFS5; complex I; mitochondrial disulfide relay
    DOI:  https://doi.org/10.15252/embj.2022110784
  11. J Hematol Oncol. 2022 Jul 21. 15(1): 98
      Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mitochondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-promoting functions of key components of the UPRmt.
    Keywords:  Cancer; Mitochondrial chaperonins; Mitochondrial proteases; Mitochondrial proteostasis; Mitochondrial unfolded protein response
    DOI:  https://doi.org/10.1186/s13045-022-01317-0
  12. Proc Natl Acad Sci U S A. 2022 Jul 12. 119(28): e2113465119
      The role of autophagy in cancer is complex. Both tumor-promoting and tumor-suppressive effects are reported, with tumor type, stage and specific genetic lesions dictating the role. This calls for analysis in models that best recapitulate each tumor type, from initiation to metastatic disease, to specifically understand the contribution of autophagy in each context. Here, we report the effects of deleting the essential autophagy gene Atg7 in a model of pancreatic ductal adenocarcinoma (PDAC), in which mutant KrasG12D and mutant Trp53172H are induced in adult tissue leading to metastatic PDAC. This revealed that Atg7 loss in the presence of KrasG12D/+ and Trp53172H/+ was tumor promoting, similar to previous observations in tumors driven by embryonic KrasG12D/+ and deletion of Trp53. However, Atg7 hemizygosity also enhanced tumor initiation and progression, even though this did not ablate autophagy. Moreover, despite this enhanced progression, fewer Atg7 hemizygous mice had metastases compared with animals wild type for this allele, indicating that ATG7 is a promoter of metastasis. We show, in addition, that Atg7+/- tumors have comparatively lower levels of succinate, and that cells derived from Atg7+/- tumors are also less invasive than those from Atg7+/+ tumors. This effect on invasion can be rescued by ectopic expression of Atg7 in Atg7+/- cells, without affecting the autophagic capacity of the cells, or by treatment with a cell-permeable analog of succinate. These findings therefore show that ATG7 has roles in invasion and metastasis that are not related to the role of the protein in the regulation of autophagy.
    Keywords:  ATG7; autophagy; metastasis; pancreatic cancer
    DOI:  https://doi.org/10.1073/pnas.2113465119
  13. Front Oncol. 2022 ;12 767479
      Regions of hypoxia are common in solid tumors and drive changes in gene expression that increase risk of cancer metastasis. Tumor cells must respond to the stress of hypoxia by activating genes to modify cell metabolism and antioxidant response to improve survival. The goal of the current study was to determine the effect of hypoxia on cell metabolism and markers of oxidative stress in metastatic (metM-Wntlung) compared with nonmetastatic (M-Wnt) murine mammary cancer cell lines. We show that hypoxia induced a greater suppression of glutamine to glutamate conversion in metastatic cells (13% in metastatic cells compared to 7% in nonmetastatic cells). We also show that hypoxia increased expression of genes involved in antioxidant response in metastatic compared to nonmetastatic cells, including glutamate cysteine ligase catalytic and modifier subunits and malic enzyme 1. Interestingly, hypoxia increased the mRNA level of the transaminase glutamic pyruvic transaminase 2 (Gpt2, 7.7-fold) only in metM-Wntlung cells. The change in Gpt2 expression was accompanied by transcriptional (4.2-fold) and translational (6.5-fold) induction of the integrated stress response effector protein activating transcription factor 4 (ATF4). Genetic depletion ATF4 demonstrated importance of this molecule for survival of hypoxic metastatic cells in detached conditions. These findings indicate that more aggressive, metastatic cancer cells utilize hypoxia for metabolic reprogramming and induction of antioxidant defense, including activation of ATF4, for survival in detached conditions.
    Keywords:  ATF4 activating transcription factor 4; breast cancer; cell stress; hypoxia; integrated stress response (ISR); metastasis
    DOI:  https://doi.org/10.3389/fonc.2022.767479
  14. Nature. 2022 Jul 20.
      Oocytes form before birth and remain viable for several decades before fertilization1. Although poor oocyte quality accounts for most female fertility problems, little is known about how oocytes maintain cellular fitness, or why their quality eventually declines with age2. Reactive oxygen species (ROS) produced as by-products of mitochondrial activity are associated with lower rates of fertilization and embryo survival3-5. Yet, how healthy oocytes balance essential mitochondrial activity with the production of ROS is unknown. Here we show that oocytes evade ROS by remodelling the mitochondrial electron transport chain through elimination of complex I. Combining live-cell imaging and proteomics in human and Xenopus oocytes, we find that early oocytes exhibit greatly reduced levels of complex I. This is accompanied by a highly active mitochondrial unfolded protein response, which is indicative of an imbalanced electron transport chain. Biochemical and functional assays confirm that complex I is neither assembled nor active in early oocytes. Thus, we report a physiological cell type without complex I in animals. Our findings also clarify why patients with complex-I-related hereditary mitochondrial diseases do not experience subfertility. Complex I suppression represents an evolutionarily conserved strategy that allows longevity while maintaining biological activity in long-lived oocytes.
    DOI:  https://doi.org/10.1038/s41586-022-04979-5
  15. Cancer Res. 2022 Jul 22. pii: CAN-22-0121. [Epub ahead of print]
      The mechanistic target of rapamycin (mTOR) is a key regulator of cell growth that integrates growth factor signaling and nutrient availability and is a downstream effector of oncogenic receptor tyrosine kinases (RTKs) and PI3K/Akt signaling. Thus, activating mTOR mutations would be expected to enhance growth in many tumor types. However, tumor sequencing data has shown that mTOR mutations are enriched only in renal clear cell carcinoma, a clinically hypervascular tumor unlikely to be constrained by nutrient availability. To further define this cancer type-specific restriction, we studied activating mutations in mTOR. All mTOR mutants tested enhanced growth in a cell type agnostic manner under nutrient-replete conditions but were detrimental to cell survival in nutrient-poor conditions. Consistently, analysis of tumor data demonstrated that oncogenic mutations in the nutrient-sensing arm of the mTOR pathway display a similar phenotype and were exceedingly rare in human cancers of all types. Together, these data suggest that maintaining the ability to turn off mTOR signaling in response to changing nutrient availability is retained in most naturally occurring tumors.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-0121
  16. Proc Natl Acad Sci U S A. 2022 Jul 26. 119(30): e2201089119
      Many insects enter a state of dormancy (diapause) during winter in which they lower their metabolism to save energy. Metabolic suppression is a hallmark of diapause, yet we know little about the mechanisms underpinning metabolic suppression in winter or how it is reversed in the spring. Here, we show that metabolic suppression in dormant Colorado potato beetles results from the breakdown of flight muscle mitochondria via mitophagy. Diapausing Colorado potato beetles suppress their metabolism by 90%, and this lowered metabolic rate coincides with a similar reduction in flight muscle mitochondrial function and density. During early diapause, beetles increase the expression of mitophagy-related transcripts (Parkin and ATG5) in their flight muscle coincident with an increase in mitophagy-related structures in the flight muscle. Knocking down Parkin expression with RNA interference in diapausing beetles prevented some mitochondrial breakdown and partially restored the whole animal metabolic rate, suggesting that metabolic suppression in diapausing beetles is driven by mitophagy. In other animals and in models of disease, such large-scale mitochondrial degradation is irreversible. However, we show that as diapause ends, beetles reverse mitophagy and increase the expression of PGC1α and NRF1 to replenish flight muscle mitochondrial pools. This mitochondrial biogenesis is activated in anticipation of diapause termination and in the absence of external stimuli. Our study provides a mechanistic link between mitochondrial degradation in insect tissues over the winter and whole-animal metabolic suppression.
    Keywords:  dormancy; insect flight muscle; mitochondria; mitophagy
    DOI:  https://doi.org/10.1073/pnas.2201089119
  17. Proc Natl Acad Sci U S A. 2022 Jul 26. 119(30): e2201168119
      Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.
    Keywords:  DNMT3A/3B; de novo DNA methylation; mitochondrial DNA; mitochondrial oxidative damage; peri-implantation
    DOI:  https://doi.org/10.1073/pnas.2201168119
  18. Redox Biol. 2022 Jul 14. pii: S2213-2317(22)00179-3. [Epub ahead of print]55 102407
      Iron is a mineral essential for blood production and a variety of critical cellular functions. Altered iron metabolism has been increasingly observed in many diseases and disorders, but a comprehensive and mechanistic understanding of the cellular impact of impaired iron metabolism is still lacking. We examined the effects of iron overload or iron deficiency on cellular stress responses and autophagy which collectively regulate cell homeostasis and survival. Acute iron loading led to increased mitochondrial ROS (mtROS) production and damage, lipid peroxidation, impaired autophagic flux, and ferroptosis. Iron-induced mtROS overproduction is the mechanism of increased lipid peroxidation, impaired autophagy, and the induction of ferroptosis. Iron excess-induced ferroptosis was cell-type dependent and regulated by activating transcription factor 4 (ATF4). Upregulation of ATF4 mitigated iron-induced autophagic dysfunction and ferroptosis, whereas silencing of ATF4 expression impaired autophagy and resulted in increased mtROS production and ferroptosis. Employing autophagy-deficient hepatocytes and different autophagy inhibitors, we further showed that autophagic impairment sensitized cells to iron-induced ferroptosis. In contrast, iron deficiency activated the endoplasmic reticulum (ER) stress response, decreased autophagy, and induced apoptosis. Decreased autophagy associated with iron deficiency was due to ER stress, as reduction of ER stress by 4-phenylbutyric acid (4-PBA) improved autophagic flux. The mechanism of decreased autophagy in iron deficiency is a disruption in lysosomal biogenesis due to impaired posttranslational maturation of lysosomal membrane proteins. In conclusion, iron excess and iron deficiency cause different forms of cell stress and death in part through the common mechanism of impaired autophagic function.
    Keywords:  ATF4; ER stress; Ferroptosis; Lipid peroxidation; Mitochondria
    DOI:  https://doi.org/10.1016/j.redox.2022.102407
  19. Cell Rep. 2022 Jul 19. pii: S2211-1247(22)00930-5. [Epub ahead of print]40(3): 111124
      Leber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy.
    Keywords:  CP: Neuroscience; LHON; autophagy; cybrids; iPSCs; mitochondria; mitophagy; mtDNA; optic nerve; retinal ganglion cells; therapy
    DOI:  https://doi.org/10.1016/j.celrep.2022.111124
  20. J Biol Chem. 2022 Jul 19. pii: S0021-9258(22)00728-1. [Epub ahead of print] 102286
      In the mammalian retina, a metabolic ecosystem exists in which photoreceptors acquire glucose from the choriocapillaris with the help of the retinal pigment epithelium (RPE). While the photoreceptor cells are primarily glycolytic, exhibiting Warburg-like metabolism, the RPE is reliant on mitochondrial respiration. However, the ways in which mitochondrial metabolism affect RPE cellular functions are not clear. We first used the human RPE cell line, ARPE-19, to examine mitochondrial metabolism in the context of cellular differentiation. We show that nicotinamide induced rapid differentiation of ARPE-19 cells, which was reversed by removal of supplemental nicotinamide. During the nicotinamide-induced differentiation, we observed using quantitative PCR, western blotting, electron microscopy, and metabolic respiration and tracing assays that (1) mitochondrial gene and protein expression increased, (2) mitochondria became larger with more tightly-folded cristae, and (3) mitochondrial metabolism was enhanced. Additionally, we show primary cultures of human fetal RPE cells responded similarly in the presence of nicotinamide. Furthermore, disruption of mitochondrial oxidation of pyruvate attenuated the nicotinamide-induced differentiation of the RPE cells. Together, our results demonstrate a remarkable effect of nicotinamide on RPE metabolism. We also identify mitochondrial respiration as a key contributor to the differentiated state of the RPE, and thus to many of the RPE functions that are essential for retinal health and photoreception.
    Keywords:  RPE; differentiation; mitochondria; nicotinamide; retina
    DOI:  https://doi.org/10.1016/j.jbc.2022.102286
  21. Front Cell Dev Biol. 2022 ;10 928210
      Pregnancy requires adaptations in maternal metabolism to support fetal growth. The phosphoinositol-3-kinase (PI3K) signalling pathway controls multiple biological processes and defects in this pathway are linked to metabolic disorders including insulin resistance and glucose intolerance in non-pregnant animals. However, relatively little is known about the contribution of PI3K signalling to the maternal metabolic adaptations during pregnancy. Using mice with partial inactivation of the PI3K isoform, p110α (due to a heterozygous dominant negative mutation; Pik3ca-D933A), the effects of impaired PI3K-p110α signalling on glucose and insulin handling were examined in the pregnant and non-pregnant states and related to the morphological, molecular, and mitochondrial changes in key metabolic organs. The results show that non-pregnant mice lacking PI3K-p110α are glucose intolerant but exhibit compensatory increases in pancreatic glucose-stimulated insulin release and adipose tissue mitochondrial respiratory capacity and fatty acid oxidation. However, in pregnancy, mutant mice failed to show the normal increment in glucose intolerance and pancreatic β-cell mass observed in wild-type pregnant dams and exhibited further enhanced adipose tissue mitochondrial respiratory capacity. These maladaptations in pregnant mutant mice were associated with fetal growth restriction. Hence, PI3K-p110α is a key regulator of metabolic adaptations that support fetal growth during normal pregnancy.
    Keywords:  PI3K; metabolism; mitochondria; pregnancy; signalling
    DOI:  https://doi.org/10.3389/fcell.2022.928210
  22. Mol Oncol. 2022 Jul 17.
      Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both aging and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark and this observation therefore suggests that mitochondrial alterations may be of significance in age-related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in aging human post-mitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis, and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumor growth. However, the specific mechanisms by which mtDNA mutations contribute to tumor progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
    Keywords:  Aging; Cancer; Metabolism; Mitochondria; Mitochondrial DNA; Oxidative Phosphorylation
    DOI:  https://doi.org/10.1002/1878-0261.13291
  23. Nat Cell Biol. 2022 Jul 18.
      Cellular senescence plays a causal role in ageing and, in mice, depletion of p16INK4a-expressing senescent cells delays ageing-associated disorders1,2. Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes that are also implicated as important regulators of human ageing, and ADAR inactivation causes age-associated pathologies such as neurodegeneration in model organisms3,4. However, the role, if any, of ADARs in cellular senescence is unknown. Here we show that ADAR1 is post-transcriptionally downregulated by autophagic degradation to promote senescence through p16INK4a upregulation. The ADAR1 downregulation is sufficient to drive senescence in both in vitro and in vivo models. Senescence induced by ADAR1 downregulation is p16INK4a-dependent and independent of its RNA-editing function. Mechanistically, ADAR1 promotes SIRT1 expression by affecting its RNA stability through HuR, an RNA-binding protein that increases the half-life and steady-state levels of its target mRNAs. SIRT1 in turn antagonizes translation of mRNA encoding p16INK4a. Hence, downregulation of ADAR1 and SIRT1 mediates p16INK4a upregulation by enhancing its mRNA translation. Finally, Adar1 is downregulated during ageing of mouse tissues such as brain, ovary and intestine, and Adar1 expression correlates with Sirt1 expression in these tissues in mice. Together, our study reveals an RNA-editing-independent role for ADAR1 in the regulation of senescence by post-transcriptionally controlling p16INK4a expression.
    DOI:  https://doi.org/10.1038/s41556-022-00959-z
  24. Redox Biol. 2022 Jul 15. pii: S2213-2317(22)00175-6. [Epub ahead of print]55 102403
      Defects in Coenzyme Q (CoQ) metabolism have been associated with primary mitochondrial disorders, neurodegenerative diseases and metabolic conditions. The consequences of CoQ deficiency have not been fully addressed, and effective treatment remains challenging. Here, we use mice with primary CoQ deficiency (Coq9R239X), and we demonstrate that CoQ deficiency profoundly alters the Q-junction, leading to extensive changes in the mitochondrial proteome and metabolism in the kidneys and, to a lesser extent, in the brain. CoQ deficiency also induces reactive gliosis, which mediates a neuroinflammatory response, both of which lead to an encephalopathic phenotype. Importantly, treatment with either vanillic acid (VA) or β-resorcylic acid (β-RA), two analogs of the natural precursor for CoQ biosynthesis, partially restores CoQ metabolism, particularly in the kidneys, and induces profound normalization of the mitochondrial proteome and metabolism, ultimately leading to reductions in gliosis, neuroinflammation and spongiosis and, consequently, reversing the phenotype. Together, these results provide key mechanistic insights into defects in CoQ metabolism and identify potential disease biomarkers. Furthermore, our findings clearly indicate that the use of analogs of the CoQ biosynthetic precursor is a promising alternative therapy for primary CoQ deficiency and has potential for use in the treatment of more common neurodegenerative and metabolic diseases that are associated with secondary CoQ deficiency.
    Keywords:  Coenzyme Q; Mitochondrial disease; Omics; Phenolic compound; Therapy
    DOI:  https://doi.org/10.1016/j.redox.2022.102403
  25. J Biol Chem. 2022 Jul 13. pii: S0021-9258(22)00701-3. [Epub ahead of print] 102259
      The structural changes of airway smooth muscle (ASM) that characterize airway remodeling are crucial to the pathogenesis of asthma. During airway remodeling, ASM cells dedifferentiate from a quiescent to a proliferative, migratory, and secretory phenotype. Calcium (Ca2+) is a ubiquitous second messenger that regulates many cellular processes including proliferation, migration, contraction, and metabolism. Furthermore, mitochondria have emerged as major Ca2+ signaling organelles that buffer Ca2+ through uptake by the mitochondrial Ca2+ uniporter (MCU) and extrude it through the Na+/Ca2+ Exchanger (NCLX/Slc8b1). Here, we show using mitochondrial Ca2+ sensitive dyes that NCLX only partially contributes to mitochondrial Ca2+ extrusion in ASM cells. Yet, NCLX is necessary for ASM cell proliferation and migration. Through cellular imaging, RNA sequencing, and biochemical assays we demonstrate that NCLX regulates these processes by preventing mitochondrial Ca2+ overload and supporting store-operated Ca2+ entry (SOCE), activation of Ca2+/calmodulin-dependent kinase II (CaMKII), and transcriptional and metabolic reprogramming. Using small animal respiratory mechanics measurements and immunohistochemistry, we show that smooth muscle-specific NCLX knockout mice are protected against airway remodeling, fibrosis and hyperresponsiveness in an experimental model of asthma. Our findings support NCLX as a potential therapeutic target in the treatment of asthma.
    Keywords:  Airway fibrosis; Airway hyperresponsiveness; Airway remodeling; Asthma; CaMKII; Calcium signaling; Metabolism; Mitochondrial calcium; NCLX; SOCE
    DOI:  https://doi.org/10.1016/j.jbc.2022.102259
  26. Sci Adv. 2022 Jul 08. 8(27): eabn6491
      Depletion of circulating asparagine with l-asparaginase (ASNase) is a mainstay of leukemia treatment and is under investigation in many cancers. Expression levels of asparagine synthetase (ASNS), which catalyzes asparagine synthesis, were considered predictive of cancer cell sensitivity to ASNase treatment, a notion recently challenged. Using [U-13C5]-l-glutamine in vitro and in vivo in a mouse model of B cell lymphomas (BCLs), we demonstrated that supraphysiological or physiological concentrations of asparagine prevent de novo asparagine biosynthesis, regardless of ASNS expression levels. Overexpressing ASNS in ASNase-sensitive BCL was insufficient to confer resistance to ASNase treatment in vivo. Moreover, we showed that ASNase's glutaminase activity enables its maximal anticancer effect. Together, our results indicate that baseline ASNS expression (low or high) cannot dictate BCL dependence on de novo asparagine biosynthesis and predict BCL sensitivity to dual ASNase activity. Thus, except for ASNS-deficient cancer cells, ASNase's glutaminase activity should be considered in the clinic.
    DOI:  https://doi.org/10.1126/sciadv.abn6491
  27. Biochim Biophys Acta Gen Subj. 2022 Jul 13. pii: S0304-4165(22)00121-0. [Epub ahead of print] 130203
      Autophagy-dependent selective degradation of excess or damaged mitochondria, termed mitophagy, is a tightly regulated process necessary for mitochondrial quality and quantity control. Mitochondria are highly dynamic and major sites for vital cellular processes such as ATP and iron‑sulfur cluster biogenesis. Due to their pivotal roles for immunity, apoptosis, and aging, the maintenance of mitochondrial function is of utmost importance for cellular homeostasis. In yeast, mitophagy is mediated by the receptor protein Atg32 that is localized to the outer mitochondrial membrane. Upon mitophagy induction, Atg32 expression is transcriptionally upregulated, which leads to its accumulation on the mitochondrial surface and to recruitment of the autophagic machinery via its direct interaction with Atg11 and Atg8. Importantly, post-translational modifications such as phosphorylation further fine-tune the mitophagic response. This review summarizes the current knowledge about mitophagy in yeast and its connection with mitochondrial dynamics and the ubiquitin-proteasome system.
    Keywords:  Atg11; Atg32; Atg8; Autophagy; Mitochondria; Yeast
    DOI:  https://doi.org/10.1016/j.bbagen.2022.130203
  28. Cell Death Dis. 2022 Jul 22. 13(7): 641
      Oncogenic mutations in metabolic genes and associated oncometabolite accumulation support cancer progression but can also restrict cellular functions needed to cope with DNA damage. For example, gain-of-function mutations in isocitrate dehydrogenase (IDH) and the resulting accumulation of the oncometabolite D-2-hydroxyglutarate (D-2-HG) enhanced the sensitivity of cancer cells to inhibition of poly(ADP-ribose)-polymerase (PARP)1 and radiotherapy (RT). In our hand, inhibition of the mitochondrial citrate transport protein (SLC25A1) enhanced radiosensitivity of cancer cells and this was associated with increased levels of D-2-HG and a delayed repair of radiation-induced DNA damage. Here we aimed to explore the suggested contribution of D-2-HG-accumulation to disturbance of DNA repair, presumably homologous recombination (HR) repair, and enhanced radiosensitivity of cancer cells with impaired SLC25A1 function. Genetic and pharmacologic inhibition of SLC25A1 (SLC25A1i) increased D-2-HG-levels and sensitized lung cancer and glioblastoma cells to the cytotoxic action of ionizing radiation (IR). SLC25A1i-mediated radiosensitization was abrogated in MEFs with a HR-defect. D-2-HG-accumulation was associated with increased DNA damage and delayed resolution of IR-induced γH2AX and Rad51 foci. Combining SLC25A1i with PARP- or the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs)-inhibitors further potentiated IR-induced DNA damage, delayed DNA repair kinetics resulting in radiosensitization of cancer cells. Importantly, proof of concept experiments revealed that combining SLC25A1i with IR without and with PARPi also reduced tumor growth in the chorioallantoic membrane (CAM) model in vivo. Thereby SLC25A1i offers an innovative strategy for metabolic induction of context-dependent lethality approaches in combination with RT and clinically relevant inhibitors of complementary DNA repair pathways.
    DOI:  https://doi.org/10.1038/s41419-022-05098-9
  29. Biogerontology. 2022 Jul 16.
      Ageing is accompanied by alterations in several biochemical processes, highly influenced by its environment. It is controlled by the interactions at various levels of biological hierarchy. To maintain homeostasis, a number of nutrient sensors respond to the nutritional status of the cell and control its energy metabolism. Mitochondrial physiology is influenced by the energy status of the cell. The alterations in mitochondrial physiology and the network of nutrient sensors result in mitochondrial damage leading to age related metabolic degeneration and diseases. Calorie restriction (CR) has proved to be as the most successful intervention to achieve the goal of longevity and healthspan. CR elicits a hormetic response and regulates metabolism by modulating these networks. In this review, the authors summarize the interdependent relationship between mitochondrial physiology and nutrient sensors during the ageing process and their role in regulating metabolism.
    Keywords:  AMPK; Ageing; Dietary restriction; Mitochondria; Sirtuins; mTOR
    DOI:  https://doi.org/10.1007/s10522-022-09978-7
  30. Clin Transl Med. 2022 Jul;12(7): e931
      BACKGROUND: Congenital ISG15 deficiency is a rare autoinflammatory disorder that is driven by chronically elevated systemic interferon levels and predominantly affects central nervous system and skin.METHODS AND RESULTS: We have developed induced pluripotent stem cell-derived macrophages and endothelial cells as a model to study the cellular phenotype of ISG15 deficiency and identify novel treatments. ISG15-/- macrophages exhibited the expected hyperinflammatory responses, but normal phagocytic function. In addition, they displayed a multifaceted pathological phenotype featuring increased apoptosis/pyroptosis, oxidative stress, glycolysis, and acylcarnitine levels, but decreased glutamine uptake, BCAT1 expression, branched chain amino acid catabolism, oxidative phosphorylation, β-oxidation, and NAD(P)H-dependent oxidoreductase activity. Furthermore, expression of genes involved in mitochondrial biogenesis and respiratory chain complexes II-V was diminished in ISG15-/- cells. Defective mitochondrial respiration was restored by transduction with wild-type ISG15, but only partially by a conjugation-deficient variant, suggesting that some ISG15 functions in mitochondrial respiration require ISGylation to cellular targets. Treatment with itaconate, dimethyl-itaconate, 4-octyl-itaconate, and the JAK1/2 inhibitor ruxolitinib ameliorated increased inflammation, propensity for cell death, and oxidative stress. Furthermore, the treatments greatly improved mitochondria-related gene expression, BCAT1 levels, redox balance, and intracellular and extracellular ATP levels. However, efficacy differed among the compounds according to read-out and cell type, suggesting that their effects on cellular targets are not identical. Indeed, only itaconates increased expression of anti-oxidant genes NFE2L2, HMOX1, and GPX7, and dimethyl-itaconate improved redox balance the most. Even though itaconate treatments normalized the elevated expression of interferon-stimulated genes, ISG15-/- macrophages maintained their reduced susceptibility to influenza virus infection.
    CONCLUSIONS: These findings expand the cellular phenotype of human ISG15 deficiency and reveal the importance of ISG15 for regulating oxidative stress, branched chain amino acid metabolism, and mitochondrial function in humans. The results validate ruxolitinib as treatment for ISG15 deficiency and suggest itaconate-based medications as additional therapeutics for this rare disorder.
    Keywords:  4-octyl itaconic acid; ATP; ISG15; NRF2; apoptosis; branched chain amino acid amino transferase 1; dimethyl itaconic acid; induced pluripotent stem cells; inflammation; itaconate; itaconic acid; mitochondrial biogenesis; oxidative stress; pyroptosis; reactive oxygen species; ruxolitinib
    DOI:  https://doi.org/10.1002/ctm2.931
  31. BJU Int. 2022 Jul 18.
      OBJECTIVES: To test for evidence of statin-mediated effects in patients with castration resistant prostate cancer as post-diagnosis use of statins in patients with prostate cancer is associated with favourable survival outcome. Enhanced tumoral cholesterol uptake can drive castration resistant prostate cancer (CRPC). However, it remains unclear whether these associations result from confounding factors or directly from statin mediated effects.PATIENTS AND METHODS: The SPECTRE trial was a 6-weeks long proof-of-concept single-arm Phase II treatment trial combining atorvastatin and androgen deprivation therapy in patients with CRPC (regardless of the metastatic status), designed to test for evidence of statin-mediated effects in patients with CRPC. The primary study endpoint was the proportion of patients achieving ≥50% drop from baseline in PSA levels at any time over the 6-week period of atorvastatin medication (PSA response). Exploratory endpoints include PSA velocity and mass spectrometrically identified serum metabolites.
    RESULTS: At scheduled interim analysis, one of twelve patients experienced a ≥50% drop in PSA levels (primary endpoint), with ≥2 patients satisfying the primary endpoint required for further recruitment. All 12 experienced substantial falls in serum cholesterol levels following statin treatment. While all patients had comparable pre-study PSA velocities, 6 of 12 patients showed decreased PSA velocities following statin treatment, suggestive of disease stablisation. Unbiased metabolomics analysis on serial weekly blood samples identified tryptophan to be the dominant metabolite associated with patient response to statin.
    CONCLUSIONS: Data from the SPECTRE study provides the first evidence of statin mediated effects on CRPC and early sign of disease stabilisation. Our data also highlights the possibility of altered tryptophan metabolism being associated with tumour response.
    Keywords:  Atorvastatin; castration resistant prostate cancer; cholesterol; prostate specific antigen; statins
    DOI:  https://doi.org/10.1111/bju.15851
  32. Am J Physiol Heart Circ Physiol. 2022 Jul 22.
      Myocardial ischemia has long-lasting negative impacts on cardiomyocyte mitochondrial ATP production. However, the location(s) of damage to the oxidative phosphorylation pathway responsible for altered mitochondrial function is unclear. Mitochondrial reactive oxygen species (ROS) production increases following ischemia, but the specific factors controlling this increase are unknown. To determine how ischemia affects the mitochondrial energy conversion cascade and ROS production, mitochondrial driving forces (redox potential and membrane potential (ΔΨ)) were measured at resting, intermediate, and maximal respiration rates in mitochondria isolated from rat hearts after 60 minutes of control flow (Control) or no-flow ischemia (Ischemia). The effective activities of the dehydrogenase enzymes, the electron transport chain (ETC), and ATP synthesis and transport were computed using the driving forces and flux. Ischemia lowered maximal mitochondrial respiration rates and diminished the responsiveness of respiration to both redox potential and ΔΨ. Ischemia decreased the activities of every component of the oxidative phosphorylation pathway: the dehydrogenase enzymes, the ETC, and ATP synthesis and transport. ROS production was linearly related to driving force down the ETC; however, Ischemia mitochondria demonstrated a greater driving force down the ETC and higher ROS production. Overall, results indicate that ischemia ubiquitously damages the oxidative phosphorylation pathway, reduces mitochondrial sensitivity to driving forces, and augments the propensity for electrons to leak from the ETC. These findings underscore that strategies to improve mitochondrial function following ischemia must target the entire mitochondrial energy conversion cascade.
    Keywords:  cardiac ischemia; metabolic control; mitochondria; reactive oxygen species
    DOI:  https://doi.org/10.1152/ajpheart.00129.2022
  33. J Leukoc Biol. 2022 Jul 22.
      Balancing high energy-consuming danger resistance and low energy supply of disease tolerance is a universal survival principle that often fails during sepsis. Our research supports the concept that sepsis phosphorylates and deactivates mitochondrial pyruvate dehydrogenase complex control over the tricarboxylic cycle and the electron transport chain. StimulatIng mitochondrial energetics in septic mice and human sepsis cell models can be achieved by inhibiting pyruvate dehydrogenase kinases with the pyruvate structural analog dichloroacetate. Stimulating the pyruvate dehydrogenase complex by dichloroacetate reverses a disruption in the tricarboxylic cycle that induces itaconate, a key mediator of the disease tolerance pathway. Dichloroacetate treatment increases mitochondrial respiration and ATP synthesis, decreases oxidant stress, overcomes metabolic paralysis, regenerates tissue, organ, and innate and adaptive immune cells, and doubles the survival rate in a murine model of sepsis.
    Keywords:  dichloroacetate; energy shifts; evolution; immunometabolism; inflammation; itaconate; pyruvate; redox
    DOI:  https://doi.org/10.1002/JLB.3MR0322-692RR
  34. Nat Chem Biol. 2022 Jul 21.
      Drugs that directly impede the function of driver oncogenes offer exceptional efficacy and a therapeutic window. The recently approved mutant selective small-molecule cysteine-reactive covalent inhibitor of the G12C mutant of K-Ras, sotorasib, provides a case in point. KRAS is the most frequently mutated proto-oncogene in human cancer, yet despite success targeting the G12C allele, targeted therapy for other hotspot mutants of KRAS has not been described. Here we report the discovery of small molecules that covalently target a G12S somatic mutation in K-Ras and suppress its oncogenic signaling. We show that these molecules are active in cells expressing K-Ras(G12S) but spare the wild-type protein. Our results provide a path to targeting a second somatic mutation in the oncogene KRAS by overcoming the weak nucleophilicity of an acquired serine residue. The chemistry we describe may serve as a basis for the selective targeting of other unactivated serines.
    DOI:  https://doi.org/10.1038/s41589-022-01065-9
  35. Front Microbiol. 2022 ;13 919424
      Energy and anabolic metabolism are essential for normal cellular homeostasis but also play an important role in regulating immune responses and cancer development as active immune and cancer cells show an altered metabolic profile. Mitochondria take a prominent position in these metabolic reactions. First, most key energetic reactions take place within or in conjunction with mitochondria. Second, mitochondria react to internal cues from within the cell but also to external cues originating from the microbiota, a vast diversity of associated microorganisms. The impact of the microbiota on host physiology has been largely investigated in the last decade revealing that the microbiota contributes to the extraction of calories from the diet, energy metabolism, maturation of the immune system and cellular differentiation. Thus, changes in the microbiota termed dysbiosis have been associated with disease development including metabolic diseases, inflammation and cancer. Targeting the microbiota to modulate interactions with the mitochondria and cellular metabolism to delay or inhibit disease development and pathogenesis appears an attractive therapeutic approach. Here, we summarize recent advances in developing the therapeutic potential of microbiota-mitochondria interactions for inflammation and cancer.
    Keywords:  cancer; inflammation; metabolites; microbiota; mitochondria
    DOI:  https://doi.org/10.3389/fmicb.2022.919424
  36. Oncogene. 2022 Jul 18.
      Glutamine is a conditionally essential nutrient for many cancer cells, but it remains unclear how consuming glutamine in excess of growth requirements confers greater fitness to glutamine-addicted cancers. By contrasting two breast cancer subtypes with distinct glutamine dependencies, we show that glutamine-indispensable triple-negative breast cancer (TNBC) cells rely on a non-canonical glutamine-to-glutamate overflow, with glutamine carbon routed once through the TCA cycle. Importantly, this single-pass glutaminolysis increases TCA cycle fluxes and replenishes TCA cycle intermediates in TNBC cells, a process that achieves net oxidation of glucose but not glutamine. The coupling of glucose and glutamine catabolism appears hard-wired via a distinct TNBC gene expression profile biased to strip and then sequester glutamine nitrogen, but hampers the ability of TNBC cells to oxidise glucose when glutamine is limiting. Our results provide a new understanding of how metabolically rigid TNBC cells are sensitive to glutamine deprivation and a way to select vulnerable TNBC subtypes that may be responsive to metabolic-targeted therapies.
    DOI:  https://doi.org/10.1038/s41388-022-02408-5
  37. Nat Commun. 2022 Jul 18. 13(1): 4157
      Cellular senescence and cell competition are important tumor suppression mechanisms that restrain cells with oncogenic mutations at the initial stage of cancer development. However, the link between cellular senescence and cell competition remains unclear. Senescent cells accumulated during the in vivo aging process contribute toward age-related cancers via the development of senescence-associated secretory phenotype (SASP). Here, we report that hepatocyte growth factor (HGF), a SASP factor, inhibits apical extrusion and promotes basal protrusion of Ras-mutated cells in the cell competition assay. Additionally, cellular senescence induced by a high-fat diet promotes the survival of cells with oncogenic mutations, whereas crizotinib, an inhibitor of HGF signaling, provokes the removal of mutated cells from mouse livers and intestines. Our study provides evidence that cellular senescence inhibits cell competition-mediated elimination of oncogenic cells through HGF signaling, suggesting that it may lead to cancer incidence during aging.
    DOI:  https://doi.org/10.1038/s41467-022-31642-4
  38. EMBO Mol Med. 2022 Jul 21. e15855
      FBXW7 is one of the most frequently mutated tumor suppressors, deficiency of which has been associated with resistance to some anticancer therapies. Through bioinformatics and genome-wide CRISPR screens, we here reveal that FBXW7 deficiency leads to multidrug resistance (MDR). Proteomic analyses found an upregulation of mitochondrial factors as a hallmark of FBXW7 deficiency, which has been previously linked to chemotherapy resistance. Despite this increased expression of mitochondrial factors, functional analyses revealed that mitochondria are under stress, and genetic or chemical targeting of mitochondria is preferentially toxic for FBXW7-deficient cells. Mechanistically, the toxicity of therapies targeting mitochondrial translation such as the antibiotic tigecycline relates to the activation of the integrated stress response (ISR) in a GCN2 kinase-dependent manner. Furthermore, the discovery of additional drugs that are toxic for FBXW7-deficient cells showed that all of them unexpectedly activate a GCN2-dependent ISR regardless of their accepted mechanism of action. Our study reveals that while one of the most frequent mutations in cancer reduces the sensitivity to the vast majority of available therapies, it renders cells vulnerable to ISR-activating drugs.
    Keywords:  FBXW7; GCN2; ISR; drug resistance; mitochondria
    DOI:  https://doi.org/10.15252/emmm.202215855
  39. Proc Natl Acad Sci U S A. 2022 Jul 26. 119(30): e2205228119
      The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.
    Keywords:  complex IV; cryo-EM; electron transport chain; kinetics; molecular simulations
    DOI:  https://doi.org/10.1073/pnas.2205228119
  40. Nature. 2022 Jul 20.
      Mutations of the ADAR1 gene encoding an RNA deaminase cause severe diseases associated with chronic activation of type I interferon (IFN) responses, including Aicardi-Goutières syndrome and bilateral striatal necrosis1-3. The IFN-inducible p150 isoform of ADAR1 contains a Zα domain that recognizes RNA with an alternative left-handed double-helix structure, termed Z-RNA4,5. Hemizygous ADAR1 mutations in the Zα domain cause type I IFN-mediated pathologies in humans2,3 and mice6-8; however, it remains unclear how the interaction of ADAR1 with Z-RNA prevents IFN activation. Here we show that Z-DNA-binding protein 1 (ZBP1), the only other protein in mammals known to harbour Zα domains9, promotes type I IFN activation and fatal pathology in mice with impaired ADAR1 function. ZBP1 deficiency or mutation of its Zα domains reduced the expression of IFN-stimulated genes and largely prevented early postnatal lethality in mice with hemizygous expression of ADAR1 with mutated Zα domain (Adar1mZα/- mice). Adar1mZα/- mice showed upregulation and impaired editing of endogenous retroelement-derived complementary RNA reads, which represent a likely source of Z-RNAs activating ZBP1. Notably, ZBP1 promoted IFN activation and severe pathology in Adar1mZα/- mice in a manner independent of RIPK1, RIPK3, MLKL-mediated necroptosis and caspase-8-dependent apoptosis, suggesting a novel mechanism of action. Thus, ADAR1 prevents endogenous Z-RNA-dependent activation of pathogenic type I IFN responses by ZBP1, suggesting that ZBP1 could contribute to type I interferonopathies caused by ADAR1 mutations.
    DOI:  https://doi.org/10.1038/s41586-022-04878-9
  41. Semin Cancer Biol. 2022 Jul 19. pii: S1044-579X(22)00176-6. [Epub ahead of print]
      Several metabolic pathways for the supply of adenosine triphosphate (ATP) have been proposed; however, the major source of reducing power for ADP in cancer remains unclear. Although glycolysis is the source of ATP in tumors according to the Warburg effect, ATP levels do not differ between cancer cells grown in the presence and absence of glucose. Several theories have been proposed to explain the supply of ATP in cancer, including metabolic reprograming in the tumor microenvironment. However, these theories are based on the production of ATP by the TCA-OxPhos pathway, which is inconsistent with the Warburg effect. We found that blocking fatty acid oxidation (FAO) in the presence of glucose significantly decreased ATP production in various cancer cells. This suggests that cancer cells depend on fatty acids to produce ATP through FAO instead of glycolysis. We observed that cancer cell growth mainly relies on metabolic nutrients and oxygen systemically supplied through the bloodstream instead of metabolic reprogramming. In a spontaneous mouse tumor model (KrasG12D; Pdx1-cre), tumor growth was 2-fold higher in mice fed a high-fat diet (low-carbo diet) that caused obesity, whereas a calorie-balanced, low-fat diet (high-carbo diet) inhibited tumor growth by 3-fold compared with that in mice fed a control/normal diet. This 5-fold difference in tumor growth between mice fed low-fat and high-fat diets suggests that fat-induced obesity promotes cancer growth, and tumor growth depends on fatty acids as the primary source of energy.
    Keywords:  ATP production; cancer energy metabolism; fatty acid oxidation; obesity
    DOI:  https://doi.org/10.1016/j.semcancer.2022.07.005
  42. Nature. 2022 Jul 20.
      The APOBEC3 family of cytosine deaminases has been implicated in some of the most prevalent mutational signatures in cancer1-3. However, a causal link between endogenous APOBEC3 enzymes and mutational signatures in human cancer genomes has not been established, leaving the mechanisms of APOBEC3 mutagenesis poorly understood. Here, to investigate the mechanisms of APOBEC3 mutagenesis, we deleted implicated genes from human cancer cell lines that naturally generate APOBEC3-associated mutational signatures over time4. Analysis of non-clustered and clustered signatures across whole-genome sequences from 251 breast, bladder and lymphoma cancer cell line clones revealed that APOBEC3A deletion diminished APOBEC3-associated mutational signatures. Deletion of both APOBEC3A and APOBEC3B further decreased APOBEC3 mutation burdens, without eliminating them. Deletion of APOBEC3B increased APOBEC3A protein levels, activity and APOBEC3A-mediated mutagenesis in some cell lines. The uracil glycosylase UNG was required for APOBEC3-mediated transversions, whereas the loss of the translesion polymerase REV1 decreased overall mutation burdens. Together, these data represent direct evidence that endogenous APOBEC3 deaminases generate prevalent mutational signatures in human cancer cells. Our results identify APOBEC3A as the main driver of these mutations, indicate that APOBEC3B can restrain APOBEC3A-dependent mutagenesis while contributing its own smaller mutation burdens and dissect mechanisms that translate APOBEC3 activities into distinct mutational signatures.
    DOI:  https://doi.org/10.1038/s41586-022-04972-y