bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2022‒07‒03
57 papers selected by
Christian Frezza
University Hospital Cologne

  1. Immun Inflamm Dis. 2022 Jul;10(7): e647
      Mitochondria-associated endoplasmic reticulum membranes (MAM) are specialized subcellular compartments that are shaped by endoplasmic reticulum (ER) subdomains placed side by side to the outer membrane of mitochondria (OMM) being connected by tethering proteins in mammalian cells. Studies showed that MAM has multiple physiological functions. These include regulation of lipid synthesis and transport, Ca2+ transport and signaling, mitochondrial dynamics, apoptosis, autophagy, and formation and activation of an inflammasome. However, alterations of MAM integrity lead to deleterious effects due to an increased generation of mitochondrial reactive oxygen species (ROS) via increased Ca2+ transfer from the ER to mitochondria. This, in turn, causes mitochondrial damage and release of mitochondrial components into the cytosol as damage-associated molecular patterns which rapidly activate MAM-resident Nod-like receptor protein-3 (NLRP3) inflammasome components. This complex induces the release of pro-inflammatory cytokines that initiate low-grade chronic inflammation that subsequently causes the development of metabolic diseases. But, the mechanisms of how MAM is involved in the pathogenesis of these diseases are not exhaustively reviewed. Therefore, this review was aimed to highlight the contribution of MAM to a variety of cellular functions and consider its significance pertaining to the pathogenesis of inflammation-mediated metabolic diseases.
    Keywords:  ER-stress; MAM; NLRP3-inflammasome; inflammatory mediated metabolic diseases
  2. Methods Mol Biol. 2022 ;2497 1-10
      Assessment of mitochondrial metabolism is multidimensional and time consuming, usually requiring specific training. Respiration, NADH generation, and mitochondrial membrane potential (ΔΨm) are dynamic readouts of the metabolism and bioenergetics of mitochondria. Methodologies available to determine functional parameters in isolated mitochondria and permeabilized cells are sometimes of limited use or inapplicable to studies in live cells. In particular, the sequential assessment of the activity of each complex in the electron transport chain has not been reported in intact cells. Here, we describe a novel approach to sequentially assess electron flow through all respiratory complexes in permeabilized and intact cells by respirometry. We also describe a highly sensitive and fast method to assess ΔΨm and NADH generation in live cells using plate reader assays. Thus, our combined method allows a relatively inexpensive and fast determination of three major readouts of mitochondrial function in a few hours, using equipment that is frequently available in many laboratories worldwide.
    Keywords:  Electron transport chain; Mitochondria; Mitochondrial membrane potential; Mitochondrial metabolism; NADH; Oxygen consumption; Respiratory complex; TMRM; Warburg Metabolism
  3. Free Radic Biol Med. 2022 Jun 23. pii: S0891-5849(22)00462-2. [Epub ahead of print]
      5-methoxy tryptophan (5-MTP) is an anti-fibrotic metabolite made by fibroblasts and epithelial cells, present in a micromolar concentrations in human blood, and is associated with the progression of fibrotic kidney disease, but the mechanism is unclear. Here, we show by microscopy and functional assays that 5-MTP influences mitochondria in human peripheral blood monocyte-derived macrophages. As a result, the mitochondrial membranes are more rigid, more branched, and are protected against oxidation. The macrophages also change their metabolism by reducing mitochondrial import of acyl-carnitines, intermediates of fatty acid metabolism, driving glucose import. Moreover, 5-MTP increases the endocytosis of collagen by macrophages, and experiments with inhibition of glucose uptake showed that this is a direct result of their altered metabolism. However, 5-MTP does not affect the macrophages following pathogenic stimulation, due to 5-MTP degradation by induced expression of indole-amine oxygenase-1 (IDO-1). Thus, 5-MTP is a fibrosis-protective metabolite that, in absence of pathogenic stimulation, promotes collagen uptake by anti-inflammatory macrophages by altering the physicochemical properties of their mitochondrial membranes.
    Keywords:  5-Methoxy tryptophan; Fibrosis; IDO; Inflammation; Macrophage; Metabolism; Mitochondria
  4. Science. 2022 Jul;377(6601): 47-56
      The mechanistic target of rapamycin complex 1 (mTORC1) kinase controls growth in response to nutrients, including the amino acid leucine. In cultured cells, mTORC1 senses leucine through the leucine-binding Sestrin proteins, but the physiological functions and distribution of Sestrin-mediated leucine sensing in mammals are unknown. We find that mice lacking Sestrin1 and Sestrin2 cannot inhibit mTORC1 upon dietary leucine deprivation and suffer a rapid loss of white adipose tissue (WAT) and muscle. The WAT loss is driven by aberrant mTORC1 activity and fibroblast growth factor 21 (FGF21) production in the liver. Sestrin expression in the liver lobule is zonated, accounting for zone-specific regulation of mTORC1 activity and FGF21 induction by leucine. These results establish the mammalian Sestrins as physiological leucine sensors and reveal a spatial organization to nutrient sensing by the mTORC1 pathway.
  5. Cell Death Differ. 2022 Jun 27.
      Mitophagy, a mitochondria-specific form of autophagy, removes dysfunctional mitochondria and is hence an essential process contributing to mitochondrial quality control. PTEN-induced kinase 1 (PINK1) and the E3 ubiquitin ligase Parkin are critical molecules involved in stress-induced mitophagy, but the intracellular signaling mechanisms by which this pathway is regulated are unclear. We tested the hypothesis that signaling through RhoA, a small GTPase, induces mitophagy via modulation of the PINK1/Parkin pathway as a protective mechanism against ischemic stress. We demonstrate that expression of constitutively active RhoA as well as sphingosine-1-phosphate induced activation of endogenous RhoA in cardiomyocytes result in an accumulation of PINK1 at mitochondria. This is accompanied by translocation of Parkin to mitochondria and ubiquitination of mitochondrial proteins leading to recognition of mitochondria by autophagosomes and their lysosomal degradation. Expression of RhoA in cardiomyocytes confers protection against ischemia, and this cardioprotection is attenuated by siRNA-mediated PINK1 knockdown. In vivo myocardial infarction elicits increases in mitochondrial PINK1, Parkin, and ubiquitinated mitochondrial proteins. AAV9-mediated RhoA expression potentiates these responses and a concurrent decrease in infarct size is observed. Interestingly, induction of mitochondrial PINK1 accumulation in response to RhoA signaling is neither mediated through its transcriptional upregulation nor dependent on depolarization of the mitochondrial membrane, the canonical mechanism for PINK1 accumulation. Instead, our results reveal that RhoA signaling inhibits PINK1 cleavage, thereby stabilizing PINK1 protein at mitochondria. We further show that active RhoA localizes at mitochondria and interacts with PINK1, and that the mitochondrial localization of RhoA is regulated by its downstream effector protein kinase D. These findings demonstrate that RhoA activation engages a unique mechanism to regulate PINK1 accumulation, induce mitophagy and protect against ischemic stress, and implicates regulation of RhoA signaling as a potential strategy to enhance mitophagy and confer protection under stress conditions.
  6. Methods Mol Biol. 2022 ;2497 363-422
      Mitochondria are complex organelles that use catabolic metabolism to produce ATP which is the critical energy source for cell function. Oxidative phosphorylation by the electron transport chain, which receives reducing equivalents (NADH and FADH2) from the tricarboxylic acid cycle, also produces reactive oxygen species (ROS) as a by-product at complex I and III. ROS play a significant role in health and disease. In order to better understand this process, a computational model of mitochondrial energy metabolism and the production of ROS has been developed. The model demonstrates the process regulating ROS production and removal and how different energy substrates can affect ROS production.
    Keywords:  Electron transport; Mitochondria; Reactive oxygen species
  7. Cancer Discov. 2022 Jun 30. pii: cd.22.0044. [Epub ahead of print]
      The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacological inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor, Trametinib (MEKi), we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression. Treatment of PDA cells or patient organoids with MEKi leads to c-MYC downregulation and increased MiT/TFE-dependent lysosome biogenesis. Quantitative proteomics of immunopurified lysosomes uncovered reliance on ferritinophagy, the selective degradation of the iron storage complex ferritin, in MEKi treated cells. Ferritinophagy promotes mitochondrial iron-sulfur cluster protein synthesis and enhanced mitochondrial respiration. Accordingly, suppressing iron utilization sensitizes PDA cells to MEKi, highlighting a critical and targetable reliance on lysosome-dependent iron supply during adaptation to KRAS-MAPK inhibition.
  8. Cell Rep. 2022 Jun 28. pii: S2211-1247(22)00807-5. [Epub ahead of print]39(13): 111018
      Disruption of circadian glucocorticoid oscillations in Cushing's disease and chronic stress results in obesity and adipocyte hypertrophy, which is believed to be a main source of the harmful effects of obesity. Here, we recapitulate stress due to jet lag or work-life imbalances by flattening glucocorticoid oscillations in mice. Within 3 days, mice achieve a metabolic state with persistently high insulin, but surprisingly low glucose and fatty acids in the bloodstream, that precedes a more than 2-fold increase in brown and white adipose tissue mass within 3 weeks. Transcriptomic and Cd36-knockout mouse analyses show that hyperinsulinemia-mediated de novo fatty acid synthesis and Cd36-mediated fatty acid uptake drive fat mass increases. Intriguingly, this mechanism by which glucocorticoid flattening causes acute hyperinsulinemia and adipocyte hypertrophy is unexpectedly beneficial in preventing high levels of circulating fatty acids and glucose for weeks, thus serving as a protective response to preserve metabolic health during chronic stress.
    Keywords:  CP: Metabolism; Cd36; brown adipose tissue; circadian rhythm; glucocorticoids; hormone oscillations; lipid metabolism; obesity; stress; white adipose tissue
  9. Mol Cell. 2022 Jun 18. pii: S1097-2765(22)00541-X. [Epub ahead of print]
      Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.
    Keywords:  PKM2; cancer metabolism; glucose oxidation; metastasis; methionine oxidation; pancreatic cancer; redox signaling
  10. Nat Metab. 2022 Jun;4(6): 739-758
      Mitochondria are the main consumers of oxygen within the cell. How mitochondria sense oxygen levels remains unknown. Here we show an oxygen-sensitive regulation of TFAM, an activator of mitochondrial transcription and replication, whose alteration is linked to tumours arising in the von Hippel-Lindau syndrome. TFAM is hydroxylated by EGLN3 and subsequently bound by the von Hippel-Lindau tumour-suppressor protein, which stabilizes TFAM by preventing mitochondrial proteolysis. Cells lacking wild-type VHL or in which EGLN3 is inactivated have reduced mitochondrial mass. Tumorigenic VHL variants leading to different clinical manifestations fail to bind hydroxylated TFAM. In contrast, cells harbouring the Chuvash polycythaemia VHLR200W mutation, involved in hypoxia-sensing disorders without tumour development, are capable of binding hydroxylated TFAM. Accordingly, VHL-related tumours, such as pheochromocytoma and renal cell carcinoma cells, display low mitochondrial content, suggesting that impaired mitochondrial biogenesis is linked to VHL tumorigenesis. Finally, inhibiting proteolysis by targeting LONP1 increases mitochondrial content in VHL-deficient cells and sensitizes therapy-resistant tumours to sorafenib treatment. Our results offer pharmacological avenues to sensitize therapy-resistant VHL tumours by focusing on the mitochondria.
  11. Nature. 2022 Jun 29.
      Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor.
  12. Nat Commun. 2022 Jun 28. 13(1): 3706
      Ribosome biogenesis is an energetically expensive program that is dictated by nutrient availability. Here we report that nutrient deprivation severely impairs precursor ribosomal RNA (pre-rRNA) processing and leads to the accumulation of unprocessed rRNAs. Upon nutrient restoration, pre-rRNAs stored under starvation are processed into mature rRNAs that are utilized for ribosome biogenesis. Failure to accumulate pre-rRNAs under nutrient stress leads to perturbed ribosome assembly upon nutrient restoration and subsequent apoptosis via uL5/uL18-mediated activation of p53. Restoration of glutamine alone activates p53 by triggering uL5/uL18 translation. Induction of uL5/uL18 protein synthesis by glutamine is dependent on the translation factor eukaryotic elongation factor 2 (eEF2), which is in turn dependent on Raf/MEK/ERK signaling. Depriving cells of glutamine prevents the activation of p53 by rRNA synthesis inhibitors. Our data reveals a mechanism that tumor cells can exploit to suppress p53-mediated apoptosis during fluctuations in environmental nutrient availability.
  13. mBio. 2022 Jun 28. e0127422
      In response to Mycobacterium tuberculosis infection, macrophages mount proinflammatory and antimicrobial responses similar to those observed in M1 macrophages activated by lipopolysaccharide (LPS) and interferon gamma (IFN-γ). A metabolic reprogramming to hypoxia-inducible-factor 1 (HIF-1)-mediated uptake of glucose and its metabolism by glycolysis is required for M1-like polarization, but little is known about other metabolic programs driving the M1-like polarization during infection. We report that glutamine serves as a carbon and nitrogen source for the metabolic reprogramming to M1-like macrophages. Widely targeted metabolite screening identified an association of glutamine and/or glutamate with highly affected metabolic pathways of M1-like macrophages. Moreover, stable isotope-assisted metabolomics of U13C glutamine and U13C glucose revealed that glutamine, rather than glucose, is catabolized in both the oxidative and reductive tricarboxylic acid (TCA) cycles of M1-like macrophages, thereby generating signaling molecules that include succinate, biosynthetic precursors such as aspartate, and itaconate. U15N glutamine-tracing metabolomics further revealed participation of glutamine nitrogen in synthesis of intermediates of purine and pyrimidine metabolism plus amino acids, including aspartate. These findings were corroborated by diminished M1 polarization from chemical inhibition of glutaminase (GLS), the key enzyme in the glutaminolysis pathway, and by genetic deletion of GLS in infected macrophages. Thus, the catabolism of glutamine is an integral component of metabolic reprogramming in activating macrophages and it coordinates with elevated cytosolic glycolysis to satisfy the cellular demand for bioenergetic and biosynthetic precursors of M1-like macrophages. Knowledge of these new immunometabolic features of M1-like macrophages should advance the development of host-directed therapies for tuberculosis. IMPORTANCE Macrophages play essential roles in determining the progression and final outcome of human infection by Mycobacterium tuberculosis. While upregulation of hypoxia-inducible-factor 1 (HIF-1) and a metabolic reprogramming to the Warburg Effect-like state are known to be critical for immune cell activation in response to M. tuberculosis infection, our overall knowledge about the immunometabolism of M1-like macrophages is poor. Using widely targeted small-metabolite screening, stable isotope tracing metabolomics, and pharmacological and genetic approaches, we report that, in addition to enhanced glucose catabolism by glycolysis, glutamine is utilized as an important carbon and nitrogen source for the generation of biosynthetic precursors, signaling molecules, and itaconate in M. tuberculosis-induced M1-like macrophages. Recognizing this novel contribution of glutamine to the immunometabolic properties of M. tuberculosis-infected macrophages may facilitate the development of treatments for tuberculosis and stimulate comparable studies with other pathogen-macrophage interactions.
    Keywords:  M1-like polarization; Mycobacterium tuberculosis; TCA cycle; glutaminolysis; immunometabolism; isotope tracing metabolomics
  14. Methods Mol Biol. 2022 ;2497 325-332
      Mitochondrial Ca2+ buffering is a hallmark of eukaryotic cellular physiology, contributing to the spatiotemporal shaping of the cytosolic Ca2+ signals and regulation of mitochondrial bioenergetics. Often, this process is altered in a pathological context; therefore, it can be scrutinized experimentally for therapeutic intervention. In this chapter, we describe fluorescence and bioluminescence measurement of mitochondrial Ca2+ in both isolated mitochondria and intact cells.
    Keywords:  Bioluminescence calcium sensing; Calcium-sensitive genetic probes; Fluorescence calcium imaging; Mitochondrial calcium
  15. Front Oncol. 2022 ;12 816504
      Therapeutic targeting of tumor vulnerabilities is emerging as a key area of research. This review is focused on exploiting the vulnerabilities of tumor cells and the immune cells in the tumor immune microenvironment (TIME), including tumor hypoxia, tumor acidity, the bidirectional proton-coupled monocarboxylate transporters (MCTs) of lactate, mitochondrial oxidative phosphorylation (OXPHOS), and redox enzymes in the tricarboxylic acid cycle. Cancer cells use glucose for energy even under normoxic conditions. Although cancer cells predominantly rely on glycolysis, many have fully functional mitochondria, suggesting that mitochondria are a vulnerable target organelle in cancer cells. Thus, one key distinction between cancer and normal cell metabolism is metabolic reprogramming. Mitochondria-targeted small molecule inhibitors of OXPHOS inhibit tumor proliferation and growth. Another hallmark of cancer is extracellular acidification due lactate accumulation. Emerging results show that lactate acts as a fuel for mitochondrial metabolism and supports tumor proliferation and growth. Metabolic reprogramming occurs in glycolysis-deficient tumor phenotypes and in kinase-targeted, drug-resistant cancers overexpressing OXPHOS genes. Glycolytic cancer cells located away from the vasculature overexpress MCT4 transporter to prevent overacidification by exporting lactate, and the oxidative cancer cells located near the vasculature express MCT1 transporter to provide energy through incorporation of lactate into the tricarboxylic acid cycle. MCTs are, therefore, a vulnerable target in cancer metabolism. MCT inhibitors exert synthetic lethality in combination with metformin, a weak inhibitor of OXPHOS, in cancer cells. Simultaneously targeting multiple vulnerabilities within mitochondria shows synergistic antiproliferative and antitumor effects. Developing tumor-selective, small molecule inhibitors of OXPHOS with a high therapeutic index is critical to fully exploiting the mitochondrial vulnerabilities. We and others developed small-molecule inhibitors containing triphenylphosphonium cation that potently inhibit OXPHOS in tumor cells and tissues. Factors affecting tumor cell vulnerabilities also impact immune cells in the TIME. Glycolytic tumor cells supply lactate to the tumor-suppressing regulatory T cells overexpressing MCTs. Therapeutic opportunities for targeting vulnerabilities in tumor cells and the TIME, as well as the implications on cancer health disparities and cancer treatment, are addressed.
    Keywords:  Mitochondrial drugs; metabolic reprogramming; monocarboxylate transporters; oxidative phosphorylation (OXPHOS); tumor microenvironment
  16. Methods Mol Biol. 2022 ;2497 173-184
      Arsenic is either notorious toxicant or miracle cure for acute promyelocytic leukemia and several other diseases. It interacts with mitochondria directly or indirectly, by interacting with mitochondrial enzymes, such as respiratory chain complexes and tricarboxylic acid cycle proteins, or affecting mitochondrial homeostasis via ROS or mitochondrial outer membrane permeabilization. Given the ubiquitous presence of mitochondria and indispensable role in cellular metabolism, arsenical-mitochondrial interactions may manifest clinical importance by revealing mechanism of disease curation, preventing severe side effects, and foreseeing potential health issues. Here, we described the interaction between isolated mitochondria and arsenicals.
    Keywords:  Arsenic; Electron transport chain; Isolated mitochondria; Membrane permeability; Organic arsenicals; ROS; Respiratory chain complex
  17. Mol Metab. 2022 Jun 22. pii: S2212-8778(22)00101-6. [Epub ahead of print] 101532
      Bone marrow mesenchymal stromal cells (MSCs) have immunomodulatory and regenerative potential. However, culture conditions govern their metabolic processes and therapeutic efficacy. Here we show that culturing donor-derived MSCs in Plasmax™, a physiological medium with the concentrations of nutrients found in human plasma, supports their proliferation and stemness, and prevents the nutritional stress induced by the conventional medium DMEM. The quantification of the exchange rates of metabolites between cells and medium, untargeted metabolomics, stable isotope tracing and transcriptomic analysis, performed at physiologically relevant oxygen concentrations (1%O2), reveal that MSCs rely on high rate of glucose to lactate conversion, coupled with parallel anaplerotic fluxes from glutamine and glutamate to support citrate synthesis and secretion. These distinctive traits of MSCs shape the metabolic microenvironment of bone marrow niche and can influence nutrient cross-talks under physiological and pathological conditions.
    Keywords:  Citrate; Glutamate; Glutamine; Hypoxia; Mesenchymal stromal cells; Metabolism; Physiological medium; Plasmax; Primary cells; Stable isotope tracing
  18. Nat Commun. 2022 Jun 28. 13(1): 3728
      Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. MYCN amplification is found in half of high-risk NB patients; however, no available therapies directly target MYCN. Using multi-dimensional metabolic profiling in MYCN expression systems and primary patient tumors, we comprehensively characterized the metabolic landscape driven by MYCN in NB. MYCN amplification leads to glycerolipid accumulation by promoting fatty acid (FA) uptake and biosynthesis. We found that cells expressing amplified MYCN depend highly on FA uptake for survival. Mechanistically, MYCN directly upregulates FA transport protein 2 (FATP2), encoded by SLC27A2. Genetic depletion of SLC27A2 impairs NB survival, and pharmacological SLC27A2 inhibition selectively suppresses tumor growth, prolongs animal survival, and exerts synergistic anti-tumor effects when combined with conventional chemotherapies in multiple preclinical NB models. This study identifies FA uptake as a critical metabolic dependency for MYCN-amplified tumors. Inhibiting FA uptake is an effective approach for improving current treatment regimens.
  19. Nat Metab. 2022 Jun;4(6): 693-710
      Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.
  20. Curr Neuropharmacol. 2022 Jun 28.
      Mitochondria are the main sites of energy production and a major source of metabolic stress. Not surprisingly, impairment of mitochondrial homeostasis is tightly associated with the development and progression of a broad spectrum of human pathologies, including neurodegenerative disorders. Mitophagy mediates the selective degradation of damaged organelles, thus promoting cellular viability and tissue integrity. Defective mitophagy triggers cellular senescence and prolonged neuroinflammation, leading eventually to cell death and brain homeostasis collapse. Here, we survey the intricate interplay between mitophagy and neuroinflammation, highlighting that mitophagy can be a focal point for therapeutic interventions to tackle neurodegeneration.
    Keywords:  Ageing; energy homeostasis; immunity; inflammation; metabolism; mitochondria; mitophagy; neurodegeneration
  21. Nature. 2022 Jun 29.
      Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.
  22. Angew Chem Int Ed Engl. 2022 Jun 27.
      The interconversion of guanosine triphosphate (GTP) and guanosine diphosphate (GDP) is known to be integral to a wide variety of biological cellular activities, yet to date there are no analytical methods availab le to directly detect the ratio of intracellular GTP to GDP. Herein, we report GRISerHR, a genetically encoded fluorescent biosensor to monitor the GTP:GDP ratio  in multiple cell types and in various organelles under metabolic perturbation. Additionally, we characterized the differential mitochondrial GTP:GDP ratios resulting from genetic modulation of two isoforms of a tricarboxylic acid (TCA) cycle enzyme (succinyl-CoA synthetase; SCS-ATP and SCS-GTP) and of a phosphoenolpyruvate (PEP) cycle enzyme (PEPCK-M). Thus, our GRISerHR sensor achieves spatiotemporally precise detection of dynamic changes in the endogenous GTP:GDP ratio in living cells and can help deepen our understanding about the energy metabolic contributions of guanosine nucleotides in biology.
    Keywords:  GTP:GDP ratio biosensor imaging mitochondria metabolism
  23. Methods Mol Biol. 2022 ;2497 129-140
      The loss of mitochondrial cristae integrity and mitochondrial swelling are hallmarks of multiple forms of necrotic cell death. One of the most well-studied and relevant inducers of mitochondrial swelling is matrix calcium (Ca2+). Respiring mitochondria will intake available Ca2+ into their matrix until a threshold is reached which triggers the opening of the mitochondrial permeability transition pore (MPTP). Upon opening of the pore, mitochondrial membrane potential dissipates and the mitochondria begin to swell, rendering them dysfunctional. The total amount of Ca2+ taken up by a mitochondrion prior to the engagement of the MPTP is referred to as mitochondrial Ca2+ retention capacity (CRC). The CRC/swelling assay is a useful tool for observing the dose-dependent event of mitochondrial dysfunction in real-time. In this technique, isolated mitochondria are treated with specific boluses of Ca2+ until they reach CRC and undergo swelling. A fluorometer is utilized to detect an increase in transmitted light passing through the sample as the mitochondria lose cristae density, and simultaneously measures calcium uptake by way of a Ca2+-specific membrane impermeable fluorescent dye. Here we provide a detailed protocol describing the mitochondrial CRC/swelling assay and we discuss how varying amounts of mitochondria and Ca2+ added to the system affect the dose-dependency of the assay. We also report how to validate the assay by using MPTP and calcium uptake inhibitors and troubleshooting common mistakes that occur with this approach.
    Keywords:  CRC; Calcium Green 5 N; Calcium retention capacity; Cell death; Fluorometry; Mitochondria; Mitochondrial dysfunction; Mitochondrial permeability transition pore (MPTP); Mitochondrial swelling
  24. Nat Commun. 2022 Jun 29. 13(1): 3732
      Melanoma is commonly driven by activating mutations in the MAP kinase BRAF; however, oncogenic BRAF alone is insufficient to promote melanomagenesis. Instead, its expression induces a transient proliferative burst that ultimately ceases with the development of benign nevi comprised of growth-arrested melanocytes. The tumor suppressive mechanisms that restrain nevus melanocyte proliferation remain poorly understood. Here we utilize cell and murine models to demonstrate that oncogenic BRAF leads to activation of the Hippo tumor suppressor pathway, both in melanocytes in vitro and nevus melanocytes in vivo. Mechanistically, we show that oncogenic BRAF promotes both ERK-dependent alterations in the actin cytoskeleton and whole-genome doubling events, which independently reduce RhoA activity to promote Hippo activation. We also demonstrate that functional impairment of the Hippo pathway enables oncogenic BRAF-expressing melanocytes to bypass nevus formation and rapidly form melanomas. Our data reveal that the Hippo pathway enforces the stable arrest of nevus melanocytes and represents a critical barrier to melanoma development.
  25. Commun Biol. 2022 Jul 01. 5(1): 649
      Mitochondrial ultrastructure represents a pinnacle of form and function, with the inner mitochondrial membrane (IMM) forming isolated pockets of cristae membrane (CM), separated from the inner-boundary membrane (IBM) by cristae junctions (CJ). Applying structured illumination and electron microscopy, a novel and fundamental function of MICU1 in mediating Ca2+ control over spatial membrane potential gradients (SMPGs) between CM and IMS was identified. We unveiled alterations of SMPGs by transient CJ openings when Ca2+ binds to MICU1 resulting in spatial cristae depolarization. This Ca2+/MICU1-mediated plasticity of the CJ further provides the mechanistic bedrock of the biphasic mitochondrial Ca2+ uptake kinetics via the mitochondrial Ca2+ uniporter (MCU) during intracellular Ca2+ release: Initially, high Ca2+ opens CJ via Ca2+/MICU1 and allows instant Ca2+ uptake across the CM through constantly active MCU. Second, MCU disseminates into the IBM, thus establishing Ca2+ uptake across the IBM that circumvents the CM. Under the condition of MICU1 methylation by PRMT1 in aging or cancer, UCP2 that binds to methylated MICU1 destabilizes CJ, disrupts SMPGs, and facilitates fast Ca2+ uptake via the CM.
  26. Sci Adv. 2022 Jul;8(26): eabo2896
      Life on Earth anticipates recurring 24-hour environmental cycles via genetically encoded molecular clocks active in all mammalian organs. Communication between these clocks controls circadian homeostasis. Intertissue communication is mediated, in part, by temporal coordination of metabolism. Here, we characterize the extent to which clocks in different organs control systemic metabolic rhythms, an area that remains largely unexplored. We analyzed the metabolome of serum from mice with tissue-specific expression of the clock gene Bmal1. Having functional hepatic and muscle clocks can only drive a minority (13%) of systemic metabolic rhythms. Conversely, limiting Bmal1 expression to the central pacemaker in the brain restores rhythms to 57% of circulatory metabolites. Rhythmic feeding imposed on clockless mice resulted in a similar rescue, indicating that the central clock mainly regulates metabolic rhythms via behavior. These findings explicate the circadian communication between tissues and highlight the importance of the central clock in governing those signals.
  27. Cancer Med. 2022 Jun 27.
      BACKGROUND: Tumor cells may aberrantly express metabolic enzymes to adapt to their environment for survival and growth. Targeting cancer-specific metabolic enzymes is a potential therapeutic strategy. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of oxaloacetate to phosphoenolpyruvate and links the tricarboxylic acid cycle and glycolysis/gluconeogenesis. Mitochondrial PEPCK (PEPCK-M), encoded by PCK2, is an isozyme of PEPCK and is distributed in mitochondria. Overexpression of PCK2 has been identified in many human cancers and demonstrated to be important for the survival program initiated upon metabolic stress in cancer cells. We evaluated the expression status of PEPCK-M and investigated the function of PEPCK-M in breast cancer.METHODS: We checked the expression status of PEPCK-M in breast cancer samples by immunohistochemical staining. We knocked down or overexpressed PCK2 in breast cancer cell lines to investigate the function of PEPCK-M in breast cancer.
    RESULTS: PEPCK-M was highly expressed in estrogen receptor-positive (ER+ ) breast cancers. Decreased cell proliferation and G0 /G1 arrest were induced in ER+ breast cancer cell lines by knockdown of PCK2. PEPCK-M promoted the activation of mTORC1 downstream signaling molecules and the E2F1 pathways in ER+ breast cancer. In addition, glucose uptake, intracellular glutamine levels, and mTORC1 pathways activation by glucose and glutamine in ER+ breast cancer were attenuated by PCK2 knockdown.
    CONCLUSION: PEPCK-M promotes proliferation and cell cycle progression in ER+ breast cancer via upregulation of the mTORC1 and E2F1 pathways. PCK2 also regulates nutrient status-dependent mTORC1 pathway activation in ER+ breast cancer. Further studies are warranted to understand whether PEPCK-M is a potential therapeutic target for ER+ breast cancer.
    Keywords:  E2F1; PCK2; estrogen receptor positive (ER+) breast cancer; mTORC1; mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M)
  28. Front Mol Biosci. 2022 ;9 908721
      Communication between intracellular organelles is essential for overall cellular function. How this communication occurs and under what circumstances alterations transpire are only the beginning to be elucidated. The pathways of calcium homeostasis, lipid transfer, mitochondrial dynamics, and mitophagy/apoptosis have been linked to the endoplasmic reticulum and tethering sites on the outer and/or inner mitochondrial membrane called mitochondria-associated endoplasmic reticulum membranes (MAM). Sensitive visualization by high-powered microscopy coupled with the advent of massive parallel sequencing has elaborated the structure, while patient's diseases have uncovered the physiological function of these networks. Using specific patient examples from our pediatric mitochondrial center, we expand how specific genetic pathological variants in certain MAM structures induce disease. Genetic variants in MICU1, PASC-2, CYP2U1, SERAC1, and TANGO2 can induce early development abnormalities in the areas of cognition, motor, and central nervous system structures across multiple MAM pathways and implicate mitochondrial dysregulation.
    Keywords:  autophagy; calcium; fatty acid metabolism; gene products; metabolism; mitochondria-associated endoplasmic reticulum membrane; phospholipids
  29. Klin Onkol. 2022 ;35(3): 195-207
      BACKGROUND: A general characteristic of cancer metabolism is the skill to gain the essential nutrients from a relatively poor environment and use them effectively to maintain viability and create new bio-mass. The changes in intracellular and extracellular metabolites that accompany metabolic reprogramming associated with tumor growth subsequently affect gene expression, cell differentiation, and tumor microenvironment. During carcinogenesis, cancer cells face huge selection pressures that force them to constantly optimize dominant metabolic pathways and undergo major metabolic reorganizations. In general, greater flexibility of metabolic pathways increases the ability of tumor cells to satisfy their metabolic needs in a changing environment.PURPOSE: In this review, we discuss the metabolic properties of cancer cells and describe the tumor promoting effect of the transformed metabolism. We assume that changes in metabolism are significant enough to facilitate tumorigenesis and may provide interesting targets for cancer therapy.
    Keywords:  Krebs cycle; Metabolism; Warburg effect; anaplerosis; cancer; glutaminolysis; malignancy; oncogenesis; oncometabolite
  30. Nat Commun. 2022 Jun 27. 13(1): 3671
      Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.
  31. Endocrinology. 2022 Jun 26. pii: bqac094. [Epub ahead of print]
      Immune cells infiltrate adipose tissue as a function of age, sex, and diet leading to a variety of regulatory processes linked to metabolic disease and dysfunction. Cytokines and chemokines produced by resident macrophages, B cells, T cells and eosinophils play major role(s) in fat cell mitochondrial functions modulating pyruvate oxidation, electron transport and oxidative stress, branched chain amino acid (BCAA) metabolism, fatty acid oxidation and apoptosis. Indeed, cytokine-dependent down regulation of numerous genes affecting mitochondrial metabolism is strongly linked to the development of the metabolic syndrome while in contrast, the potentiation of mitochondrial metabolism represents a counter regulatory process improving metabolic outcomes. In contrast, inflammatory cytokines activate mitochondrially-linked cell death pathways such as apoptosis, pyroptosis, necroptosis and ferroptosis. As such, the adipocyte mitochondrion represents a major intersection point for immunometabolic regulation of central metabolism.
    Keywords:  Adipose; Inflammation; Macrophage; Mitochondria
  32. iScience. 2022 Jul 15. 25(7): 104547
      Brown adipose tissue (BAT) has a role in maintaining systemic metabolic health in rodents and humans. Here, we show that metabolic stress induces BAT to produce coagulation factors, which then-together with molecules derived from the circulation-promote BAT dysfunction and systemic glucose intolerance. When mice were fed a high-fat diet (HFD), the levels of tissue factor, coagulation Factor VII (FVII), activated coagulation Factor X (FXa), and protease-activated receptor 1 (PAR1) expression increased significantly in BAT. Genetic or pharmacological suppression of coagulation factor-PAR1 signaling in BAT ameliorated its whitening and improved thermogenic response and systemic glucose intolerance in mice with dietary obesity. Conversely, the activation of coagulation factor-PAR1 signaling in BAT caused mitochondrial dysfunction in brown adipocytes and systemic glucose intolerance in mice fed normal chow. These results indicate that BAT produces endogenous coagulation factors that mediate pleiotropic effects via PAR1 signaling under metabolic stress.
    Keywords:  Biological sciences; Cell biology; Human Physiology; Human metabolism
  33. Biochim Biophys Acta Mol Cell Res. 2022 Jun 22. pii: S0167-4889(22)00109-4. [Epub ahead of print]1869(10): 119317
      In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.
    Keywords:  BCL-2 proteins; BH3 profiling; Cancer; Cell death; Immunotherapy
  34. Nat Commun. 2022 Jun 28. 13(1): 3702
      The endoplasmic reticulum (ER)-mitochondria contact site (ERMCS) is crucial for exchanging biological molecules such as phospholipids and Ca2+ ions between these organelles. Mitoguardin-2 (MIGA2), a mitochondrial outer membrane protein, forms the ERMCS in higher eukaryotic cells. Here, we report the crystal structures of the MIGA2 Lipid Droplet (LD) targeting domain and the ER membrane protein VAPB bound to the phosphorylated FFAT motif of MIGA2. These structures reveal that the MIGA2 LD targeting domain has a large internal hydrophobic pocket that accommodates phospholipids and that two phosphorylations of the FFAT motif are required for tight interaction of MIGA2 with VAPB, which enhances the rate of lipid transport. Further biochemical studies show that MIGA2 transports phospholipids between membranes with a strong preference for binding and trafficking phosphatidylserine (PS). These results provide a structural and molecular basis for understanding how MIGA2 mediates the formation of ERMCS and facilitates lipid trafficking at the ERMCS.
  35. FEBS Lett. 2022 Jul 01.
      Deregulated metabolism is a well-known feature of several challenging diseases, including diabetes, obesity and cancer. Besides their important role as intracellular bioenergetic molecules, dietary nutrients and metabolic intermediates are released in the extracellular environment. As such, they may achieve unconventional roles as hormone-like molecules by activating cell-surface G-protein-coupled receptors (GPCRs) that regulate several pathophysiological processes. In this review, we provide an insight into the role of lactate, succinate, fatty acids, amino acids, ketogenesis-derived and β-oxidation-derived intermediates as extracellular signalling molecules. Moreover, the mechanisms by which their cognate metabolite-sensing GPCRs integrate nutritional and metabolic signals with specific intracellular pathways will be described. A better comprehension of these aspects is of fundamental importance to identify GPCRs as novel druggable targets.
    Keywords:  G-protein-coupled receptors; extracellular signalling molecules; lactate; metabolites; nutrients; succinate
  36. Elife. 2022 06 27. pii: e71929. [Epub ahead of print]11
      Hyperactivation of oncogenic pathways downstream of RAS and PI3K/AKT in normal cells induces a senescence-like phenotype that acts as a tumor-suppressive mechanism that must be overcome during transformation. We previously demonstrated that AKT-induced senescence (AIS) is associated with profound transcriptional and metabolic changes. Here, we demonstrate that human fibroblasts undergoing AIS display upregulated cystathionine-β-synthase (CBS) expression and enhanced uptake of exogenous cysteine, which lead to increased hydrogen sulfide (H2S) and glutathione (GSH) production, consequently protecting senescent cells from oxidative stress-induced cell death. CBS depletion allows AIS cells to escape senescence and re-enter the cell cycle, indicating the importance of CBS activity in maintaining AIS. Mechanistically, we show this restoration of proliferation is mediated through suppressing mitochondrial respiration and reactive oxygen species (ROS) production by reducing mitochondrial localized CBS while retaining antioxidant capacity of transsulfuration pathway. These findings implicate a potential tumor-suppressive role for CBS in cells with aberrant PI3K/AKT pathway activation. Consistent with this concept, in human gastric cancer cells with activated PI3K/AKT signaling, we demonstrate that CBS expression is suppressed due to promoter hypermethylation. CBS loss cooperates with activated PI3K/AKT signaling in promoting anchorage-independent growth of gastric epithelial cells, while CBS restoration suppresses the growth of gastric tumors in vivo. Taken together, we find that CBS is a novel regulator of AIS and a potential tumor suppressor in PI3K/AKT-driven gastric cancers, providing a new exploitable metabolic vulnerability in these cancers.
    Keywords:  PI3K/AKT signaling; cancer biology; cell biology; cystathionine-β-synthase; gastric cancer; glutathione; human; mouse; oxidative stress; senescence
  37. Methods Mol Biol. 2022 ;2497 97-106
      Mitochondrial calcium (Ca2+) plays a key role in regulating normal cardiac function. A physiological increase in mitochondrial matrix calcium [Ca2+]m drives mitochondrial ATP production to meet the high-energy demands during excitation-contraction coupling. However, a pathological increase in [Ca2+]m leads to increased oxidative stress, impaired bioenergetics, and the opening of mitochondrial permeability transition pore (mPTP), a hallmark of the failing heart. Therefore, a better understanding of the [Ca2+]m handling and its role in heart function and dysfunction is of great importance. Here, we describe a detailed protocol for measuring mitochondrial Ca2+ handling in the isolated functionally intact mitochondria from cardiac tissue of the guinea pig.
    Keywords:  Calcium retention capacity; Mitochondrial bioenergetics; Mitochondrial calcium handling; Mitochondrial membrane potential; Mitochondrial oxygen consumption
  38. J Clin Invest. 2022 Jul 01. pii: e158447. [Epub ahead of print]132(13):
      Mitochondrial dysfunction and cell senescence are hallmarks of aging and are closely interconnected. Mitochondrial dysfunction, operationally defined as a decreased respiratory capacity per mitochondrion together with a decreased mitochondrial membrane potential, typically accompanied by increased production of oxygen free radicals, is a cause and a consequence of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. Here, we summarize pathways that cause mitochondrial dysfunction in senescence and aging and discuss the major consequences of mitochondrial dysfunction and how these consequences contribute to senescence and aging. We also highlight the potential of senescence-associated mitochondrial dysfunction as an antiaging and antisenescence intervention target, proposing the combination of multiple interventions converging onto mitochondrial dysfunction as novel, potent senolytics.
  39. Cancer Discov. 2022 Jun 30. pii: candisc.0043.2022-1-10 21:36:20.420. [Epub ahead of print]
      Pancreatic ductal adenocarcinomas (PDAC) depend on autophagy for survival; however, the metabolic substrates that autophagy provides to drive PDAC progression are unclear. Ferritin, the cellular iron storage complex, is targeted for lysosomal degradation (ferritinophagy) by the selective autophagy adaptor NCOA4, resulting in release of iron for cellular utilization. Using patient-derived and murine models of PDAC we now demonstrate that ferritinophagy is upregulated in PDAC to sustain iron availability thereby promoting tumor progression. Quantitative proteomics reveals that ferritinophagy fuels iron-sulfur cluster protein synthesis to support mitochondrial homeostasis. Targeting NCOA4 leads to tumor growth delay and prolonged survival but with development of compensatory iron acquisition pathways. Finally, enhanced ferritinophagy accelerates PDAC tumorigenesis, and an elevated ferritinophagy expression signature predicts for poor prognosis in PDAC patients. Together, our data reveal that maintenance of iron homeostasis is a critical function of PDAC autophagy, and we define NCOA4-mediated ferritinophagy as a therapeutic target in PDAC.
  40. Cell Rep. 2022 Jun 28. pii: S2211-1247(22)00801-4. [Epub ahead of print]39(13): 111012
      Ovarian cancer (OC) is the most lethal gynecological malignancy, with aggressive metastatic disease responsible for the majority of OC-related deaths. In particular, OC tumors preferentially metastasize to and proliferate rapidly in the omentum. Here, we show that metastatic OC cells experience increased oxidative stress in the omental microenvironment. Metabolic reprogramming, including upregulation of the pentose phosphate pathway (PPP), a key cellular redox homeostasis mechanism, allows OC cells to compensate for this challenge. Inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, reduces tumor burden in pre-clinical models of OC, suggesting that this adaptive metabolic dependency is important for OC omental metastasis.
    Keywords:  CP: Cancer; CP: Metabolism; metabolism; metastasis; ovarian cancer
  41. Nature. 2022 Jun 29.
      Ageing is intimately connected to the induction of cell senescence1,2, but why this is so remains poorly understood. A key challenge is the identification of pathways that normally suppress senescence, are lost during ageing and are functionally relevant to oppose ageing3. Here we connected the structural and functional decline of ageing tissues to attenuated function of the master effectors of cellular mechanosignalling YAP and TAZ. YAP/TAZ activity declines during physiological ageing in stromal cells, and mimicking such decline through genetic inactivation of YAP/TAZ in these cells leads to accelerated ageing. Conversely, sustaining YAP function rejuvenates old cells and opposes the emergence of ageing-related traits associated with either physiological ageing or accelerated ageing triggered by a mechano-defective extracellular matrix. Ageing traits induced by inactivation of YAP/TAZ are preceded by induction of tissue senescence. This occurs because YAP/TAZ mechanotransduction suppresses cGAS-STING signalling, to the extent that inhibition of STING prevents tissue senescence and premature ageing-related tissue degeneration after YAP/TAZ inactivation. Mechanistically, YAP/TAZ-mediated control of cGAS-STING signalling relies on the unexpected role of YAP/TAZ in preserving nuclear envelope integrity, at least in part through direct transcriptional regulation of lamin B1 and ACTR2, the latter of which is involved in building the peri-nuclear actin cap. The findings demonstrate that declining YAP/TAZ mechanotransduction drives ageing by unleashing cGAS-STING signalling, a pillar of innate immunity. Thus, sustaining YAP/TAZ mechanosignalling or inhibiting STING may represent promising approaches for limiting senescence-associated inflammation and improving healthy ageing.
  42. Proc Natl Acad Sci U S A. 2022 Jul 05. 119(27): e2123090119
      Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is essential for cellular energy metabolism coupling NADH oxidation to proton translocation. The mechanism of proton translocation by complex I is still under debate. Its membrane arm contains an unusual central axis of polar and charged amino acid residues connecting the quinone binding site with the antiporter-type subunits NuoL, NuoM, and NuoN, proposed to catalyze proton translocation. Quinone chemistry probably causes conformational changes and electrostatic interactions that are propagated through these subunits by a conserved pattern of predominantly lysine, histidine, and glutamate residues. These conserved residues are thought to transfer protons along and across the membrane arm. The distinct charge distribution in the membrane arm is a prerequisite for proton translocation. Remarkably, the central subunit NuoM contains a conserved glutamate residue in a position that is taken by a lysine residue in the two other antiporter-type subunits. It was proposed that this charge asymmetry is essential for proton translocation, as it should enable NuoM to operate asynchronously with NuoL and NuoN. Accordingly, we exchanged the conserved glutamate in NuoM for a lysine residue, introducing charge symmetry in the membrane arm. The stably assembled variant pumps protons across the membrane, but with a diminished H+/e- stoichiometry of 1.5. Thus, charge asymmetry is not essential for proton translocation by complex I, casting doubts on the suggestion of an asynchronous operation of NuoL, NuoM, and NuoN. Furthermore, our data emphasize the importance of a balanced charge distribution in the protein for directional proton transfer.
    Keywords:  NADH dehydrogenase; biological energy conversion; complex I; proton translocation; respiratory chain
  43. Nat Commun. 2022 Jun 28. 13(1): 3720
      PINK1-Parkin mediated mitophagy, a selective form of autophagy, represents one of the most important mechanisms in mitochondrial quality control (MQC) via the clearance of damaged mitochondria. Although it is well known that the conjugation of mammalian ATG8s (mATG8s) to phosphatidylethanolamine (PE) is a key step in autophagy, its role in mitophagy remains controversial. In this study, we clarify the role of the mATG8-conjugation system in mitophagy by generating knockouts of the mATG8-conjugation machinery. Unexpectedly, we show that mitochondria could still be cleared in the absence of the mATG8-conjugation system, in a process independent of lysosomal degradation. Instead, mitochondria are cleared via extracellular release through a secretory autophagy pathway, in a process we define as Autophagic Secretion of Mitochondria (ASM). Functionally, increased ASM promotes the activation of the innate immune cGAS-STING pathway in recipient cells. Overall, this study reveals ASM as a mechanism in MQC when the cellular mATG8-conjugation machinery is dysfunctional and highlights the critical role of mATG8 lipidation in suppressing inflammatory responses.
  44. J Mol Cell Cardiol. 2022 Jun 28. pii: S0022-2828(22)00126-2. [Epub ahead of print]
      Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation. Shared risk factors for cancer and CVDs suggest intersecting mechanisms for disease pathogenesis and progression. In this review, we aim to highlight the role of metabolic remodeling in cancer and its potential to impair cardiac function. Understanding these mechanisms will help us develop biomarkers, better therapies, and identify patients at risk of developing heart disease after surviving cancer.
    Keywords:  Cardio-oncology; D2-HG; Metabolic remodeling; Metabolism; Oncometabolism; Tumor metabolism
  45. J Am Heart Assoc. 2022 Jun 29. e026135
      Background The metabolite succinate accumulates during cardiac ischemia. Within 5 minutes of reperfusion, succinate returns to baseline levels via both its release from cells and oxidation by mitochondrial complex II. The latter drives reactive oxygen species (ROS) generation and subsequent opening of the mitochondrial permeability transition (PT) pore, leading to cell death. Targeting succinate dynamics (accumulation/oxidation/release) may be therapeutically beneficial in cardiac ischemia-reperfusion (IR) injury. It has been proposed that blocking MCT1 (monocarboxylate transporter 1) may be beneficial in IR injury, by preventing succinate release and subsequent engagement of downstream inflammatory signaling pathways. In contrast, herein we hypothesized that blocking MCT1 would retain succinate in cells, exacerbating ROS generation and IR injury. Methods and Results Using the mitochondrial ROS probe mitoSOX and a custom-built murine heart perfusion rig built into a spectrofluorometer, we measured ROS generation in situ during the first moments of reperfusion. We found that acute MCT1 inhibition enhanced mitochondrial ROS generation at reperfusion and worsened IR injury (recovery of function and infarct size). Both of these effects were abrogated by tandem inhibition of mitochondrial complex II, suggesting that succinate retention worsens IR because it drives more mitochondrial ROS generation. Furthermore, using the PT pore inhibitor cyclosporin A, along with monitoring of PT pore opening via the mitochondrial membrane potential indicator tetramethylrhodamine ethyl ester, we herein provide evidence that ROS generation during early reperfusion is upstream of the PT pore, not downstream as proposed by others. In addition, pore opening was exacerbated by MCT1 inhibition. Conclusions Together, these findings highlight the importance of succinate dynamics and mitochondrial ROS generation as key determinants of PT pore opening and IR injury outcomes.
    Keywords:  complex II; ischemia; metabolism; mitochondria; reactive oxygen species; succinate
  46. Mol Cell. 2022 Jun 24. pii: S1097-2765(22)00544-5. [Epub ahead of print]
      Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.
    Keywords:  SLC4A7/NBCn1; bicarbonate metabolism; mTOR signaling; purine metabolism; pyrimidine metabolism
  47. J Cell Sci. 2022 Jul 01. pii: jcs.259090. [Epub ahead of print]
      Accelerated aerobic glycolysis is a distinctive metabolic property of cancer cells that confers dependency on glucose for survival. However, the therapeutic strategies targeting this vulnerability are still inefficient and have unacceptable side effects in clinical trials. Therefore, developing biomarkers to predict therapeutic efficacy would be essential to improve the selective targeting of cancer cells. Here, we found that the cell lines sensitive to glucose deprivation have high expression of cystine/glutamate antiporter xCT. We found that cystine uptake and glutamate export through xCT contributed to rapid NADPH depletion under glucose deprivation. This collapse of the redox system oxidized and inactivated AMPK, a major regulator of metabolic adaptation, resulting in a metabolic catastrophe and cell death. While this phenomenon was prevented by pharmacological or genetic inhibition of xCT, overexpression of xCT sensitized resistant cancer cells to glucose deprivation. Taken together, these findings suggest a novel cross-talk between AMPK and xCT for the metabolism and signal transduction and reveal a metabolic vulnerability in xCT-high expressing cancer cells to glucose deprivation.
    Keywords:  AMPK; Cystine; Glucose starvation; NADPH; SLC7A11; xCT
  48. Nat Commun. 2022 Jun 27. 13(1): 3669
      Very long-chain acyl-CoA dehydrogenase (VLCAD) is an inner mitochondrial membrane enzyme that catalyzes the first and rate-limiting step of long-chain fatty acid oxidation. Point mutations in human VLCAD can produce an inborn error of metabolism called VLCAD deficiency that can lead to severe pathophysiologic consequences, including cardiomyopathy, hypoglycemia, and rhabdomyolysis. Discrete mutations in a structurally-uncharacterized C-terminal domain region of VLCAD cause enzymatic deficiency by an incompletely defined mechanism. Here, we conducted a structure-function study, incorporating X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, computational modeling, and biochemical analyses, to characterize a specific membrane interaction defect of full-length, human VLCAD bearing the clinically-observed mutations, A450P or L462P. By disrupting a predicted α-helical hairpin, these mutations either partially or completely impair direct interaction with the membrane itself. Thus, our data support a structural basis for VLCAD deficiency in patients with discrete mutations in an α-helical membrane-binding motif, resulting in pathologic enzyme mislocalization.
  49. Sci Rep. 2022 Jun 27. 12(1): 10877
      The coordinated communication between the mitochondria and nucleus is essential for cellular activities. Nonetheless, the pathways involved in this crosstalk are scarcely understood. The protease Lonp1 was previously believed to be exclusively located in the mitochondria, with an important role in mitochondrial morphology, mtDNA maintenance, and cellular metabolism, in both normal and neoplastic cells. However, we recently detected Lonp1 in the nuclear, where as much as 22% of all cellular Lonp1 can be found. Nuclear localization is detectable under all conditions, but the amount is dependent on a response to heat shock (HS). Lonp1 in the nucleus interacts with heat shock factor 1 (HSF1) and modulates the HS response. These findings reveal a novel extramitochondrial function for Lonp1 in response to stress.
  50. Methods Mol Biol. 2022 ;2497 291-299
      The ubiquinone (Q) pool represents a node in the mitochondrial electron transport chain (ETC) onto which the electrons of all respiratory dehydrogenases converge. The redox state of the Q pool correlates closely with the electron flux through the ETC and is thus a parameter of great metabolic value for both the mitochondrial and cellular metabolism. Here, we describe the simultaneous measurement of respiratory rates of isolated mouse heart mitochondria and the redox state of their Q pool using a custom-made combination of a Clark-type oxygen electrode and a Q electrode.
    Keywords:  Mitochondria; Redox state; Respiratory rates; Ubiquinone pool
  51. iScience. 2022 Jul 15. 25(7): 104513
      The human gut microbiome has been associated with metabolic disorders including obesity, type 2 diabetes, and atherosclerosis. Understanding the contribution of microbiome metabolic changes is important for elucidating the role of gut bacteria in regulating metabolism. We used available metagenomics data from these metabolic disorders, together with genome-scale metabolic modeling of key bacteria in the individual and community-level to investigate the mechanistic role of the gut microbiome in metabolic diseases. Modeling predicted increased levels of glutamate consumption along with the production of ammonia, arginine, and proline in gut bacteria common across the disorders. Abundance profiles and network-dependent analysis identified the enrichment of tartrate dehydrogenase in the disorders. Moreover, independent plasma metabolite levels showed associations between metabolites including proline and tyrosine and an increased tartrate metabolism in healthy obese individuals. We, therefore, propose that an increased tartrate metabolism could be a significant mediator of the microbiome metabolic changes in metabolic disorders.
    Keywords:  Metabolomics; Microbiome; Omics; Systems biology
  52. Front Aging Neurosci. 2022 ;14 893159
      Sporadic Alzheimer's disease (sAD) is the commonest cause of age-related neurodegeneration and dementia globally, and a leading cause of premature disability and death. To date, the quest for a disease-modifying therapy for sAD has failed, probably reflecting our incomplete understanding of aetiology and pathogenesis. Drugs that target aggregated Aβ/tau are ineffective, and metabolic defects are now considered to play substantive roles in sAD pathobiology. We tested the hypothesis that the recently identified, pervasive cerebral deficiency of pantothenate (vitamin B5) in sAD, might undermine brain energy metabolism by impairing levels of tricarboxylic acid (TCA)-cycle enzymes and enzyme complexes, some of which require the pantothenate-derived cofactor, coenzyme A (CoA) for their normal functioning. We applied proteomics to measure levels of the multi-subunit TCA-cycle enzymes and their cytoplasmic homologues. We analysed six functionally distinct brain regions from nine sAD cases and nine controls, measuring 33 cerebral proteins that comprise the nine enzymes of the mitochondrial-TCA cycle. Remarkably, we found widespread perturbations affecting only two multi-subunit enzymes and two enzyme complexes, whose function is modulated, directly or indirectly by CoA: pyruvate dehydrogenase complex, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and succinyl-CoA synthetase. The sAD cases we studied here displayed widespread deficiency of pantothenate, the obligatory precursor of CoA. Therefore, deficient cerebral pantothenate can damage brain-energy metabolism in sAD, at least in part through impairing levels of these four mitochondrial-TCA-cycle enzymes.
    Keywords:  coenzyme A (CoA); human brain; pantothenic acid/vitamin B5; pyruvate dehydrogenase complex; sporadic Alzheimer’s disease; tricarboxylic acid cycle (TCA cycle)
  53. Nat Metab. 2022 Jun;4(6): 651-662
      Multiple roles of reactive oxygen species (ROS) and their consequences for health and disease are emerging throughout biological sciences. This development has led researchers unfamiliar with the complexities of ROS and their reactions to employ commercial kits and probes to measure ROS and oxidative damage inappropriately, treating ROS (a generic abbreviation) as if it were a discrete molecular entity. Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims entering the literature and impeding progress, despite a well-established body of knowledge on how best to assess individual ROS, their reactions, role as signalling molecules and the oxidative damage that they can cause. In this consensus statement we illuminate problems that can arise with many commonly used approaches for measurement of ROS and oxidative damage, and propose guidelines for best practice. We hope that these strategies will be useful to those who find their research requiring assessment of ROS, oxidative damage and redox signalling in cells and in vivo.