bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2022‒04‒24
fifty-four papers selected by
Christian Frezza
University of Cambridge, MRC Cancer Unit


  1. Mol Metab. 2022 Apr 19. pii: S2212-8778(22)00072-2. [Epub ahead of print] 101503
      OBJECTIVE: Mitochondrial "retrograde" signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated.METHODS: We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues.
    RESULTS: We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system.
    CONCLUSIONS: Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells.
    Keywords:  Caenorhabditis elegans; MICU1; VPS39; autophagy; longevity; mitochondria; sphingosine signaling
    DOI:  https://doi.org/10.1016/j.molmet.2022.101503
  2. Semin Cell Dev Biol. 2022 Apr 18. pii: S1084-9521(22)00122-7. [Epub ahead of print]
      Mitochondria are vital organelles with a central role in all aspects of cellular metabolism. As a means to support the ever-changing demands of the cell, mitochondria produce energy, drive biosynthetic processes, maintain redox homeostasis, and function as a hub for cell signaling. While mitochondria have been widely studied for their role in disease and metabolic dysfunction, this organelle has a continually evolving role in the regulation of development, wound repair, and regeneration. Mitochondrial metabolism dynamically changes as tissues transition through distinct phases of development. These organelles support the energetic and biosynthetic demands of developing cells and function as key structures that coordinate the nutrient status of the organism with developmental progression. This review will examine the mechanisms that link mitochondria to developmental processes. We will also examine the process of mitochondrial respiratory quiescence (MRQ), a novel mechanism for regulating cellular metabolism through the biochemical and physiological remodeling of mitochondria. Lastly, we will examine MRQ as a system to discover the mechanisms that drive mitochondrial remodeling during development.
    Keywords:  Cancer; Drosophila; Metabolism; Mitochondria; Oocytes; Quiescence; Reprogramming; Stem cells
    DOI:  https://doi.org/10.1016/j.semcdb.2022.03.040
  3. Dev Cell. 2022 Apr 14. pii: S1534-5807(22)00229-5. [Epub ahead of print]
      Mitochondrial dysfunction is interconnected with cancer. Nevertheless, how defective mitochondria promote cancer is poorly understood. We find that mitochondrial dysfunction promotes DNA damage under conditions of increased apoptotic priming. Underlying this process, we reveal a key role for mitochondrial dynamics in the regulation of DNA damage and genome instability. The ability of mitochondrial dynamics to regulate oncogenic DNA damage centers upon the control of minority mitochondrial outer membrane permeabilization (MOMP), a process that enables non-lethal caspase activation leading to DNA damage. Mitochondrial fusion suppresses minority MOMP and its associated DNA damage by enabling homogeneous mitochondrial expression of anti-apoptotic BCL-2 proteins. Finally, we find that mitochondrial dysfunction inhibits pro-apoptotic BAX retrotranslocation, causing BAX mitochondrial localization and thereby promoting minority MOMP. Unexpectedly, these data reveal oncogenic effects of mitochondrial dysfunction that are mediated via mitochondrial dynamics and caspase-dependent DNA damage.
    Keywords:  DNA damage; MOMP; apoptosis; cancer; caspase; cell death; fission; fusion; mitochondrial dynamics
    DOI:  https://doi.org/10.1016/j.devcel.2022.03.019
  4. Nat Commun. 2022 Apr 19. 13(1): 2013
      Metabolic programs can differ substantially across genetically distinct subtypes of acute myeloid leukemia (AML). These programs are not static entities but can change swiftly as a consequence of extracellular changes or in response to pathway-inhibiting drugs. Here, we uncover that AML patients with FLT3 internal tandem duplications (FLT3-ITD+) are characterized by a high expression of succinate-CoA ligases and high activity of mitochondrial electron transport chain (ETC) complex II, thereby driving high mitochondrial respiration activity linked to the Krebs cycle. While inhibition of ETC complex II enhances apoptosis in FLT3-ITD+ AML, cells also quickly adapt by importing lactate from the extracellular microenvironment. 13C3-labelled lactate metabolic flux analyses reveal that AML cells use lactate as a fuel for mitochondrial respiration. Inhibition of lactate transport by blocking Monocarboxylic Acid Transporter 1 (MCT1) strongly enhances sensitivity to ETC complex II inhibition in vitro as well as in vivo. Our study highlights a metabolic adaptability of cancer cells that can be exploited therapeutically.
    DOI:  https://doi.org/10.1038/s41467-022-29639-0
  5. Cell Chem Biol. 2022 Apr 13. pii: S2451-9456(22)00127-1. [Epub ahead of print]
      Environmental stresses, including hypoxia or detachment for anchorage independence, or attenuation of mitochondrial respiration through inhibition of electron transport chain induce reductive carboxylation in cells with an enhanced fraction of citrate arising through reductive metabolism of glutamine. This metabolic process contributes to redox homeostasis and sustains biosynthesis of lipids. Reductive carboxylation is often dependent on cytosolic isocitrate dehydrogenase 1 (IDH1). However, whether diverse cellular signals induce reductive carboxylation differentially or through a common signaling converging node remains unclear. We found that induction of reductive carboxylation commonly requires enhanced tyrosine phosphorylation and activation of IDH1, which, surprisingly, is achieved by attenuation of a cytosolic protein tyrosine phosphatase, Src homology region 2 domain-containing phosphatase-2 (SHP-2). Mechanistically, diverse signals induce reductive carboxylation by converging at upregulation of NADPH oxidase 2, leading to elevated cytosolic reactive oxygen species that consequently inhibit SHP-2. Together, our work elucidates the signaling basis underlying reductive carboxylation in cancer cells.
    Keywords:  NADPH oxidase 2 (NOX2); Src homology region 2 domain-containing phosphatase-2 (SHP-2); cytosolic reactive oxygen species (ROS); isocitrate dehydrogenase 1 (IDH1); reductive carboxylation; tyrosine phosphorylation
    DOI:  https://doi.org/10.1016/j.chembiol.2022.03.010
  6. Cell Rep. 2022 Apr 19. pii: S2211-1247(22)00480-6. [Epub ahead of print]39(3): 110719
      Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNβ) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNβ simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNβ also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNβ controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNβ potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNβ on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNβ modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.
    Keywords:  CP: Immunology; CP: Metabolism; granulocyte macrophage colony-stimulating factor; interleukin-4; isocitrate dehydrogenase; macrophage polarization; metabolism; succinate; type I interferon; α-ketoglutarate
    DOI:  https://doi.org/10.1016/j.celrep.2022.110719
  7. Eur J Cell Biol. 2022 Apr 13. pii: S0171-9335(22)00028-0. [Epub ahead of print]101(3): 151225
      Metabolic alterations have been observed in many cancer types. The deregulated metabolism has thus become an emerging hallmark of the disease, where the metabolism is frequently rewired to aerobic glycolysis. This has led to the concept of "metabolic reprogramming", which has therefore been extensively studied. Over the years, it has been characterized the enhancement of aerobic glycolysis, where key mutations in some of the enzymes of the TCA cycle, and the increased glucose uptake, are used by cancer cells to achieve a "metabolic phenotype" useful to gain a proliferation advantage. Many studies have highlighted in detail the signaling pathways and the molecular mechanisms responsible for the glycolytic switch. However, glycolysis is not the only metabolic process that cancer cells rely on. Oxidative Phosphorylation (OXPHOS), gluconeogenesis or the beta-oxidation of fatty acids (FAO) may be involved in the development and progression of several tumors. In some cases, these metabolisms are even more crucial than aerobic glycolysis for the tumor survival. This review will focus on the contribution of these alterations of metabolism to the development and survival of cancers. We will also analyze the molecular mechanisms by which the balance between these metabolic processes may be regulated, as well as some of the therapeutical approaches that can derive from their study.
    Keywords:  Amino acids; Cancer; Fatty acids; Metabolism; Mitochondria; OXPHOS
    DOI:  https://doi.org/10.1016/j.ejcb.2022.151225
  8. Nat Commun. 2022 Apr 22. 13(1): 2206
      Targeting ferroptosis, a unique cell death modality triggered by unrestricted lipid peroxidation, in cancer therapy is hindered by our incomplete understanding of ferroptosis mechanisms under specific cancer genetic contexts. KEAP1 (kelch-like ECH associated protein 1) is frequently mutated or inactivated in lung cancers, and KEAP1 mutant lung cancers are refractory to most therapies, including radiotherapy. In this study, we identify ferroptosis suppressor protein 1 (FSP1, also known as AIFM2) as a transcriptional target of nuclear factor erythroid 2-related factor 2 (NRF2) and reveal that the ubiquinone (CoQ)-FSP1 axis mediates ferroptosis- and radiation- resistance in KEAP1 deficient lung cancer cells. We further show that pharmacological inhibition of the CoQ-FSP1 axis sensitizes KEAP1 deficient lung cancer cells or patient-derived xenograft tumors to radiation through inducing ferroptosis. Together, our study identifies CoQ-FSP1 as a key downstream effector of KEAP1-NRF2 pathway and as a potential therapeutic target for treating KEAP1 mutant lung cancers.
    DOI:  https://doi.org/10.1038/s41467-022-29905-1
  9. Cell Metab. 2022 Apr 18. pii: S1550-4131(22)00127-9. [Epub ahead of print]
      Glycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8+ T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8+ T cell differentiation toward a memory phenotype. Metabolic flexibility induced by MPC inhibition facilitated acetyl-coenzyme-A production by glutamine and fatty acid oxidation that results in enhanced histone acetylation and chromatin accessibility on pro-memory genes. However, in the tumor microenvironment, MPC is essential for sustaining lactate oxidation to support CD8+ T cell antitumor function. We further revealed that chimeric antigen receptor (CAR) T cell manufacturing with an MPC inhibitor imprinted a memory phenotype and demonstrated that infusing MPC inhibitor-conditioned CAR T cells resulted in superior and long-lasting antitumor activity. Altogether, we uncover that mitochondrial pyruvate uptake instructs metabolic flexibility for guiding T cell differentiation and antitumor responses.
    Keywords:  T cell memory; chimeric antigen receptor T cell therapy; immunometabolism; mitochondrial pyruvate carrier; tumor-infiltrating lymphocyte metabolism
    DOI:  https://doi.org/10.1016/j.cmet.2022.03.013
  10. Cell Rep. 2022 Apr 19. pii: S2211-1247(22)00431-4. [Epub ahead of print]39(3): 110679
      Adult stem cells coordinate intrinsic and extrinsic, local and systemic, cues to maintain the proper balance between self-renewal and differentiation. However, the precise mechanisms stem cells use to integrate these signals remain elusive. Here, we show that Escargot (Esg), a member of the Snail family of transcription factors, regulates the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis by attenuating the activity of the pro-differentiation insulin receptor (InR) pathway. Esg positively regulates the expression of an antagonist of insulin signaling, ImpL2, while also attenuating the expression of InR. Furthermore, Esg-mediated repression of the InR pathway is required to suppress CySC loss in response to starvation. Given the conservation of Snail-family transcription factors, characterizing the mechanisms by which Esg regulates cell-fate decisions during homeostasis and a decline in nutrient availability is likely to provide insight into the metabolic regulation of stem cell behavior in other tissues and organisms.
    Keywords:  CP: Developmental biology; CP: Stem cell research; Drosophila; ImpL2; InR; cyst stem cells; escargot; insulin; metabolism; testis
    DOI:  https://doi.org/10.1016/j.celrep.2022.110679
  11. Mol Cell Biochem. 2022 Apr 22.
      DNA fragmentation factor 40 (DFF40), or the caspase-activated DNase (CAD), is an endonuclease specific for double-stranded DNA. Alterations in its function and expression have been linked to apoptosis resistance, a mechanism likely used by cancer cells. However, how the DFF40-related apoptosis resistance pathway occurs remains unclear. Here, we sought to determine if DFF40 expression could be linked to cell metabolism through the regulation of mitochondrial integrity and function. We demonstrated that DFF40-deficient cells are more resistant to staurosporine and tributyltin (TBT)-induced apoptosis, and express higher levels of Mcl-1 at basal state. Treatment with TBT induces higher Bcl-2 and caspase-9 mRNA transcripts in DFF40 KO Jurkat cells, as well as enhanced Bcl-2 phosphorylation. A loss of DFF40 expression induces a higher mitochondrial mass, mtDNA copy number, mitochondrial membrane potential, and glycolysis rates in resting T cells. DFF40-deficient cells exhibit the Warburg effect phenotype, where they rely significantly more on glycolysis than oxidative phosphorylation and have a higher proliferative state, demonstrated by a higher Ki-67 transcription factor expression and AKT phosphorylation. Finally, we demonstrated with cell fractioning that DFF40 can translocate to the mitochondria following apoptosis induction. Our study reveals that DFF40 may act as a regulator of mitochondria during cell death and its loss could compromise mitochondrial integrity and cause an energetic reprogramming in pathologies such as cancer.
    Keywords:  Apoptosis; Cancer; Cell proliferation; DFF40; DNA; Energetic metabolism; Mitochondria; Reprogramming; Warburg effect
    DOI:  https://doi.org/10.1007/s11010-022-04433-0
  12. Mol Reprod Dev. 2022 Apr 22.
      Conceptus elongation and early placentation involve growth and remodeling that requires proliferation and migration of cells. This demands conceptuses expend energy before establishment of a placenta connection and when they are dependent upon components of histotroph secreted or transported into the uterine lumen from the uterus. Glucose and fructose, as well as many amino acids (including arginine, aspartate, glutamine, glutamate, glycine, methionine, and serine), increase in the uterine lumen during the peri-implantation period. Glucose and fructose enter cells via their transporters, SLC2A, SLC2A3, and SLC2A8, and amino acids enter the cells via specific transporters that are expressed by the conceptus trophectoderm. However, porcine conceptuses develop rapidly through extensive cellular proliferation and migration as they elongate and attach to the uterine wall resulting in increased metabolic demands. Therefore, coordination of multiple metabolic biosynthetic pathways is an essential aspect of conceptus development. Oxidative metabolism primarily occurs through the tricarboxylic acid (TCA) cycle and the electron transport chain, but proliferating and migrating cells, like the trophectoderm of pigs, enhance aerobic glycolysis. The glycolytic intermediates from glucose can then be shunted into the pentose phosphate pathway and one-carbon metabolism for the de novo synthesis of nucleotides. A result of aerobic glycolysis is limited availability of pyruvate for maintaining the TCA cycle, and trophectoderm cells likely replenish TCA cycle metabolites primarily through glutaminolysis to convert glutamine into TCA cycle intermediates. The synthesis of ATP, nucleotides, amino acids, and fatty acids through these biosynthetic pathways is essential to support elongation, migration, hormone synthesis, implantation, and early placental development of conceptuses.
    Keywords:  conceptus; fructose; glucose; metabolism; pig; uterus
    DOI:  https://doi.org/10.1002/mrd.23570
  13. Neurobiol Dis. 2022 Apr 19. pii: S0969-9961(22)00129-2. [Epub ahead of print] 105737
      Altered mitochondrial DNA (mtDNA) occurs in neurodegenerative disorders like Alzheimer's disease (AD); how mtDNA synthesis is linked to neurodegeneration is poorly understood. We previously discovered Nutrient-induced Mitochondrial Activity (NiMA), an inter-organelle signaling pathway where nutrient-stimulated lysosomal mTORC1 activity regulates mtDNA replication in neurons by a mechanism sensitive to amyloid-β oligomers (AβOs), a primary factor in AD pathogenesis (Norambuena et al., 2018). Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation into mtDNA of cultured neurons, along with photoacoustic and mitochondrial metabolic imaging of cultured neurons and mouse brains, we show these effects being mediated by mTORC1-catalyzed T40 phosphorylation of superoxide dismutase 1 (SOD1). Mechanistically, tau, another key factor in AD pathogenesis and other tauopathies, reduced the lysosomal content of the tuberous sclerosis complex (TSC), thereby increasing NiMA and suppressing SOD1 activity and mtDNA synthesis. AβOs inhibited these actions. Dysregulation of mtDNA synthesis was observed in fibroblasts derived from tuberous sclerosis (TS) patients, who lack functional TSC and elevated SOD1 activity was also observed in human AD brain. Together, these findings imply that tau and SOD1 couple nutrient availability to mtDNA replication, linking mitochondrial dysfunction to AD.
    Keywords:  Alzheimer's disease; Amino acids; Insulin; Tau; mTOR
    DOI:  https://doi.org/10.1016/j.nbd.2022.105737
  14. Cell Death Dis. 2022 Apr 22. 13(4): 398
      Cisplatin (CDDP) is commonly used to treat a multitude of tumors including sarcomas, ovarian and cervical cancers. Despite recent investigations allowed to improve chemotherapy effectiveness, the molecular mechanisms underlying the development of CDDP resistance remain a major goal in cancer research. Here, we show that mitochondrial morphology and autophagy are altered in different CDDP resistant cancer cell lines. In CDDP resistant osteosarcoma and ovarian carcinoma, mitochondria are fragmented and closely juxtaposed to the endoplasmic reticulum; rates of mitophagy are also increased. Specifically, levels of the mitophagy receptor BNIP3 are higher both in resistant cells and in ovarian cancer patient samples resistant to platinum-based treatments. Genetic BNIP3 silencing or pharmacological inhibition of autophagosome formation re-sensitizes these cells to CDDP. Our study identifies inhibition of BNIP3-driven mitophagy as a potential therapeutic strategy to counteract CDDP resistance in ovarian carcinoma and osteosarcoma.
    DOI:  https://doi.org/10.1038/s41419-022-04741-9
  15. iScience. 2022 Apr 15. 25(4): 104165
      Mitochondria are essential for steroidogenesis. In steroidogenic cells, the initiation of steroidogenesis from cholesterol occurs on the matrix side of the inner mitochondrial membrane by the enzyme P450scc. This requires cholesterol import from the cytoplasm through the outer mitochondrial membrane, facilitated by the StAR protein. The subsequent steps leading to P450scc remain elusive. Here we report that the male transgenic mice that expressed a mutant form of a mitochondrial protein prohibitin-1 (PHB1Tyr114Phe) from the Fabp-4 gene promoter displayed smaller testes, higher testosterone, and lower gonadotropin levels compared with PHB1-expressing and wild-type mice. A subsequent analysis of the testis and Leydig cells from the mice revealed that PHB1 played a previously unknown regulatory role in Leydig cell steroidogenesis. This includes a role in coordinating cell signaling, cholesterol homeostasis, and mitochondrial biology pertaining to steroidogenesis. The implications of our finding are broad as the initial stages of steroidogenesis are indistinguishable across steroidogenic cells.
    Keywords:  Biological sciences; Cell biology; Developmental biology; Human metabolism; Physiology
    DOI:  https://doi.org/10.1016/j.isci.2022.104165
  16. Methods Mol Biol. 2022 ;2475 215-222
      Calcium Ca2+ regulation is a key component of numerous cellular functions. In cardiomyocytes, Ca2+ regulates excitation-contraction coupling and influences signaling cascades involved in cell metabolism and cell survival. Prolonged dysregulation of mitochondrial Ca2+ leads to dysfunctional cardiomyocytes, apoptosis and ultimately heart failure. VEGF promotes cardiomyocyte contractility by increasing calcium transients to control the strength of the heartbeat. Here, we describe a method to measure mitochondrial Ca2+ fluxes in human ventricular cardiomocytes after inducing stretch-mediated hypertrophy in vitro.
    Keywords:  AC16; Calcium; Cardiomyocyte; Cyclic stretch; Hypertrophy; Mechanotransduction
    DOI:  https://doi.org/10.1007/978-1-0716-2217-9_15
  17. Proc Natl Acad Sci U S A. 2022 Apr 26. 119(17): e2121816119
      SignificanceInteractions between the cell nucleus and cytoskeleton regulate cell mechanics and are facilitated by the interplay between the nuclear lamina and linker of nucleoskeleton and cytoskeleton (LINC) complexes. To date, the specific contribution of the four lamin isoforms to nucleocytoskeletal connectivity and whole-cell mechanics remains unknown. We discover that A- and B-type lamins distinctively interact with LINC complexes that bind F-actin and vimentin filaments to differentially modulate cortical stiffness, cytoplasmic stiffness, and contractility of mouse embryonic fibroblasts (MEFs). We propose and experimentally verify an integrated lamin-LINC complex-cytoskeleton model that explains cellular mechanical phenotypes in lamin-deficient MEFs. Our findings uncover potential mechanisms for cellular defects in human laminopathies and many cancers associated with mutations or modifications in lamin isoforms.
    Keywords:  LINC complex; cell mechanics; cytoskeleton; mechanobiology; nuclear lamins
    DOI:  https://doi.org/10.1073/pnas.2121816119
  18. Cancers (Basel). 2022 Apr 08. pii: 1883. [Epub ahead of print]14(8):
      Human colon carcinomas, including HCT116 cells, often exhibit high autophagic flux under nutrient deprivation or hypoxic conditions. Mitochondrial ROS (mROS) is known as a 'molecular switch' for regulating the autophagic pathway, which is critical for directing cancer cell survival or death. In early tumorigenesis, autophagy plays important roles in maintaining cellular homeostasis and contributes to tumor growth. However, the relationships between mROS and the autophagic capacities of HCT116 cells are poorly understood. Ubiquinol cytochrome c reductase binding protein (UQCRB) has been reported as a biomarker of colorectal cancer, but its role in tumor growth has not been clarified. Here, we showed that UQCRB is overexpressed in HCT116 cells compared to CCD18co cells, a normal colon fibroblast cell line. Pharmacological inhibition of UQCRB reduced mROS levels, autophagic flux, and the growth of HCT116 tumors in a xenograft mouse model. We further investigated mutant UQCRB-overexpressing cell lines to identify functional links in UQCRB-mROS-autophagy. Notably, an increasing level of mROS caused by UQCRB overexpression released Ca2+ by the activation of lysosomal transient receptor potential mucolipin 1 (TRPML1) channels. This activation induced transcription factor EB (TFEB) nuclear translocation and lysosome biogenesis, leading to autophagy flux. Collectively, our study showed that increasing levels of mROS caused by the overexpression of UQCRB in human colon carcinoma HCT116 cells could be linked to autophagy for cell survival.
    Keywords:  UQCRB; autophagy; colorectal cancer; lysosome; mROS
    DOI:  https://doi.org/10.3390/cancers14081883
  19. Proc Natl Acad Sci U S A. 2022 Apr 26. 119(17): e2110557119
      SignificanceMany new cancer drugs fail at the clinical stage owing to poor efficacy and/or excessive toxicity, though whether this reflects shortcomings of the target or the drug is often unclear. To gain earlier insights into factors that can influence the therapeutic index of target inhibition in vivo, we combine inducible RNA interference and somatic engineering technologies to produce a cost-effective platform that enables systemic and inducible suppression of candidate target in normal tissues and tumor cells in the same mouse. By comparing the consequences of genetic and pharmacological CDK9 inhibition, we establish the utility of this platform to predict factors influencing the therapeutic index. Additionally, our studies provide support, and some cautionary notes, for the clinical development of CDK9 inhibitors.
    Keywords:  CDK9; hepatocellular carcinoma; mouse model; preclinical platform
    DOI:  https://doi.org/10.1073/pnas.2110557119
  20. Life (Basel). 2022 Apr 09. pii: 562. [Epub ahead of print]12(4):
      Endometrial carcinoma (EC) is the most common type of gynecologic malignant epithelial tumor, with the death rate from this disease doubling over the past 20 years. Mitochondria provide cancer cells with necessary anabolic building blocks such as amino acids, lipids, and nucleotides, and EC samples have been shown to increase mitochondrial biogenesis. In cancer, mitochondrial DNA (mtDNA) heteroplasmy studies suggest that heteroplasmic variants encode predicted pathogenic proteins. We investigated the mtDNA genotypes within peri-normal and tumor specimens obtained from three individuals diagnosed with EC. DNA extracts from peri-normal and tumor tissues were used for mtDNA-specific next-generation sequencing and analyses of mtDNA content and topoisomers. The three tumors harbor heteroplasmic somatic mutations, and at least one mutation in each carcinoma is predicted to deleteriously alter a mtDNA-encoded protein. Somatic heteroplasmy linked to two mtDNA tRNA genes was found in separate tumors, and two heteroplasmic non-coding variants were identified in a single EC tumor. While two tumors had altered mtDNA content, all three displayed increased mtDNA catenanes. Our findings support that EC cells require wild-type mtDNA, but heteroplasmic mutations may alter mitochondrial metabolism to help promote cancer cell growth and proliferation.
    Keywords:  endometrial cancer; heteroplasmy; homoplasmy; human mitochondrial DNA (mtDNA) maintenance; mtDNA content; mtDNA copy number; mtDNA topoisomers; next-generation sequencing (NGS); somatic mutations; uterine cancer
    DOI:  https://doi.org/10.3390/life12040562
  21. Front Oncol. 2022 ;12 857968
      Staphylococcal nuclease domain-containing protein 1 (SND1) is an evolutionarily conserved multifunctional protein that functions mainly in the nucleus and cytoplasm. However, whether SND1 regulates cellular activity through mitochondrial-related functions remains unclear. Herein, we demonstrate that SND1 is localized to mitochondria to promote phosphoglycerate mutase 5 (PGAM5)-mediated mitophagy. We find that SND1 is present in mitochondria based on mass spectrometry data and verified this phenomenon in different liver cancer cell types by performing organelle subcellular isolation. Specifically, The N-terminal amino acids 1-63 of SND1 serve as a mitochondrial targeting sequence (MTS), and the translocase of outer membrane 70 (TOM 70) promotes the import of SND1 into mitochondria. By immunoprecipitation-mass spectrometry (IP-MS), we find that SND1 interacts with PGAM5 in mitochondria and is crucial for the binding of PGAM5 to dynamin-related protein 1 (DRP1). Importantly, we demonstrate that PGAM5 and SND1-MTS are required for SND1-mediated mitophagy under FCCP and glucose deprivation treatment as well as for SND1-mediated cell proliferation and tumor growth both in vitro and in vivo. Aberrant expression of SND1 and PGAM5 predicts poor outcomes in hepatocellular carcinoma (HCC) patients. Taken together, these findings establish a previously unappreciated role of SND1 and the association of mitochondrion-localized SND1 with PGAM5 in mitophagy and tumor progression.
    Keywords:  PGAM5; SND1; hepatocellular carcinoma; mitophagy; tumor growth
    DOI:  https://doi.org/10.3389/fonc.2022.857968
  22. Int J Biochem Cell Biol. 2022 Apr 18. pii: S1357-2725(22)00058-9. [Epub ahead of print] 106213
      Unconventional T cells and their involvement in cancer are understudied in comparison to conventional T cells, but recent findings indicate that these cells play important roles in both cancer progression and inhibition. Here, we briefly review the dichotomous role of three unconventional T cell lineages: γδ T cells, MAIT cells and NKT cells. Studies using mouse models of cancer show how this unconventional trilogy interacts with cancer epithelial cells and other immune cell populations during tumour evolution. These reports highlight various potential avenues for therapeutic intervention that may be exploited for cancer immunotherapy.
    Keywords:  MAIT cells; NKT cells; cancer; gamma delta T cells; mouse models; unconventional T cells
    DOI:  https://doi.org/10.1016/j.biocel.2022.106213
  23. mBio. 2022 Apr 18. e0044822
      Listeria monocytogenes is a saprophyte and a human intracellular pathogen. Upon invasion into mammalian cells, it senses multiple metabolic and environmental signals that collectively trigger its transition to the pathogenic state. One of these signals is the tripeptide glutathione, which acts as an allosteric activator of L. monocytogenes's master virulence regulator, PrfA. While glutathione synthesis by L. monocytogenes was shown to be critical for PrfA activation and virulence gene expression, it remains unclear how this tripeptide is synthesized in changing environments, especially in light of the observation that L. monocytogenes is auxotrophic to one of its precursors, cysteine. Here, we show that the ABC transporter TcyKLMN is a cystine/cysteine importer that supplies cysteine for glutathione synthesis, hence mediating the induction of the virulence genes. Further, we demonstrate that this transporter is negatively regulated by three metabolic regulators, CodY, CymR, and CysK, which sense and respond to changing concentrations of branched-chain amino acids (BCAA) and cysteine. The data indicate that under low concentrations of BCAA, TcyKLMN is upregulated, driving the production of glutathione by supplying cysteine, thereby facilitating PrfA activation. These findings provide molecular insight into the coupling of L. monocytogenes metabolism and virulence, connecting BCAA sensing to cysteine uptake and glutathione biosynthesis as a mechanism that controls virulence gene expression. This study exemplifies how bacterial pathogens sense their intracellular environment and exploit essential metabolites as effectors of virulence. IMPORTANCE Bacterial pathogens sense the repertoire of metabolites in the mammalian niche and use this information to shift into the pathogenic state to accomplish a successful infection. Glutathione is a virulence-activating signal that is synthesized by L. monocytogenes during infection of mammalian cells. In this study, we show that cysteine uptake via TcyKLMN drives glutathione synthesis and virulence gene expression. The data emphasize the intimate cross-regulation between metabolism and virulence in bacterial pathogens.
    Keywords:  BCAA; GSH; Listeria monocytogenes; branched-chain amino acids; cystine/cysteine importer; glutathione biosynthesis
    DOI:  https://doi.org/10.1128/mbio.00448-22
  24. Curr Opin Biotechnol. 2022 Apr 13. pii: S0958-1669(22)00044-1. [Epub ahead of print]75 102711
      Subcellular compartmentalization provides cells with tremendous advantages for the operation of cellular metabolism. Spatial separation of metabolism generates microenvironments with distinct concentrations of metabolites and cofactors allowing the cell to execute otherwise thermodynamically exclusive reactions simultaneously. Moreover, compartmentalization is also involved in the fine-tuned regulation of gene expression. Thus, the elucidation of compartment-specific metabolic processes has become essential for a thorough understanding of cellular metabolism. The limited availability of reliable methods to inspect metabolic activities in subcellular compartments has been a major impediment in this field. During the last decade, progress has been greatly extended through methodological advances in subcellular metabolic profiling. This review summarizes recent strategies applied for the direct and indirect assessment of compartment-specific metabolism. We review contemporary techniques, recent advances, limitations, and future trends in the field of subcellular metabolomics.
    DOI:  https://doi.org/10.1016/j.copbio.2022.102711
  25. EMBO J. 2022 Apr 19. e111189
      A functional blood-brain barrier relies on a tightly controlled interplay between endothelial cells, pericytes, and astrocytes, which together form the neurovascular unit. Recent work by Lee et al (2022) discovers endothelial cell-derived lactate as a crucial metabolic fuel for brain pericytes, revealing a new way of CNS vascular communication that links nutrient metabolism to blood-brain barrier function.
    DOI:  https://doi.org/10.15252/embj.2022111189
  26. Curr Opin Hematol. 2022 May 01. 29(3): 103-111
      PURPOSE OF REVIEW: HRI is the heme-regulated elF2α kinase that phosphorylates the α-subunit of elF2. Although the role of HRI in inhibiting globin synthesis in erythroid cells is well established, broader roles of HRI in translation have been uncovered recently. This review is to summarize the new discoveries of HRI in stress erythropoiesis and in fetal γ-globin expression.RECENT FINDINGS: HRI and activating transcription factor 4 (ATF4) mRNAs are highly expressed in early erythroblasts. Inhibition of protein synthesis by HRI-phosphorylated elF2α (elF2αP) is necessary to maintain protein homeostasis in both the cytoplasm and mitochondria. In addition, HRI-elF2αP specifically enhances translation of ATF4 mRNA leading to the repression of mechanistic target of rapamycin complex 1 (mTORC1) signaling. ATF4-target genes are most highly activated during iron deficiency to maintain mitochondrial function, redox homeostasis, and to enable erythroid differentiation. HRI is therefore a master translation regulator of erythropoiesis sensing intracellular heme concentrations and oxidative stress for effective erythropoiesis. Intriguingly, HRI-elF2αP-ATF4 signaling also inhibits fetal hemoglobin production in human erythroid cells.
    SUMMARY: The primary function of HRI is to maintain protein homeostasis accompanied by the induction of ATF4 to mitigate stress. Role of HRI-ATF4 in γ-globin expression raises the potential of HRI as a therapeutic target for hemoglobinopathy.
    DOI:  https://doi.org/10.1097/MOH.0000000000000704
  27. Cancers (Basel). 2022 Apr 07. pii: 1865. [Epub ahead of print]14(8):
      Altered metabolism is a defining hallmark of cancer. Metabolic adaptations are often linked to a reprogramming of the mitochondria due to the importance of these organelles in energy production and biosynthesis. Cancer cells present heterogeneous metabolic phenotypes that can be modulated by signals originating from the tumor microenvironment. Extracellular vesicles (EVs) are recognized as key players in intercellular communications and mediate many of the hallmarks of cancer via the delivery of their diverse biological cargo molecules. Firstly, this review introduces the most characteristic changes that the EV-biogenesis machinery and mitochondria undergo in the context of cancer. Then, it focuses on the EV-driven processes which alter mitochondrial structure, composition, and function to provide a survival advantage to cancer cells in the context of the hallmarks of cancers, such as altered metabolic strategies, migration and invasiveness, immune surveillance escape, and evasion of apoptosis. Finally, it explores the as yet untapped potential of targeting mitochondria using EVs as delivery vectors as a promising cancer therapeutic strategy.
    Keywords:  metabolism; miRNA; mitochondrial dynamics; tumor microenvironment (TME); tumor-derived EVs (TEVs)
    DOI:  https://doi.org/10.3390/cancers14081865
  28. Life Sci Alliance. 2022 Aug;pii: e202101309. [Epub ahead of print]5(8):
      Mitochondrial homeostasis is tightly controlled by ubiquitination. The mitochondrial integral membrane ubiquitin ligase MARCH5 is a crucial regulator of mitochondrial membrane fission, fusion, and disposal through mitophagy. In addition, the lipid composition of mitochondrial membranes can determine mitochondrial dynamics and organelle turnover. However, how lipids influence the ubiquitination processes that control mitochondrial homeostasis remains unknown. Here, we show that lipids common to the mitochondrial membranes interact with MARCH5 and affect its activity and stability depending on the lipid composition in vitro. As the only one of the tested lipids, cardiolipin binding to purified MARCH5 induces a significant decrease in thermal stability, whereas stabilisation increases the strongest in the presence of phosphatidic acid. Furthermore, we observe that the addition of lipids to purified MARCH5 alters the ubiquitination pattern. Specifically, cardiolipin enhances auto-ubiquitination of MARCH5. Our work shows that lipids can directly affect the activity of ubiquitin ligases and suggests that the lipid composition in mitochondrial membranes could control ubiquitination-dependent mechanisms that regulate the dynamics and turnover of mitochondria.
    DOI:  https://doi.org/10.26508/lsa.202101309
  29. Nat Commun. 2022 Apr 19. 13(1): 2070
      Deubiquitylating enzymes (DUBs) play an essential role in targeted protein degradation and represent an emerging therapeutic paradigm in cancer. However, their therapeutic potential in pancreatic ductal adenocarcinoma (PDAC) has not been explored. Here, we develop a DUB discovery pipeline, combining activity-based proteomics with a loss-of-function genetic screen in patient-derived PDAC organoids and murine genetic models. This approach identifies USP25 as a master regulator of PDAC growth and maintenance. Genetic and pharmacological USP25 inhibition results in potent growth impairment in PDAC organoids, while normal pancreatic organoids are insensitive, and causes dramatic regression of patient-derived xenografts. Mechanistically, USP25 deubiquitinates and stabilizes the HIF-1α transcription factor. PDAC is characterized by a severely hypoxic microenvironment, and USP25 depletion abrogates HIF-1α transcriptional activity and impairs glycolysis, inducing PDAC cell death in the tumor hypoxic core. Thus, the USP25/HIF-1α axis is an essential mechanism of metabolic reprogramming and survival in PDAC, which can be therapeutically exploited.
    DOI:  https://doi.org/10.1038/s41467-022-29684-9
  30. Antioxidants (Basel). 2022 Mar 31. pii: 685. [Epub ahead of print]11(4):
      Inorganic polyphosphate (polyP) is an ancient biopolymer that is well preserved throughout evolution and present in all studied organisms. In mammals, it shows a high co-localization with mitochondria, and it has been demonstrated to be involved in the homeostasis of key processes within the organelle, including mitochondrial bioenergetics. However, the exact extent of the effects of polyP on the regulation of cellular bioenergetics, as well as the mechanisms explaining these effects, still remain poorly understood. Here, using HEK293 mammalian cells under Wild-type (Wt) and MitoPPX (cells enzymatically depleted of mitochondrial polyP) conditions, we show that depletion of polyP within mitochondria increased oxidative stress conditions. This is characterized by enhanced mitochondrial O2- and intracellular H2O2 levels, which may be a consequence of the dysregulation of oxidative phosphorylation (OXPHOS) that we have demonstrated in MitoPPX cells in our previous work. These findings were associated with an increase in basal peroxiredoxin-1 (Prx1), superoxide dismutase-2 (SOD2), and thioredoxin (Trx) antioxidant protein levels. Using 13C-NMR and immunoblotting, we assayed the status of glycolysis and the pentose phosphate pathway (PPP) in Wt and MitoPPX cells. Our results show that MitoPPX cells display a significant increase in the activity of the PPP and an increase in the protein levels of transaldolase (TAL), which is a crucial component of the non-oxidative phase of the PPP and is involved in the regulation of oxidative stress. In addition, we observed a trend towards increased glycolysis in MitoPPX cells, which corroborates our prior work. Here, for the first time, we show the crucial role played by mitochondrial polyP in the regulation of mammalian redox homeostasis. Moreover, we demonstrate a significant effect of mitochondrial polyP on the regulation of global cellular bioenergetics in these cells.
    Keywords:  ROS; antioxidants; mammalian bioenergetics; mitochondria; mitochondrial inorganic polyphosphate; pentose phosphate pathway; polyP
    DOI:  https://doi.org/10.3390/antiox11040685
  31. Nat Rev Genet. 2022 Apr 22.
      The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
    DOI:  https://doi.org/10.1038/s41576-022-00480-x
  32. Mol Cell. 2022 Apr 21. pii: S1097-2765(22)00261-1. [Epub ahead of print]82(8): 1514-1527
      As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.
    Keywords:  autophagy; cancer; lysosome; quality control; remodeling
    DOI:  https://doi.org/10.1016/j.molcel.2022.03.023
  33. Nat Commun. 2022 Apr 19. 13(1): 2052
      Clear cell renal cell carcinoma (ccRCC) is a common and aggressive subtype of renal cancer. Here we conduct a comprehensive proteogenomic analysis of 232 tumor and adjacent non-tumor tissue pairs from Chinese ccRCC patients. By comparing with tumor adjacent tissues, we find that ccRCC shows extensive metabolic dysregulation and an enhanced immune response. Molecular subtyping classifies ccRCC tumors into three subtypes (GP1-3), among which the most aggressive GP1 exhibits the strongest immune phenotype, increased metastasis, and metabolic imbalance, linking the multi-omics-derived phenotypes to clinical outcomes of ccRCC. Nicotinamide N-methyltransferase (NNMT), a one-carbon metabolic enzyme, is identified as a potential marker of ccRCC and a drug target for GP1. We demonstrate that NNMT induces DNA-dependent protein kinase catalytic subunit (DNA-PKcs) homocysteinylation, increases DNA repair, and promotes ccRCC tumor growth. This study provides insights into the biological underpinnings and prognosis assessment of ccRCC, revealing targetable metabolic vulnerabilities.
    DOI:  https://doi.org/10.1038/s41467-022-29577-x
  34. Front Immunol. 2022 ;13 860262
      Activation of tissue repair program in macrophages requires the integration of IL-4/IL-13 cytokines and tissue-specific signals. In the lung, surfactant protein A (SP-A) is a tissue factor that amplifies IL-4Rα-dependent alternative activation and proliferation of alveolar macrophages (AMs) through the myosin18A receptor. However, the mechanism by which SP-A and IL-4 synergistically increase activation and proliferation of AMs is unknown. Here we show that SP-A amplifies IL-4-mediated phosphorylation of STAT6 and Akt by binding to myosin18A. Blocking PI3K activity or the myosin18A receptor abrogates SP-A´s amplifying effects on IL-4 signaling. SP-A alone activates Akt, mTORC1, and PKCζ and inactivates GSK3α/β by phosphorylation, but it cannot activate arginase-1 activity or AM proliferation on its own. The combined effects of IL-4 and SP-A on the mTORC1 and GSK3 branches of PI3K-Akt signaling contribute to increased AM proliferation and alternative activation, as revealed by pharmacological inhibition of Akt (inhibitor VIII) and mTORC1 (rapamycin and torin). On the other hand, the IL-4+SP-A-driven PKCζ signaling axis appears to intersect PI3K activation with STAT6 phosphorylation to achieve more efficient alternative activation of AMs. Consistent with IL-4+SP-A-driven activation of mTORC1 and mTORC2, both agonists synergistically increased mitochondrial respiration and glycolysis in AMs, which are necessary for production of energy and metabolic intermediates for proliferation and alternative activation. We conclude that SP-A signaling in AMs activates PI3K-dependent branched pathways that amplify IL-4 actions on cell proliferation and the acquisition of AM effector functions.
    Keywords:  IL-4; PKCζ; Pi3k-akt; mTORC1; macrophage alternative activation; metabolism; proliferation; surfactant protein A
    DOI:  https://doi.org/10.3389/fimmu.2022.860262
  35. Front Immunol. 2022 ;13 843242
      T cells are important components of adaptive immunity that protect the host against invading pathogens during infection. Upon recognizing the activation signals, naïve and/or memory T cells will initiate clonal expansion, trigger differentiation into effector populations and traffic to the inflamed sites to eliminate pathogens. However, in chronic viral infections, such as those caused by human immunodeficiency virus (HIV), hepatitis B and C (HBV and HCV), T cells exhibit impaired function and become difficult to clear pathogens in a state known as T-cell exhaustion. The activation and function persistence of T cells demand for dynamic changes in cellular metabolism to meet their bioenergetic and biosynthetic demands, especially the augmentation of aerobic glycolysis, which not only provide efficient energy generation, but also fuel multiple biochemical intermediates that are essential for nucleotide, amino acid, fatty acid synthesis and mitochondria function. Changes in cellular metabolism also affect the function of effectors T cells through modifying epigenetic signatures. It is widely accepted that the dysfunction of T cell metabolism contributes greatly to T-cell exhaustion. Here, we reviewed recent findings on T cells metabolism under chronic viral infection, seeking to reveal the role of metabolic dysfunction played in T-cell exhaustion.
    Keywords:  PD-1; T-cell exhaustion; chronic viral infection; glycolysis; metabolism
    DOI:  https://doi.org/10.3389/fimmu.2022.843242
  36. Nat Cancer. 2022 Apr 18.
      Despite advances in precision medicine, the clinical prospects for patients with ovarian and uterine cancers have not substantially improved. Here, we analyzed genome-scale CRISPR-Cas9 loss-of-function screens across 851 human cancer cell lines and found that frequent overexpression of SLC34A2-encoding a phosphate importer-is correlated with sensitivity to loss of the phosphate exporter XPR1, both in vitro and in vivo. In patient-derived tumor samples, we observed frequent PAX8-dependent overexpression of SLC34A2, XPR1 copy number amplifications and XPR1 messenger RNA overexpression. Mechanistically, in SLC34A2-high cancer cell lines, genetic or pharmacologic inhibition of XPR1-dependent phosphate efflux leads to the toxic accumulation of intracellular phosphate. Finally, we show that XPR1 requires the novel partner protein KIDINS220 for proper cellular localization and activity, and that disruption of this protein complex results in acidic "vacuolar" structures preceding cell death. These data point to the XPR1-KIDINS220 complex and phosphate dysregulation as a therapeutic vulnerability in ovarian cancer.
    DOI:  https://doi.org/10.1038/s43018-022-00360-7
  37. Nat Commun. 2022 Apr 19. 13(1): 2144
      Access to clinically relevant small cell lung cancer (SCLC) tissue is limited because surgical resection is rare in metastatic SCLC. Patient-derived xenografts (PDX) and circulating tumor cell-derived xenografts (CDX) have emerged as valuable tools to characterize SCLC. Here, we present a resource of 46 extensively annotated PDX/CDX models derived from 33 patients with SCLC. We perform multi-omic analyses, using targeted tumor next-generation sequencing, RNA-sequencing, and immunohistochemistry to deconvolute the mutational landscapes, global expression profiles, and molecular subtypes of these SCLC models. SCLC subtypes characterized by transcriptional regulators, ASCL1, NEUROD1 and POU2F3 are confirmed in this cohort. A subset of SCLC clinical specimens, including matched PDX/CDX and clinical specimen pairs, confirm that the primary features and genomic and proteomic landscapes of the tumors of origin are preserved in the derivative PDX models. This resource provides a powerful system to study SCLC biology.
    DOI:  https://doi.org/10.1038/s41467-022-29794-4
  38. Nat Commun. 2022 Apr 19. 13(1): 2111
      AKT- a key molecular regulator of PI-3K signaling pathway, is somatically mutated in diverse solid cancer types, and aberrant AKT activation promotes altered cancer cell growth, survival, and metabolism1-8. The most common of AKT mutations (AKT1 E17K) sensitizes affected solid tumors to AKT inhibitor therapy7,8. However, the pathway dependence and inhibitor sensitivity of the long tail of potentially activating mutations in AKT is poorly understood, limiting our ability to act clinically in prospectively characterized cancer patients. Here we show, through population-scale driver mutation discovery combined with functional, biological, and therapeutic studies that some but not all missense mutations activate downstream AKT effector pathways in a growth factor-independent manner and sensitize tumor cells to diverse AKT inhibitors. A distinct class of small in-frame duplications paralogous across AKT isoforms induce structural changes different than those of activating missense mutations, leading to a greater degree of membrane affinity, AKT activation, and cell proliferation as well as pathway dependence and hyper-sensitivity to ATP-competitive, but not allosteric AKT inhibitors. Assessing these mutations clinically, we conducted a phase II clinical trial testing the AKT inhibitor capivasertib (AZD5363) in patients with solid tumors harboring AKT alterations (NCT03310541). Twelve patients were enrolled, out of which six harbored AKT1-3 non-E17K mutations. The median progression free survival (PFS) of capivasertib therapy was 84 days (95% CI 50-not reached) with an objective response rate of 25% (n = 3 of 12) and clinical benefit rate of 42% (n = 5 of 12). Collectively, our data indicate that the degree and mechanism of activation of oncogenic AKT mutants vary, thereby dictating allele-specific pharmacological sensitivities to AKT inhibition.
    DOI:  https://doi.org/10.1038/s41467-022-29638-1
  39. Nat Commun. 2022 Apr 20. 13(1): 2167
      Although morphologic progression coupled with expression of specific molecular markers has been characterized along the esophageal squamous differentiation gradient, the molecular heterogeneity within cell types along this trajectory has yet to be classified at the single cell level. To address this knowledge gap, we perform single cell RNA-sequencing of 44,679 murine esophageal epithelial, to identify 11 distinct cell populations as well as pathways alterations along the basal-superficial axis and in each individual population. We evaluate the impact of aging upon esophageal epithelial cell populations and demonstrate age-associated mitochondrial dysfunction. We compare single cell transcriptomic profiles in 3D murine organoids and human esophageal biopsies with that of murine esophageal epithelium. Finally, we employ pseudotemporal trajectory analysis to develop a working model of cell fate determination in murine esophageal epithelium. These studies provide comprehensive molecular perspective on the cellular heterogeneity of murine esophageal epithelium in the context of homeostasis and aging.
    DOI:  https://doi.org/10.1038/s41467-022-29747-x
  40. Nature. 2022 Apr 20.
      Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αβ T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.
    DOI:  https://doi.org/10.1038/s41586-022-04632-1
  41. Bio Protoc. 2022 Mar 20. 12(6): e4364
      Different pathways for autotrophic CO2 fixation can be recognized by the presence of genes for their specific key enzymes. On this basis, (meta)genomic, (meta)transcriptomic, or (meta)proteomic analysis enables the identification of the role of an organism or a distinct pathway in primary production. However, the recently discovered variant of the reductive tricarboxylic acid (rTCA) cycle, the reverse oxidative tricarboxylic acid (roTCA) cycle, lacks unique enzymes, a feature that makes it cryptic for bioinformatics analysis. This pathway is a reversal of the widespread tricarboxylic acid (TCA) cycle. The functioning of the roTCA cycle requires unusually high activity of citrate synthase, the enzyme responsible for citrate cleavage, as well as elevated CO2 partial pressures. Here, we present a detailed description of the protocol we used for the identification of the roTCA cycle in members of Desulfurellaceae. First, we describe the anaerobic cultivation of Desulfurellaceae at different CO2 concentrations with a method that can be adapted to the cultivation of other anaerobes. Then, we explain how to measure activities of enzymes responsible for citrate cleavage, malate dehydrogenase reaction, and the crucial carboxylation step of the cycle catalyzed by pyruvate synthase in cell extracts. In conclusion, we describe stable isotope experiments that allow tracking of the roTCA cycle in vivo, through the position-specific incorporation of carbon-13 into amino acids. The label is provided to the organism as 13CO2 or [1-13C]glutamate. The same key methodology can be used for the reliable evaluation of the functioning of the roTCA cycle in any organism under study. This pathway is likely to participate, completely unseen, in the metabolism of various microorganisms. Graphic abstract.
    Keywords:   CO2 fixation ; Autotrophy; Citrate synthase; Enzyme activity assays; Isotopologue profiling; roTCA cycle
    DOI:  https://doi.org/10.21769/BioProtoc.4364
  42. Cell Death Dis. 2022 Apr 19. 13(4): 370
      LIF, a multifunctional cytokine, is frequently overexpressed in many types of solid tumors, including breast cancer, and plays an important role in promoting tumorigenesis. Currently, how LIF promotes tumorigenesis is not well-understood. Metabolic reprogramming is a hallmark of cancer cells and a key contributor to cancer progression. However, the role of LIF in cancer metabolic reprogramming is unclear. In this study, we found that LIF increases glucose uptake and drives glycolysis, contributing to breast tumorigenesis. Blocking glucose uptake largely abolishes the promoting effect of LIF on breast tumorigenesis. Mechanistically, LIF overexpression enhances glucose uptake via activating the AKT/GLUT1 axis to promote glycolysis. Blocking the AKT signaling by shRNA or its inhibitors greatly inhibits glycolysis driven by LIF and largely abolishes the promoting effect of LIF on breast tumorigenesis. These results demonstrate an important role of LIF overexpression in glucose metabolism reprogramming in breast cancers, which contributes to breast tumorigenesis. This study also reveals an important mechanism underlying metabolic reprogramming of breast cancers, and identifies LIF and its downstream signaling as potential therapeutic targets for breast cancers, especially those with LIF overexpression.
    DOI:  https://doi.org/10.1038/s41419-022-04820-x
  43. Nat Commun. 2022 Apr 21. 13(1): 2182
      Quorum sensing (QS) is a ubiquitous cell-cell communication mechanism that can be employed to autonomously and dynamically control metabolic fluxes. However, since the functions of genetic components in the circuits are not fully understood, the developed QS circuits are still less sophisticated for regulating multiple sets of genes or operons in metabolic engineering applications. Here, we discover the regulatory roles of a CRP-binding site and the lux box to -10 region within luxR-luxI intergenic sequence in controlling the lux-type QS promoters. By varying the numbers of the CRP-binding site and redesigning the lux box to -10 site sequence, we create a library of QS variants that possess both high dynamic ranges and low leakiness. These circuits are successfully applied to achieve diverse metabolic control in salicylic acid and 4-hydroxycoumarin biosynthetic pathways in Escherichia coli. This work expands the toolbox for dynamic control of multiple metabolic fluxes under complex metabolic background and presents paradigms to engineer metabolic pathways for high-level synthesis of target products.
    DOI:  https://doi.org/10.1038/s41467-022-29933-x
  44. Int J Mol Sci. 2022 Apr 07. pii: 4098. [Epub ahead of print]23(8):
      Attempts to find and quantify the supposed low entropy of organisms and its preservation are revised. The absolute entropy of the mixed components of non-living biomass (approximately -1.6 × 103 J K-1 L-1) is the reference to which other entropy decreases would be ascribed to life. The compartmentation of metabolites and the departure from the equilibrium of metabolic reactions account for reductions in entropy of 1 and 40-50 J K-1 L-1, respectively, and, though small, are distinctive features of living tissues. DNA and proteins do not supply significant decreases in thermodynamic entropy, but their low informational entropy is relevant for life and its evolution. No other living feature contributes significantly to the low entropy associated with life. The photosynthetic conversion of radiant energy to biomass energy accounts for most entropy (2.8 × 105 J K-1 carbon kg-1) produced by living beings. The comparatively very low entropy produced in other processes (approximately 4.8 × 102 J K-1 L-1 day-1 in the human body) must be rapidly exported outside as heat to preserve low entropy decreases due to compartmentation and non-equilibrium metabolism. Enzymes and genes are described, whose control minimizes the rate of production of entropy and could explain selective pressures in biological evolution and the rapid proliferation of cancer cells.
    Keywords:  DNA informational entropy; Warburg effect; cancer; cell compartmentation; evolutionary biology; lactate dehydrogenase (LDH); lactic acid; metabolism; thermodynamic entropy
    DOI:  https://doi.org/10.3390/ijms23084098
  45. Elife. 2022 Apr 22. pii: e71634. [Epub ahead of print]11
      The mitochondrial unfolded protein response (UPRmt) has emerged as a predominant mechanism that preserves mitochondrial function. Consequently, multiple pathways likely exist to modulate UPRmt. We discovered that the tRNA processing enzyme, homolog of ELAC2 (HOE-1), is key to UPRmt regulation in Caenorhabditis elegans. We find that nuclear HOE-1 is necessary and sufficient to robustly activate UPRmt. We show that HOE-1 acts via transcription factors ATFS-1 and DVE-1 that are crucial for UPRmt. Mechanistically, we show that HOE-1 likely mediates its effects via tRNAs, as blocking tRNA export prevents HOE-1-induced UPRmt. Interestingly, we find that HOE-1 does not act via the integrated stress response, which can be activated by uncharged tRNAs, pointing towards its reliance on a new mechanism. Finally, we show that the subcellular localization of HOE-1 is responsive to mitochondrial stress and is subject to negative regulation via ATFS-1. Together, we have discovered a novel RNA-based cellular pathway that modulates UPRmt.
    Keywords:  C. elegans; cell biology
    DOI:  https://doi.org/10.7554/eLife.71634
  46. Elife. 2022 Apr 19. pii: e73550. [Epub ahead of print]11
      Coordination of cell proliferation and migration is fundamental for life, and its dysregulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, and vice-versa, remains largely unknown. We address these questions by combining in-silico modelling and in vivo experimentation in the zebrafish Trunk Neural Crest (TNC). TNC migrate collectively, forming chains with a leader cell directing the movement of trailing followers. We show that the acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction of Notch signalling and cell cycle progression.
    Keywords:  developmental biology; zebrafish
    DOI:  https://doi.org/10.7554/eLife.73550
  47. Cell. 2022 Apr 14. pii: S0092-8674(22)00340-3. [Epub ahead of print]
      Interest in harnessing natural killer (NK) cells for cancer immunotherapy is rapidly growing. However, efficacy of NK cell-based immunotherapy remains limited in most trials. Strategies to augment the killing efficacy of NK cells are thus much needed. In the current study, we found that mitochondrial apoptosis (mtApoptosis) pathway is essential for efficient NK killing, especially at physiologically relevant effector-to-target ratios. Furthermore, NK cells can prime cancer cells for mtApoptosis and mitochondrial priming status affects cancer-cell susceptibility to NK-mediated killing. Interestingly, pre-activating NK cells confers on them resistance to BH3 mimetics. Combining BH3 mimetics with NK cells synergistically kills cancer cells in vitro and suppresses tumor growth in vivo. The ideal BH3 mimetic to use in such an approach can be predicted by BH3 profiling. We herein report a rational and precision strategy to augment NK-based immunotherapy, which may be adaptable to T cell-based immunotherapies as well.
    Keywords:  BCL-2; BH3 mimetics; BH3 profiling; MCL-1; T cells; immunotherapy; mitochondrial apoptosis; natural killer; synergy; venetoclax
    DOI:  https://doi.org/10.1016/j.cell.2022.03.030
  48. Toxins (Basel). 2022 Apr 07. pii: 263. [Epub ahead of print]14(4):
      Uremic sarcopenia is a serious clinical problem associated with physical disability and increased morbidity and mortality. Methylglyoxal (MG) is a highly reactive, dicarbonyl uremic toxin that accumulates in the circulatory system in patients with chronic kidney disease (CKD) and is related to the pathology of uremic sarcopenia. The pathophysiology of uremic sarcopenia is multifactorial; however, the details remain unknown. We investigated the mechanisms of MG-induced muscle atrophy using mouse myoblast C2C12 cells, focusing on intracellular metabolism and mitochondrial injury. We found that one of the causative pathological mechanisms of uremic sarcopenia is metabolic flow change to fatty acid synthesis with MG-induced ATP shortage in myoblasts. Evaluation of cell viability revealed that MG showed toxic effects only in myoblast cells, but not in myotube cells. Expression of mRNA or protein analysis revealed that MG induces muscle atrophy, inflammation, fibrosis, and oxidative stress in myoblast cells. Target metabolomics revealed that MG induces metabolic alterations, such as a reduction in tricarboxylic acid cycle metabolites. In addition, MG induces mitochondrial morphological abnormalities in myoblasts. These changes resulted in the reduction of ATP derived from the mitochondria of myoblast cells. Our results indicate that MG is a pathogenic factor in sarcopenia in CKD.
    Keywords:  chronic kidney disease; metabolic alteration; methylglyoxal; myoblast cell; sarcopenia
    DOI:  https://doi.org/10.3390/toxins14040263
  49. Mol Cell. 2022 Apr 21. pii: S1097-2765(22)00253-2. [Epub ahead of print]82(8): 1604-1604.e1
      Organelles are continuously turned over as part of cellular homeostasis and adaptation. Most organelles, even including the nucleus, are degraded by lysosomes via different pathways, such as macroautophagy, microautophagy, organelle-derived vesicle degradation, and crinophagy. In some specific cases-for example, in lens fiber cells-organelles are degraded by cytosolic phospholipases. To view this SnapShot, open or download the PDF.
    DOI:  https://doi.org/10.1016/j.molcel.2022.03.015
  50. Proc Natl Acad Sci U S A. 2022 Apr 26. 119(17): e2109969119
      SignificanceDaily rhythms in the molecular clock, in calcium, and in electrical activity all interact to support the functions of circadian pacemaker neurons. However, the regulatory mechanisms that unify these properties are not defined. Here, we utilize the cellular resolution of the Drosophila circadian neural circuit with technological improvements in light-sheet imaging. We report that individual Drosophila pacemakers display two cophasic rhythms of daily calcium fluctuations. We previously described the first: slow changes in intracellular calcium. The second involves high-frequency calcium fluctuations that depend on the function of the T-type calcium channel. We propose that the fast rhythms, emerging sequentially across the 24-h day, correspond to spontaneous electrical activity patterns displayed by different pacemaker groups.
    Keywords:  Drosophila; ITPR; T-type calcium channel; calcium; circadian rhythms
    DOI:  https://doi.org/10.1073/pnas.2109969119
  51. Oncogene. 2022 Apr 16.
      Brain tumors result in significant morbidity and mortality in both children and adults. Recent data indicate that immunotherapies may offer a survival benefit after standard of care has failed for malignant brain tumors. Modest results from several late phase clinical trials, however, underscore the need for more refined, comprehensive strategies that incorporate new mechanistic and pharmacologic knowledge. Recently, oncometabolism has emerged as an adjunct modality for combinatorial treatment approaches necessitated by the aggressive, refractory nature of high-grade glioma and other progressive malignant brain tumors. Manipulation of metabolic processes in cancer and immune cells that comprise the tumor microenvironment through controlled targeting of oncogenic pathways may be utilized to maximize the efficacy of immunotherapy and improve patient outcomes. Herein, we summarize preclinical and early phase clinical trial research of oncometabolism-based therapeutics that may augment immunotherapy by exploiting the biochemical and genetic underpinnings of brain tumors. We also examine metabolic pathways related to immune cells that target tumor cells, termed "tumor immunometabolism". Specifically, we focus on glycolysis and altered glucose metabolism, including glucose transporters, hexokinase, pyruvate dehydrogenase, and lactate dehydrogenase, glutamine, and we discuss targeting arginase, adenosine, and indoleamine 2,3-dioxygenase, and toll-like receptors. Lastly, we summarize future directions targeting metabolism in combination with emerging therapies such as oncolytic virotherapy, vaccines, and chimeric antigen receptor T cells.
    DOI:  https://doi.org/10.1038/s41388-022-02312-y
  52. Nat Rev Cardiol. 2022 Apr 19.
      Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
    DOI:  https://doi.org/10.1038/s41569-022-00698-6