bims-camemi Biomed News
on Mitochondrial metabolism in cancer
Issue of 2021‒07‒11
28 papers selected by
Christian Frezza
University of Cambridge, MRC Cancer Unit

  1. Nat Metab. 2021 Jul 05.
      Pharmacological activation of the glycolytic enzyme PKM2 or expression of the constitutively active PKM1 isoform in cancer cells results in decreased lactate production, a phenomenon known as the PKM2 paradox in the Warburg effect. Here we show that oxaloacetate (OAA) is a competitive inhibitor of human lactate dehydrogenase A (LDHA) and that elevated PKM2 activity increases de novo synthesis of OAA through glutaminolysis, thereby inhibiting LDHA in cancer cells. We also show that replacement of human LDHA with rabbit LDHA, which is relatively resistant to OAA inhibition, eliminated the paradoxical correlation between the elevated PKM2 activity and the decreased lactate concentration in cancer cells treated with a PKM2 activator. Furthermore, rabbit LDHA-expressing tumours, compared to human LDHA-expressing tumours in mice, displayed resistance to the PKM2 activator. These findings describe a mechanistic explanation for the PKM2 paradox by showing that OAA accumulates and inhibits LDHA following PKM2 activation.
  2. Cancer Res. 2021 Jul 07. pii: canres.2153.2020. [Epub ahead of print]
      High-risk neuroblastoma remains therapeutically challenging to treat, and the mechanisms promoting disease aggression are poorly understood. Here we show that elevated expression of dihydrolipoamide S-succinyltransferase (DLST) predicts poor treatment outcome and aggressive disease in neuroblastoma patients. DLST is an E2 component of the a-ketoglutarate (a-KG) dehydrogenase complex, which governs the entry of glutamine into the tricarboxylic acid cycle (TCA) for oxidative decarboxylation. During this irreversible step, a-KG is converted into succinyl-CoA, producing NADH for oxidative phosphorylation (OXPHOS). Utilizing a zebrafish model of MYCN-driven neuroblastoma, we demonstrate that even modest increases in DLST expression promote tumor aggression, while monoallelic dlst loss impedes disease initiation and progression. DLST depletion in human MYCN-amplified neuroblastoma cells minimally affected glutamine anaplerosis and did not alter TCA cycle metabolites other than a-KG. However, DLST loss significantly suppressed NADH production and impaired OXPHOS, leading to growth arrest and apoptosis of neuroblastoma cells. Additionally, multiple inhibitors targeting the electron transport chain, including the potent IACS-010759 that is currently in clinical testing for other cancers, efficiently reduced neuroblastoma proliferation in vitro. IACS-010759 also suppressed tumor growth in zebrafish and mouse xenograft models of high-risk neuroblastoma. Together, these results demonstrate that DLST promotes neuroblastoma aggression and unveils OXPHOS as an essential contributor to high-risk neuroblastoma.
  3. Cell Metab. 2021 Jul 06. pii: S1550-4131(21)00279-5. [Epub ahead of print]33(7): 1276-1278
      The TCA cycle metabolite succinate functions as an intra- and extracellular signal of metabolic stress. Based on the phenotype of UCP-1-deficient mice, Mills et al. (2021) now report in Nature Metabolism that accumulation of extracellular succinate due to impaired elimination in thermogenic fat drives liver inflammation and fibrosis through the succinate receptor SUCNR1.
  4. Cancer Discov. 2021 Mar;2(2): 162-185
      MYC oncoproteins regulate transcription of genes directing cell proliferation, metabolism, and tumorigenesis. A variety of alterations drive MYC expression in acute myeloid leukemia (AML), and enforced MYC expression in hematopoietic progenitors is sufficient to induce AML. Here we report that AML and myeloid progenitor cell growth and survival rely on MYC-directed suppression of Transcription Factor EB (TFEB), a master regulator of the autophagy-lysosome pathway. Notably, although originally identified as an oncogene, TFEB functions as a tumor suppressor in AML, where it provokes AML cell differentiation and death. These responses reflect TFEB control of myeloid epigenetic programs by inducing expression of isocitrate dehydrogenase-1 (IDH1) and IDH2, resulting in global hydroxylation of 5-methycytosine. Finally, activating the TFEB-IDH1/IDH2-TET2 axis is revealed as a targetable vulnerability in AML. Thus, epigenetic control by an MYC-TFEB circuit dictates myeloid cell fate and is essential for maintenance of AML. SIGNIFICANCE: Alterations in epigenetic control are a hallmark of AML. This study establishes that a MYC-TFEB circuit controls AML differentiation and epigenetic programs by inducing IDH1/IDH2 and hydroxylation of 5-methylcytosine, that TFEB functions as a tumor suppressor in AML, and that this circuit is a targetable vulnerability in AML.See related commentary by Wu and Eisenman, p. 116.
  5. Cell Metab. 2021 Jul 06. pii: S1550-4131(21)00278-3. [Epub ahead of print]33(7): 1274-1275
      Numerous preclinical studies implicate the decline in NAD+ signaling in developing aging- and obesity-associated metabolic disorders. Yoshino et al. (2021) now provide the clinical evidence that an NAD+ booster increases muscle insulin sensitivity in postmenopausal prediabetic women, validating the therapeutic promises of NAD+ boosters in humans.
  6. FEBS J. 2021 Jul 06.
      Oncogenic mutations in the KRAS gene are found in 30-50% of colorectal cancers (CRC) and recent findings have demonstrated independent and non-redundant roles for wild-type and mutant KRAS alleles in governing signaling and metabolism. Here, we quantify proteomic changes manifested by KRAS mutation and KRAS allele loss in isogenic cell lines. We show that expression of KRASG13D upregulates aspartate metabolizing proteins including PCK1, PCK2, ASNS and ASS1. Furthermore, differential expression analyses of transcript-level data from CRC tumors identified the upregulation of urea cycle enzymes in CRC. We find that expression of ASS1, supports colorectal cancer cell proliferation and promotes tumor formation in vitro. We show that loss of ASS1 can be rescued with high levels of several metabolites.
    Keywords:  Quantitative proteomics; aspartate; colorectal cancer; metabolomics; mutant KRAS; urea cycle
  7. Cell Rep. 2021 Jul 06. pii: S2211-1247(21)00683-5. [Epub ahead of print]36(1): 109307
      Competitive cell interactions play a crucial role in quality control during development and homeostasis. Here, we show that cancer cells use such interactions to actively eliminate wild-type intestine cells in enteroid monolayers and organoids. This apoptosis-dependent process boosts proliferation of intestinal cancer cells. The remaining wild-type population activates markers of primitive epithelia and transits to a fetal-like state. Prevention of this cell-state transition avoids elimination of wild-type cells and, importantly, limits the proliferation of cancer cells. Jun N-terminal kinase (JNK) signaling is activated in competing cells and is required for cell-state change and elimination of wild-type cells. Thus, cell competition drives growth of cancer cells by active out-competition of wild-type cells through forced cell death and cell-state change in a JNK-dependent manner.
    Keywords:  JNK; cancer; cell competition; fetal-like; organoids; small intestine
  8. Acta Neuropathol Commun. 2021 Jul 07. 9(1): 124
      The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
    Keywords:  Alzheimer’s disease; Calcium; Huntington's disease; Metabolism; Mitochondria; Neurodegeneration; Parkinson's disease
  9. Cancer Discov. 2021 May;2(3): 266-287
      We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML. SIGNIFICANCE: Reducing SIRT5 activity is detrimental to the survival of AML cells regardless of genotype, yet well tolerated by healthy hematopoietic cells. In mouse models, disrupting SIRT5 inhibits AML progression. SIRT5 controls several metabolic pathways that are required for leukemia cell survival. These results identify SIRT5 as a therapeutic target in AML.See related commentary by Li and Melnick, p. 198.
  10. Cell. 2021 Jun 25. pii: S0092-8674(21)00708-X. [Epub ahead of print]
      Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.
    Keywords:  T cells; eIF5A; hypusine; immunity; immunometabolism; metabolism; polyamines
  11. Cell. 2021 Jun 29. pii: S0092-8674(21)00700-5. [Epub ahead of print]
      Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.
    Keywords:  DFMO; T helper 17 cell; experimental autoimmune encephalomyelitis; immunometabolism; in silico metabolic modeling; multiple sclerosis; polyamines; putrescine; single cell transcriptomics; spermidine
  12. Dis Model Mech. 2021 Jul 01. 14(7): 1-17
      Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer.
    Keywords:   Drosophila cancer models; Aerobic glycolysis; Metabolic reprogramming; Mitochondria
  13. FASEB J. 2021 Aug;35(8): e21757
      Pyroptosis and intrinsic apoptosis are two forms of regulated cell death driven by active caspases where plasma membrane permeabilization is induced by gasdermin pores. Caspase-1 induces gasdermin D pore formation during pyroptosis, whereas caspase-3 promotes gasdermin E pore formation during apoptosis. These two types of cell death are accompanied by mitochondrial outer membrane permeabilization due to BAK/BAX pore formation in the external membrane of mitochondria, and to some extent, this complex also affects the inner mitochondrial membrane facilitating mitochondrial DNA relocalization from the matrix to the cytosol. However, the detailed mechanism responsible for this process has not been investigated. Herein, we reported that gasdermin processing is required to induce mitochondrial DNA release from cells during pyroptosis and apoptosis. Gasdermin targeted at the plasma membrane promotes a fast mitochondrial collapse along with the initial accumulation of mitochondrial DNA in the cytosol and then facilitates the DNA's release from the cell when the plasma membrane ruptures. These findings demonstrate that gasdermin action has a critical effect on the plasma membrane and facilitates the release of mitochondrial DNA as a damage-associated molecular pattern.
    Keywords:  GSDMD; GSDME; macrophages; mitochondrial DNA; pyroptosis
  14. Med (N Y). 2021 Jun 11. 2(6): 736-754
      Background: Upregulated glucose metabolism is a common feature of tumors. Glucose can be broken down by either glycolysis or the oxidative pentose phosphate pathway (oxPPP). The relative usage within tumors of these catabolic pathways remains unclear. Similarly, the extent to which tumors make biomass precursors from glucose, versus take them up from the circulation, is incompletely defined.Methods: We explore human triple negative breast cancer (TNBC) metabolism by isotope tracing with [1,2-13C]glucose, a tracer that differentiates glycolytic versus oxPPP catabolism and reveals glucose-driven anabolism. Patients enrolled in clinical trial NCT03457779 and received IV infusion of [1,2-13C]glucose during core biopsy of their primary TNBC. Tumor samples were analyzed for metabolite labeling by liquid chromatography-mass spectrometry (LC-MS). Genomic and proteomic analyses were performed and related to observed metabolic fluxes.
    Findings: TNBC ferments glucose to lactate, with glycolysis dominant over the oxPPP. Most ribose phosphate is nevertheless produced by oxPPP. Glucose also feeds amino acid synthesis, including of serine, glycine, aspartate, glutamate, proline and glutamine (but not asparagine). Downstream in glycolysis, tumor pyruvate and lactate labeling exceeds that found in serum, indicating that lactate exchange via monocarboxylic transporters is less prevalent in human TNBC compared with most normal tissues or non-small cell lung cancer.
    Conclusions: Glucose directly feeds ribose phosphate, amino acid synthesis, lactate, and the TCA cycle locally within human breast tumors.
  15. Cell Death Dis. 2021 Jul 03. 12(7): 671
      The balanced functionality of cellular proteostatic modules is central to both proteome stability and mitochondrial physiology; thus, the age-related decline of proteostasis also triggers mitochondrial dysfunction, which marks multiple degenerative disorders. Non-functional mitochondria are removed by mitophagy, including Parkin/Pink1-mediated mitophagy. A common feature of neuronal or muscle degenerative diseases, is the accumulation of damaged mitochondria due to disrupted mitophagy rates. Here, we exploit Drosophila as a model organism to investigate the functional role of Parkin/Pink1 in regulating mitophagy and proteostatic responses, as well as in suppressing degenerative phenotypes at the whole organism level. We found that Parkin or Pink1 knock down in young flies modulated proteostatic components in a tissue-dependent manner, increased cell oxidative load, and suppressed mitophagy in neuronal and muscle tissues, causing mitochondrial aggregation and neuromuscular degeneration. Concomitant to Parkin or Pink1 knock down cncC/Nrf2 overexpression, induced the proteostasis network, suppressed oxidative stress, restored mitochondrial function, and elevated mitophagy rates in flies' tissues; it also, largely rescued Parkin or Pink1 knock down-mediated neuromuscular degenerative phenotypes. Our in vivo findings highlight the critical role of the Parkin/Pink1 pathway in mitophagy, and support the therapeutic potency of Nrf2 (a druggable pathway) activation in age-related degenerative diseases.
  16. Bioessays. 2021 Jul 03. e2100116
      We propose a signaling pathway in which cell-extracellular matrix (ECM) adhesion components PINCH-1 and kindlin-2 sense mechanical signals from ECM and link them to proline biosynthesis, a vital metabolic pathway for macromolecule synthesis, redox balance, and ECM remodeling. ECM stiffening promotes PINCH-1 expression via integrin signaling, which suppresses dynamin-related protein 1 (DRP1) expression and mitochondrial fission, resulting in increased kindlin-2 translocation into mitochondria and interaction with Δ1 -pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1). Kindlin-2 interaction with PYCR1 protects the latter from proteolytic degradation, leading to elevated PYCR1 level. Additionally, PINCH-1 promotes P5C synthase (P5CS) expression and P5C synthesis, which, together with increased PYCR1 level, support augmented proline biosynthesis. This signaling pathway is frequently activated in fibrosis and cancer, resulting in increased proline biosynthesis and excessive collagen matrix production, which in turn further promotes ECM stiffening. Targeting this signaling pathway, therefore, may provide an effective strategy for alleviating fibrosis and cancer progression.
    Keywords:  cancer; collagen; extracellular mechano-environment; fibrosis; focal adhesion proteins; mitochondrial dynamics; proline biosynthesis
  17. Methods Cell Biol. 2021 ;pii: S0091-679X(20)30200-4. [Epub ahead of print]164 1-9
      The transcription factor EB (TFEB) plays a critical role in autophagy induction and lysosomal biogenesis by orchestrating the expression of autophagy- and lysosome-related genes. In response to a series of stresses such as nutrient starvation, TFEB translocates from the cytoplasm to the nucleus, where it exerts its regulatory function. The activity of TFEB is tightly regulated by multiple phosphorylation and acetylation sites. Methods that rely on the analysis of posttranslational modification as a proxy for TFEB activation are often misleading. Here, we elaborate on protocols for monitoring nuclear translocation of TFEB by fluorescence microscopy.
    Keywords:  Biosensor; High content; Lysosomal biogenesis; Macroautophagy; TFEB
  18. Nat Commun. 2021 Jul 07. 12(1): 4173
      The integration of circadian and metabolic signals is essential for maintaining robust circadian rhythms and ensuring efficient metabolism and energy use. Using Drosophila as an animal model, we show that cellular protein O-GlcNAcylation exhibits robust 24-hour rhythm and represents a key post-translational mechanism that regulates circadian physiology. We observe strong correlation between protein O-GlcNAcylation rhythms and clock-controlled feeding-fasting cycles, suggesting that O-GlcNAcylation rhythms are primarily driven by nutrient input. Interestingly, daily O-GlcNAcylation rhythms are severely dampened when we subject flies to time-restricted feeding at unnatural feeding time. This suggests the presence of clock-regulated buffering mechanisms that prevent excessive O-GlcNAcylation at non-optimal times of the day-night cycle. We show that this buffering mechanism is mediated by the expression and activity of GFAT, OGT, and OGA, which are regulated through integration of circadian and metabolic signals. Finally, we generate a mathematical model to describe the key factors that regulate daily O-GlcNAcylation rhythm.
  19. Methods Cell Biol. 2021 ;pii: S0091-679X(21)00043-1. [Epub ahead of print]164 137-156
      Fasting induces vast metabolic adaptations on the cellular level and leads to an organism-wide induction of autophagy. Autophagic degradation subserves resource recycling and facilitates the maintenance of energetic homeostasis. Mass spectrometry offers the possibility to assess changes in the metabolome that occur in conditions of nutrient deprivation and to profile such adaptations. Here we describe a detailed workflow for the targeted quantitation and untargeted profiling of metabolites that can be used to assess the intracellular metabolome of starving cells. Moreover, we outline a workflow for the use of non-radioactive isotope labeled metabolites. Altogether, we show that mass spectrometry is a powerful tool for monitoring metabolic changes in conditions of fasting.
    Keywords:  Autophagy; Chromatography; Mass spectrometry; Metabolites
  20. Mol Cell. 2021 Jun 29. pii: S1097-2765(21)00493-7. [Epub ahead of print]
      RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression, and aberrant RBP-RNA interactions can promote cancer progression. Here, we interrogate the function of RBPs in cancer using pooled CRISPR-Cas9 screening and identify 57 RBP candidates with distinct roles in supporting MYC-driven oncogenic pathways. We find that disrupting YTHDF2-dependent mRNA degradation triggers apoptosis in triple-negative breast cancer (TNBC) cells and tumors. eCLIP and m6A sequencing reveal that YTHDF2 interacts with mRNAs encoding proteins in the MAPK pathway that, when stabilized, induce epithelial-to-mesenchymal transition and increase global translation rates. scRibo-STAMP profiling of translating mRNAs reveals unique alterations in the translatome of single cells within YTHDF2-depleted solid tumors, which selectively contribute to endoplasmic reticulum stress-induced apoptosis in TNBC cells. Thus, our work highlights the therapeutic potential of RBPs by uncovering a critical role for YTHDF2 in counteracting the global increase of mRNA synthesis in MYC-driven breast cancers.
    Keywords:  CRISPR screening; MYC-driven cancer; N6-methyladenosine; RNA-binding protein; STAMP; YTHDF2; scRNA-seq
  21. Cell Metab. 2021 Jul 06. pii: S1550-4131(21)00276-X. [Epub ahead of print]33(7): 1293-1306
      The bioactive sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) are a recent addition to the lipids accumulated in obesity and have emerged as important molecular players in metabolic diseases. Here we summarize evidence that dysregulation of sphingolipid metabolism correlates with pathogenesis of metabolic diseases in humans. This review discusses the current understanding of how ceramide regulates signaling and metabolic pathways to exacerbate metabolic diseases and the Janus faces for its further metabolite S1P, the kinases that produce it, and the multifaceted and at times opposing actions of S1P receptors in various tissues. Gaps and limitations in current knowledge are highlighted together with the need to further decipher the full array of their actions in tissue dysfunction underlying metabolic pathologies, pointing out prospects to move this young field of research toward the development of effective therapeutics.
    Keywords:  Ceramide; metabolic diseases; sphingolipid metabolites; sphingosine-1-phosphate
  22. Nat Commun. 2021 Jul 06. 12(1): 4166
      Classically considered a by-product of anaerobic metabolism, lactate is now viewed as a fundamental fuel for oxidative phosphorylation in mitochondria, and preferred over glucose by many tissues. Lactate is also a signaling molecule of increasing medical relevance. Lactate levels in the blood can increase in both normal and pathophysiological conditions (e.g., hypoxia, physical exercise, or sepsis), however the manner by which these changes are sensed and induce adaptive responses is unknown. Here we show that the carotid body (CB) is essential for lactate homeostasis and that CB glomus cells, the main oxygen sensing arterial chemoreceptors, are also lactate sensors. Lactate is transported into glomus cells, leading to a rapid increase in the cytosolic NADH/NAD+ ratio. This in turn activates membrane cation channels, leading to cell depolarization, action potential firing, and Ca2+ influx. Lactate also decreases intracellular pH and increases mitochondrial reactive oxygen species production, which further activates glomus cells. Lactate and hypoxia, although sensed by separate mechanisms, share the same final signaling pathway and jointly activate glomus cells to potentiate compensatory cardiorespiratory reflexes.
  23. Nat Methods. 2021 Jul;18(7): 747-756
      Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.
  24. Nat Methods. 2021 Jul;18(7): 779-787
      Chimeric MS/MS spectra contain fragments from multiple precursor ions and therefore hinder compound identification in metabolomics. Historically, deconvolution of these chimeric spectra has been challenging and relied on specific experimental methods that introduce variation in the ratios of precursor ions between multiple tandem mass spectrometry (MS/MS) scans. DecoID provides a complementary, method-independent approach where database spectra are computationally mixed to match an experimentally acquired spectrum by using LASSO regression. We validated that DecoID increases the number of identified metabolites in MS/MS datasets from both data-independent and data-dependent acquisition without increasing the false discovery rate. We applied DecoID to publicly available data from the MetaboLights repository and to data from human plasma, where DecoID increased the number of identified metabolites from data-dependent acquisition data by over 30% compared to direct spectral matching. DecoID is compatible with any user-defined MS/MS database and provides automated searching for some of the largest MS/MS databases currently available.
  25. Cell. 2021 Jun 29. pii: S0092-8674(21)00757-1. [Epub ahead of print]
      Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.
    Keywords:  MITF; UVB; melanosome; nicotinamide nucleotide transhydrogenase; pigmentation; redox regulation
  26. J Vis Exp. 2021 Jun 21.
      Mitochondrial diseases represent the largest class of inborn errors of metabolism and are currently incurable. These diseases cause neurodevelopmental defects whose underlying mechanisms remain to be elucidated. A major roadblock is the lack of effective models recapitulating the early-onset neuronal impairment seen in the patients. Advances in the technology of induced pluripotent stem cells (iPSCs) enable the generation of three-dimensional (3D) brain organoids that can be used to investigate the impact of diseases on the development and organization of the nervous system. Researchers, including these authors, have recently introduced human brain organoids to model mitochondrial disorders. This paper reports a detailed protocol for the robust generation of human iPSC-derived brain organoids and their use in mitochondrial bioenergetic profiling and imaging analyses. These experiments will allow the use of brain organoids to investigate metabolic and developmental dysfunctions and may provide crucial information to dissect the neuronal pathology of mitochondrial diseases.
  27. Nat Methods. 2021 Jul;18(7): 799-805
      A growing appreciation of the importance of cellular metabolism and revelations concerning the extent of cell-cell heterogeneity demand metabolic characterization of individual cells. We present SpaceM, an open-source method for in situ single-cell metabolomics that detects >100 metabolites from >1,000 individual cells per hour, together with a fluorescence-based readout and retention of morpho-spatial features. We validated SpaceM by predicting the cell types of cocultured human epithelial cells and mouse fibroblasts. We used SpaceM to show that stimulating human hepatocytes with fatty acids leads to the emergence of two coexisting subpopulations outlined by distinct cellular metabolic states. Inducing inflammation with the cytokine interleukin-17A perturbs the balance of these states in a process dependent on NF-κB signaling. The metabolic state markers were reproduced in a murine model of nonalcoholic steatohepatitis. We anticipate SpaceM to be broadly applicable for investigations of diverse cellular models and to democratize single-cell metabolomics.
  28. Nature. 2021 Jul 07.
      T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.