Cell Mol Life Sci. 2025 Dec 19. 82(1): 441
Ferroptosis is a regulated form of cell death characterized by iron-dependent lipid peroxidation. It plays a crucial role in various pathological conditions, including neurodegenerative diseases, cancer, ischemia-reperfusion injury, and organ failure. This review systematically explores the key mechanisms underlying ferroptosis, including polyunsaturated fatty acid-containing phospholipid (PUFA-PL) peroxidation, iron metabolism, and mitochondrial dysfunction. Additionally, we summarize major endogenous ferroptosis defense systems, including the SLC7A11-glutathione (GSH)-glutathione peroxidase 4 (GPX4) axis, the ferroptosis suppressor protein 1 (FSP1)-ubiquinol (CoQH₂) system, the mitochondrial dihydroorotate dehydrogenase (DHODH)-CoQH₂ pathway, and the guanosine triphosphate cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4) pathway, which act as critical brakes on ferroptosis. Furthermore, we discuss various small-molecule inhibitors targeting ferroptosis, categorized by their mechanisms of action, including iron chelators, lipid peroxidation inhibitors, antioxidants, and regulatory pathway modulators. Recent advances in pharmacological strategies and their potential therapeutic applications are also highlighted.
Keywords: Ferroptosis; Iron metabolism; Lipid peroxidation; Mitochondrial dysfunction; Small-molecule inhibitors