bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2021‒11‒28
37 papers selected by
Kıvanç Görgülü
Technical University of Munich


  1. Elife. 2021 Nov 22. pii: e73808. [Epub ahead of print]10
      Mitochondrial metabolism is of central importance to diverse aspects of cell and developmental biology. Defects in mitochondria are associated with many diseases, including cancer, neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunction in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of oxygen consumption rate. Interpreting the FLIM measurements of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand of the cell do not change ETC flux despite significantly impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.
    Keywords:  biochemistry; chemical biology; human; mouse; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.73808
  2. J Biol Chem. 2021 Nov 18. pii: S0021-9258(21)01245-X. [Epub ahead of print] 101436
      Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum (ER) inositol trisphosphate receptors (IP3R) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetics needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293, HeLa) with stable knockouts of all three IP3R isoforms (TKO) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels, but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely due to adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.
    Keywords:  IP(3) receptor; TCA cycle; bioenergetics; calcium signaling; glycolysis; mitochondrial calcium uniporter; mitochondrial metabolism
    DOI:  https://doi.org/10.1016/j.jbc.2021.101436
  3. Biomedicines. 2021 Nov 09. pii: 1651. [Epub ahead of print]9(11):
      Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
    Keywords:  autophagy; cancer; infection; metabolism; neurodegeneration
    DOI:  https://doi.org/10.3390/biomedicines9111651
  4. Cell Rep. 2021 Nov 23. pii: S2211-1247(21)01542-4. [Epub ahead of print]37(8): 110056
      Statins are among the most commonly prescribed drugs, and around every fourth person above the age of 40 is on statin medication. Therefore, it is of utmost clinical importance to understand the effect of statins on cancer cell plasticity and its consequences to not only patients with cancer but also patients who are on statins. Here, we find that statins induce a partial epithelial-to-mesenchymal transition (EMT) phenotype in cancer cells of solid tumors. Using a comprehensive STRING network analysis of transcriptome, proteome, and phosphoproteome data combined with multiple mechanistic in vitro and functional in vivo analyses, we demonstrate that statins reduce cellular plasticity by enforcing a mesenchymal-like cell state that increases metastatic seeding ability on one side but reduces the formation of (secondary) tumors on the other due to heterogeneous treatment responses. Taken together, we provide a thorough mechanistic overview of the consequences of statin use for each step of cancer development, progression, and metastasis.
    Keywords:  barcode screening; cellular plasticity; cholesterol pathway; mesenchymal cell state shift; statins
    DOI:  https://doi.org/10.1016/j.celrep.2021.110056
  5. Front Cell Dev Biol. 2021 ;9 743908
      Pancreatic ductal adenocarcinoma is a highly lethal malignancy, which has now become the seventh most common cause of cancer death in the world, with the highest mortality rates in Europe and North America. In the past 30 years, there has been some progress in 5-year survival (rates increasing from 2.5 to 10%), but this is still extremely poor compared to all other common cancer types. Targeted therapies for advanced pancreatic cancer based on actionable mutations have been disappointing, with only 3-5% showing even a short clinical benefit. There is, however, a molecular diversity beyond mutations in genes responsible for producing classical canonical signaling pathways. Pancreatic cancer is almost unique in promoting an excess production of other components of the stroma, resulting in a complex tumor microenvironment that contributes to tumor development, progression, and response to treatment. Various transcriptional subtypes have also been described. Most notably, there is a strong alignment between the Classical/Pancreatic progenitor and Quasi-mesenchymal/Basal-like/Squamous subtype signatures of Moffit, Collinson, Bailey, Puleo, and Chan-Seng-Yue, which have potential clinical impact. Sequencing of epithelial cell populations enriched by laser capture microscopy combined with single-cell RNA sequencing has revealed the potential genomic evolution of pancreatic cancer as being a consequence of a gene expression continuum from mixed Basal-like and Classical cell populations within the same tumor, linked to allelic imbalances in mutant KRAS, with metastatic tumors being more copy number-unstable compared to primary tumors. The Basal-like subtype appears more chemoresistant with reduced survival compared to the Classical subtype. Chemotherapy and/or chemoradiation will also enrich the Basal-like subtype. Squamous/Basal-like programs facilitate immune infiltration compared with the Classical-like programs. The immune infiltrates associated with Basal and Classical type cells are distinct, potentially opening the door to differential strategies. Single-cell and spatial transcriptomics will now allow single cell profiling of tumor and resident immune cell populations that may further advance subtyping. Multiple clinical trials have been launched based on transcriptomic response signatures and molecular subtyping including COMPASS, Precision Promise, ESPAC6/7, PREDICT-PACA, and PASS1. We review several approaches to explore the clinical relevance of molecular profiling to provide optimal bench-to-beside translation with clinical impact.
    Keywords:  ESPAC; clinical trials; molecular subtypes; next generation sequencing; precision medicine; structural variants; transcriptomes
    DOI:  https://doi.org/10.3389/fcell.2021.743908
  6. Cell Death Dis. 2021 Nov 26. 12(12): 1106
      Hypoxic microenvironment is common in solid tumors, particularly in pancreatic ductal adenocarcinoma (PDAC). The Warburg effect is known to facilitate cancer aggressiveness and has long been linked to hypoxia, yet the underlying mechanism remains largely unknown. In this study, we identify that lysyl oxidase-like 2 (LOXL2) is a hypoxia-responsive gene and is essential for the Warburg effect in PDAC. LOXL2 stabilizes hypoxia-inducible factor 1α (HIF1α) from prolyl hydroxylase (PHD)-dependent hydroxylation via hydrogen peroxide generation, thereby facilitating the transcription of multiple glycolytic genes. Therefore, a positive feedback loop exists between LOXL2 and HIF1α that facilitates glycolytic metabolism under hypoxia. Moreover, LOXL2 couples the Warburg effect to tumor growth and metastasis in PDAC. Hijacking glycolysis largely compromises LOXL2-induced oncogenic activities. Collectively, our results identify a hitherto unknown hypoxia-LOXL2-HIF1α axis in regulating the Warburg effect and provide an intriguing drug target for PDAC therapy.
    DOI:  https://doi.org/10.1038/s41419-021-04391-3
  7. FEBS J. 2021 Nov 24.
      The 4th International meeting Metabolism and Cancer initially programed to take place in Bordeaux (France) was held virtually on May 27-29, 2021. The three-day event was followed by around 600 participants daily from 47 countries around the world. The meeting hosted 21 speakers including selected talks and a keynote lecture from the Nobel prize winner Sir Peter J. Ratcliffe (Oxford, United Kingdom). Presentations and discussions were divided in four scientific sessions: (1) Redox and energy metabolism; (2) Redox and hypoxia; (3) Metabolic profiling and epigenetic control; and (4) Signaling, fueling and metabolism in cancer and a general public session on cancer and nutrition. This report summarizes the presentations and outcomes of the 4th annual Metabolism and Cancer symposium. We provide here a summary of the scientific highlights of this exciting meeting.
    Keywords:  Cancer; Epigenetics; Hypoxia; Metabolism; Mitochondria; Redox; Signaling
    DOI:  https://doi.org/10.1111/febs.16295
  8. Nat Commun. 2021 Nov 25. 12(1): 6850
      The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.
    DOI:  https://doi.org/10.1038/s41467-021-27206-7
  9. Autophagy. 2021 Nov 23. 1-2
      Parkinson disease remains a debilitating neurodegenerative disorder, despite the discovery of multiple causative genes that account for familial forms. Prominent among these are PRKN/Parkin and PINK1, whose protein products participate in mitochondrial turnover, or mitophagy. But our poor understanding of the basic biological mechanisms driven by those genes in neurons limits our ability to target them therapeutically. Here, we summarize our recent findings enabled by a new platform to track individual mitochondria in neurons. Our analysis delineates the steps of PINK1- and PRKN-dependent mitochondrial turnover, including the unexplored fates of mitochondria after fusion with lysosomes. These studies reveal unexpected mechanisms of mitochondrial quality control, which may contribute to the reliance of neurons on PINK1 under conditions of stress.
    Keywords:  Mitophagy; PARKIN; PINK1; Parkinson’s disease; mitochondrial turnover
    DOI:  https://doi.org/10.1080/15548627.2021.1998872
  10. Cell Metab. 2021 Nov 19. pii: S1550-4131(21)00530-1. [Epub ahead of print]
      Insulin resistance is a pathological state often associated with obesity, representing a major risk factor for type 2 diabetes. Limited mechanism-based strategies exist to alleviate insulin resistance. Here, using single-cell transcriptomics, we identify a small, critically important, but previously unexamined cell population, p21Cip1 highly expressing (p21high) cells, which accumulate in adipose tissue with obesity. By leveraging a p21-Cre mouse model, we demonstrate that intermittent clearance of p21high cells can both prevent and alleviate insulin resistance in obese mice. Exclusive inactivation of the NF-κB pathway within p21high cells, without killing them, attenuates insulin resistance. Moreover, fat transplantation experiments establish that p21high cells within fat are sufficient to cause insulin resistance in vivo. Importantly, a senolytic cocktail, dasatinib plus quercetin, eliminates p21high cells in human fat ex vivo and mitigates insulin resistance following xenotransplantation into immuno-deficient mice. Our findings lay the foundation for pursuing the targeting of p21high cells as a new therapy to alleviate insulin resistance.
    Keywords:  Cellular senescence; NF-κB; diabetes; fat transplantation; senolytics; xenograft
    DOI:  https://doi.org/10.1016/j.cmet.2021.11.002
  11. Cell Rep. 2021 Nov 23. pii: S2211-1247(21)01519-9. [Epub ahead of print]37(8): 110037
      Glucose metabolism modulates the islet β cell responses to diabetogenic stress, including inflammation. Here, we probed the metabolic mechanisms that underlie the protective effect of glucose in inflammation by interrogating the metabolite profiles of primary islets from human donors and identified de novo glutathione synthesis as a prominent glucose-driven pro-survival pathway. We find that pyruvate carboxylase is required for glutathione synthesis in islets and promotes their antioxidant capacity to counter inflammation and nitrosative stress. Loss- and gain-of-function studies indicate that pyruvate carboxylase is necessary and sufficient to mediate the metabolic input from glucose into glutathione synthesis and the oxidative stress response. Altered redox metabolism and cellular capacity to replenish glutathione pools are relevant in multiple pathologies beyond obesity and diabetes. Our findings reveal a direct interplay between glucose metabolism and glutathione biosynthesis via pyruvate carboxylase. This metabolic axis may also have implications in other settings where sustaining glutathione is essential.
    Keywords:  ROS; glucose; glutathione; inflammation; nitrosative stress; oxidative stress; pancreatic islets; pyruvate carboxylase
    DOI:  https://doi.org/10.1016/j.celrep.2021.110037
  12. Nat Methods. 2021 Nov 25.
      Highly multiplexed tissue imaging makes detailed molecular analysis of single cells possible in a preserved spatial context. However, reproducible analysis of large multichannel images poses a substantial computational challenge. Here, we describe a modular and open-source computational pipeline, MCMICRO, for performing the sequential steps needed to transform whole-slide images into single-cell data. We demonstrate the use of MCMICRO on tissue and tumor images acquired using multiple imaging platforms, thereby providing a solid foundation for the continued development of tissue imaging software.
    DOI:  https://doi.org/10.1038/s41592-021-01308-y
  13. Cells. 2021 Nov 12. pii: 3150. [Epub ahead of print]10(11):
      Cancer cachexia is a frequently neglected debilitating syndrome that, beyond representing a primary cause of death and cancer therapy failure, negatively impacts on patients' quality of life. Given the complexity of its multisystemic pathogenesis, affecting several organs beyond the skeletal muscle, defining an effective therapeutic approach has failed so far. Revamped attention of the scientific community working on cancer cachexia has focused on mitochondrial alterations occurring in the skeletal muscle as potential triggers of the complex metabolic derangements, eventually leading to hypercatabolism and tissue wasting. Mitochondrial dysfunction may be simplistically viewed as a cause of energy failure, thus inducing protein catabolism as a compensatory mechanism; however, other peculiar cachexia features may depend on mitochondria. On the one side, chemotherapy also impacts on muscle mitochondrial function while, on the other side, muscle-impaired regeneration may result from insufficient energy production from damaged mitochondria. Boosting mitochondrial function could thus improve the energetic status and chemotherapy tolerance, and relieve the myogenic process in cancer cachexia. In the present work, a focused review of the available literature on mitochondrial dysfunction in cancer cachexia is presented along with preliminary data dissecting the potential role of stimulating mitochondrial biogenesis via PGC-1α overexpression in distinct aspects of cancer-induced muscle wasting.
    Keywords:  PGC-1α; cancer cachexia; metabolism; mitochondria; muscle wasting; myogenesis; regeneration
    DOI:  https://doi.org/10.3390/cells10113150
  14. STAR Protoc. 2021 Dec 17. 2(4): 100966
      Autophagy measurement has been challenging due to the transient nature of autophagy vesicles, in which degradation of cargo occurs. Here, we present a protocol to monitor starvation-induced autophagy using a live high-throughput microscopy system in a fast and automated manner without the need for sample preparation. We provide a detailed protocol describing the generation of turboGFP-LC3B expressing mouse embryonic fibroblasts (MEFs), the measurement of autophagy over time and the analysis of data. For complete details on the use and execution of this protocol, please refer to Nowosad et al. (2020, 2021).
    Keywords:  Cell Biology; Cell-based Assays; High Throughput Screening; Microscopy
    DOI:  https://doi.org/10.1016/j.xpro.2021.100966
  15. Sci Rep. 2021 Nov 23. 11(1): 22755
      Mitochondrial DNA (mtDNA) maintenance is essential to sustain a functionally healthy population of mitochondria within cells. Proper mtDNA replication and distribution within mitochondrial networks are essential to maintain mitochondrial homeostasis. However, the fundamental basis of mtDNA segregation and distribution within mitochondrial networks is still unclear. To address these questions, we developed an algorithm, Mitomate tracker to unravel the global distribution of nucleoids within mitochondria. Using this tool, we decipher the semi-regular spacing of nucleoids across mitochondrial networks. Furthermore, we show that mitochondrial fission actively regulates mtDNA distribution by controlling the distribution of nucleoids within mitochondrial networks. Specifically, we found that primary cells bearing disease-associated mutations in the fission proteins DRP1 and MYH14 show altered nucleoid distribution, and acute enrichment of enlarged nucleoids near the nucleus. Further analysis suggests that the altered nucleoid distribution observed in the fission mutants is the result of both changes in network structure and nucleoid density. Thus, our study provides novel insights into the role of mitochondria fission in nucleoid distribution and the understanding of diseases caused by fission defects.
    DOI:  https://doi.org/10.1038/s41598-021-01987-9
  16. STAR Protoc. 2021 Dec 17. 2(4): 100876
      We have recently demonstrated that the activity of hexokinase 2 is dependent on the intracellular potassium ion (K+) concentration ([K+]). To analyze the K+ dependency of the cell metabolism in cell populations, we used an extracellular flux analyzer to assess oxygen consumption and acidification rates as well-established measures of oxidative- and glycolytic metabolic activities. This protocol describes in detail how a potential K+ sensitivity of the cell metabolism can be elucidated by extracellular flux analysis. For complete details on the use and execution of this protocol, please refer to Bischof et al. (2021).
    Keywords:  Cancer; Cell Biology; Cell-based Assays; High Throughput Screening; Metabolism; Molecular Biology
    DOI:  https://doi.org/10.1016/j.xpro.2021.100876
  17. Dev Cell. 2021 Nov 22. pii: S1534-5807(21)00851-0. [Epub ahead of print]56(22): 3042-3051
      Adult organs are vascularized by specialized blood vessels. In addition to inter-organ vascular heterogeneity, each organ is arborized by structurally and functionally diversified populations of endothelial cells (ECs). The molecular pathways that are induced to orchestrate inter- and intra- organ vascular heterogeneity and zonation are shaped during development and fully specified postnatally. Notably, intra-organ specialization of ECs is associated with induction of angiocrine factors that guide cross-talk between ECs and parenchymal cells, establishing co-zonated vascular regions within each organ. In this review, we describe how microenvironmental tissue-specific biophysical, biochemical, immune, and inflammatory cues dictate the specialization of ECs with zonated functions. We delineate how physiological and biophysical stressors in the developing liver, lung, and kidney vasculature induce specialization of capillary beds. Deciphering mechanisms by which vascular microvasculature diversity is attained could set the stage for treating regenerative disorders and promote healing of organs without provoking fibrosis.
    Keywords:  angiocrine factors; endothelial cells; intra-organ specialization of blood vessels; organ regeneration; organogenesis; tumorigenesis; vascular angiodiversity; vascular heterogeneity
    DOI:  https://doi.org/10.1016/j.devcel.2021.10.020
  18. Cells. 2021 Oct 20. pii: 2815. [Epub ahead of print]10(11):
      Cancer metastasis is one of the leading causes of death worldwide, motivating research into identifying new methods of preventing cancer metastasis. Recently there has been increasing interest in understanding how cancer cells transduce mechanical forces into biochemical signals, as metastasis is a process that consists of a wide range of physical forces. For instance, the circulatory system through which disseminating cancer cells must transit is an environment characterized by variable fluid shear stress due to blood flow. Cancer cells and other cells can transduce physical stimuli into biochemical responses using the mechanosensitive ion channel Piezo1, which is activated by membrane deformations that occur when cells are exposed to physical forces. When active, Piezo1 opens, allowing for calcium flux into the cell. Calcium, as a ubiquitous second-messenger cation, is associated with many signaling pathways involved in cancer metastasis, such as angiogenesis, cell migration, intravasation, and proliferation. In this review, we discuss the roles of Piezo1 in each stage of cancer metastasis in addition to its roles in immune cell activation and cancer cell death.
    Keywords:  Piezo1; cancer metastasis; mechanotransduction
    DOI:  https://doi.org/10.3390/cells10112815
  19. Crit Rev Oncol Hematol. 2021 Nov 17. pii: S1040-8428(21)00311-5. [Epub ahead of print]168 103524
      RAS is the most frequently mutated oncogene in human cancer. Scientists attempted for decades to target this protein or its pathways, however, all the attempts failed and RAS was labeled as "undruggable". With KRAS-G12C covalent inhibitors entering clinical trials, the myth of this "undruggable" RAS is fading away. In 2021, the Food and Drug Administration (FDA) approved the use of Sotorasib (Lumakras) for the treatment of adult patients with KRAS-G12C mutated locally advanced or metastatic NSCLC, following at least one prior systemic therapy. However, and as every other drug, KRAS-G12C inhibitors are facing intrinsic and acquired resistances. In order to overcome these resistances, researchers are now working on combination strategies. Furthermore, studies are currently ongoing to better elucidate the status of KRAS-G12C as a predictive and prognostic tool and to strengthen its role in the field of personalized medicine.
    Keywords:  Biomarker; KRAS; KRAS-G12C; Lumakras; RAS
    DOI:  https://doi.org/10.1016/j.critrevonc.2021.103524
  20. J Cell Sci. 2021 Nov 25. pii: jcs.259073. [Epub ahead of print]
      Endoplasmic reticulum (ER) - plasma membrane (PM) contacts are sites of lipid exchange and Ca2+ transport, and both lipid transport proteins and Ca2+ channels specifically accumulate at these locations. In pancreatic β-cells, both lipid- and Ca2+ signaling are essential for insulin secretion. The recently characterized lipid transfer protein TMEM24 dynamically localize to ER-PM contact sites and provide phosphatidylinositol, a precursor of PI(4)P and PI(4,5)P2, to the plasma membrane. β-cells lacking TMEM24 exhibit markedly suppressed glucose-induced Ca2+ oscillations and insulin secretion but the underlying mechanism is not known. We now show that TMEM24 only weakly interact with the PM, and dissociates in response to both diacylglycerol and nanomolar elevations of cytosolic Ca2+. Loss of TMEM24 results in hyper-accumulation of Ca2+ in the ER and in excess Ca2+ entry into mitochondria, with resulting impairment in glucose-stimulated ATP production.
    Keywords:  Ca2+; Membrane contact sites; mitochondria
    DOI:  https://doi.org/10.1242/jcs.259073
  21. J Invest Dermatol. 2021 Dec;pii: S0022-202X(21)02220-X. [Epub ahead of print]141(12): 2767-2774.e2
      The analysis of cellular metabolism is attracting increasing interest. Glycolysis and oxidative phosphorylation are intertwined with one another and dozens of other pathways to ultimately produce energy and maintain cellular fitness. However, cellular metabolism is much more than this. Metabolism underlies the proliferation, differentiation, and function of cells as well as the coordination of intercellular communication. Investigating metabolism allows the interpretation of cellular behavior in health and disease. In this article, we aim to demystify the complexity of cellular metabolism and explain the common approaches to study it. Whereas the analysis of cellular metabolism by western blot or flow cytometry might be accessible to most investigators, the functional and comprehensive analyses obtained with a Seahorse Analyzer or mass spectrometer come with monetary and logistical hurdles. We believe that the application of these techniques, together with collaborative efforts between scientists and clinicians, will uncover disease mechanisms and open novel therapeutic avenues for unmet clinical needs in the field of dermatology.
    DOI:  https://doi.org/10.1016/j.jid.2021.09.004
  22. Cancer Cell. 2021 Nov 18. pii: S1535-6108(21)00602-4. [Epub ahead of print]
      Reinvigoration of antitumor immunity remains an unmet challenge. Our retrospective analyses revealed that cancer patients who took antihistamines during immunotherapy treatment had significantly improved survival. We uncovered that histamine and histamine receptor H1 (HRH1) are frequently increased in the tumor microenvironment and induce T cell dysfunction. Mechanistically, HRH1-activated macrophages polarize toward an M2-like immunosuppressive phenotype with increased expression of the immune checkpoint VISTA, rendering T cells dysfunctional. HRH1 knockout or antihistamine treatment reverted macrophage immunosuppression, revitalized T cell cytotoxic function, and restored immunotherapy response. Allergy, via the histamine-HRH1 axis, facilitated tumor growth and induced immunotherapy resistance in mice and humans. Importantly, cancer patients with low plasma histamine levels had a more than tripled objective response rate to anti-PD-1 treatment compared with patients with high plasma histamine. Altogether, pre-existing allergy or high histamine levels in cancer patients can dampen immunotherapy responses and warrant prospectively exploring antihistamines as adjuvant agents for combinatorial immunotherapy.
    Keywords:  HRH1; T cell dysfunction; allergy; antihistamine; cancer immunotherapy; histamine; immune evasion; macrophage
    DOI:  https://doi.org/10.1016/j.ccell.2021.11.002
  23. Nature. 2021 Nov 24.
      Endogenous DNA damage can perturb transcription, triggering a multifaceted cellular response that repairs the damage, degrades RNA polymerase II and shuts down global transcription1-4. This response is absent in the human disease Cockayne syndrome, which is caused by loss of the Cockayne syndrome A (CSA) or CSB proteins5-7. However, the source of endogenous DNA damage and how this leads to the prominent degenerative features of this disease remain unknown. Here we find that endogenous formaldehyde impedes transcription, with marked physiological consequences. Mice deficient in formaldehyde clearance (Adh5-/-) and CSB (Csbm/m; Csb is also known as Ercc6) develop cachexia and neurodegeneration, and succumb to kidney failure, features that resemble human Cockayne syndrome. Using single-cell RNA sequencing, we find that formaldehyde-driven transcriptional stress stimulates the expression of the anorexiogenic peptide GDF15 by a subset of kidney proximal tubule cells. Blocking this response with an anti-GDF15 antibody alleviates cachexia in Adh5-/-Csbm/m mice. Therefore, CSB provides protection to the kidney and brain against DNA damage caused by endogenous formaldehyde, while also suppressing an anorexic endocrine signal. The activation of this signal might contribute to the cachexia observed in Cockayne syndrome as well as chemotherapy-induced anorectic weight loss. A plausible evolutionary purpose for such a response is to ensure aversion to genotoxins in food.
    DOI:  https://doi.org/10.1038/s41586-021-04133-7
  24. JCO Precis Oncol. 2021 ;pii: PO.21.00223. [Epub ahead of print]5
      Somatic KRAS mutations occur in approximately half of the patients with metastatic colorectal cancer (mCRC). Biologic tumor characteristics differ on the basis of the KRAS mutation variant. KRAS mutations are known to influence patient prognosis and are used as predictive biomarker for treatment decisions. This study examined clinical features of patients with mCRC with a somatic mutation in KRAS G12, G13, Q61, K117, or A146.METHODS: A total of 419 patients with colorectal cancer with initially unresectable liver-limited metastases, who participated in a multicenter prospective trial, were evaluated for tumor tissue KRAS mutation status. For the subgroup of patients who carried a KRAS mutation and were treated with bevacizumab and doublet or triplet chemotherapy (N = 156), pretreatment circulating tumor DNA levels were analyzed, and total tumor volume (TTV) was quantified on the pretreatment computed tomography images.
    RESULTS: Most patients carried a KRAS G12 mutation (N = 112), followed by mutations in G13 (N = 15), A146 (N = 12), Q61 (N = 9), and K117 (N = 5). High plasma circulating tumor DNA levels were observed for patients carrying a KRAS A146 mutation versus those with a KRAS G12 mutation, with median mutant allele frequencies of 48% versus 19%, respectively. Radiologic TTV revealed this difference to be associated with a higher tumor load in patients harboring a KRAS A146 mutation (median TTV 672 cm3 [A146] v 74 cm3 [G12], P = .036). Moreover, KRAS A146 mutation carriers showed inferior overall survival compared with patients with mutations in KRAS G12 (median 10.7 v 26.4 months; hazard ratio = 2.5; P = .003).
    CONCLUSION: Patients with mCRC with a KRAS A146 mutation represent a distinct molecular subgroup of patients with higher tumor burden and worse clinical outcomes, who might benefit from more intensive treatments. These results highlight the importance of testing colorectal cancer for all KRAS mutations in routine clinical care.
    DOI:  https://doi.org/10.1200/PO.21.00223
  25. Cell Metab. 2021 Nov 12. pii: S1550-4131(21)00529-5. [Epub ahead of print]
      Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.
    Keywords:  Mitochondria; complexome; copy numbers; disease; half-lives; high-confidence proteome; human cells; protein translocation; respiratory chain; smORFs
    DOI:  https://doi.org/10.1016/j.cmet.2021.11.001
  26. Nat Commun. 2021 Nov 25. 12(1): 6859
      The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
    DOI:  https://doi.org/10.1038/s41467-021-27266-9
  27. Proc Natl Acad Sci U S A. 2021 Nov 30. pii: e2107269118. [Epub ahead of print]118(48):
      During pregnancy, the rodent liver undergoes hepatocyte proliferation and increases in size, followed by weaning-induced involution via hepatocyte cell death and stromal remodeling, creating a prometastatic niche. These data suggest a mechanism for increased liver metastasis in breast cancer patients with recent childbirth. It is unknown whether the human liver changes in size and function during pregnancy and weaning. In this study, abdominal imaging was obtained in healthy women at early and late pregnancy and postwean. During pregnancy time points, glucose production and utilization and circulating bile acids were measured. Independently of weight gain, most women's livers increased in size with pregnancy, then returned to baseline postwean. Putative roles for bile acids in liver growth and regression were observed. Together, the data support the hypothesis that the human liver is regulated by reproductive state with growth during pregnancy and volume loss postwean. These findings have implications for sex-specific liver diseases and for breast cancer outcomes.
    Keywords:  bile acids; liver; maternal health; pregnancy
    DOI:  https://doi.org/10.1073/pnas.2107269118
  28. HPB (Oxford). 2021 Nov;pii: S1365-182X(21)00104-0. [Epub ahead of print]23(11): 1666-1673
      BACKGROUND: Current treatment of potentially resectable pancreatic ductal adenocarcinoma (PDAC) includes pancreatic resection followed by adjuvant therapy. Aim of this study is to identify factors that are related with overall and early recurrence after pancreatectomy for PDAC.METHODS: Retrospective analysis of patients with histologically confirmed PDAC who underwent pancreatectomy between September 2009 and December 2014. Early relapse was defined as recurrence within 12 months after surgery. Univariate/multivariate analysis was performed to identify prognostic factors for recurrence.
    RESULTS: 261 patients were included (54% males, mean age 67 years). Neoadjuvant and adjuvant treatments were performed in 55 (21%) and 243 (93%) patients. Overall morbidity was 56% with a rate of grade 3-4 Clavien-Dindo complications of 25%. Median disease-free survival was 18 months. Multivariate analysis identified nodal metastases (OR: 3.6) and perineural invasion (OR: 2.14) as independent predictors of disease recurrence in the entire cohort. 76 patients (29%) had an early recurrence. Poorly differentiated tumors (OR: 3.019) and grade 3-4 Clavien-Dindo complications (OR: 3.05) were independent risk factors for early recurrence.
    CONCLUSION: Although overall recurrence is associated with tumor-related factors, severe postoperative complications represent an independent predictor of early recurrence. Patients at increased risk of severe postoperative complications may benefit from neoadjuvant therapy.
    DOI:  https://doi.org/10.1016/j.hpb.2021.04.004
  29. Nat Rev Clin Oncol. 2021 Nov 24.
      A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
    DOI:  https://doi.org/10.1038/s41571-021-00579-w
  30. Proc Natl Acad Sci U S A. 2021 Nov 30. pii: e2112940118. [Epub ahead of print]118(48):
      Physicochemical principles such as stoichiometry and fractal assembly can give rise to characteristic scaling between components that potentially include coexpressed transcripts. For key structural factors within the nucleus and extracellular matrix, we discover specific gene-gene scaling exponents across many of the 32 tumor types in The Cancer Genome Atlas, and we demonstrate utility in predicting patient survival as well as scaling-informed machine learning (SIML). All tumors with adjacent tissue data show cancer-elevated proliferation genes, with some genes scaling with the nuclear filament LMNB1, including the transcription factor FOXM1 that we show directly regulates LMNB1 SIML shows that such regulated cancers cluster together with longer overall survival than dysregulated cancers, but high LMNB1 and FOXM1 in half of regulated cancers surprisingly predict poor survival, including for liver cancer. COL1A1 is also studied because it too increases in tumors, and a pan-cancer set of fibrosis genes shows substoichiometric scaling with COL1A1 but predicts patient outcome only for liver cancer-unexpectedly being prosurvival. Single-cell RNA-seq data show nontrivial scaling consistent with power laws from bulk RNA and protein analyses, and SIML segregates synthetic from contractile cancer fibroblasts. Our scaling approach thus yields fundamentals-based power laws relatable to survival, gene function, and experiments.
    Keywords:  expression; fibrosis; mechanobiology; nucleus; scaling
    DOI:  https://doi.org/10.1073/pnas.2112940118
  31. J Cell Biochem. 2021 Nov 23.
      Exercise improves the insulin sensitivity of glucose uptake in skeletal muscle. Due to that, exercise has become a cornerstone treatment for type 2 diabetes mellitus (T2DM). The mechanisms by which exercise improves skeletal muscle insulin sensitivity are, however, incompletely understood. We conducted a systematic review to identify all genes whose gain or loss of function alters skeletal muscle glucose uptake. We subsequently cross-referenced these genes with recently generated data sets on exercise-induced gene expression and signaling. Our search revealed 176 muscle glucose-uptake genes, meaning that their genetic manipulation altered glucose uptake in skeletal muscle. Notably, exercise regulates the expression or phosphorylation of more than 50% of the glucose-uptake genes or their protein products. This included many genes that previously have not been associated with exercise-induced insulin sensitivity. Interestingly, endurance and resistance exercise triggered some common but mostly unique changes in expression and phosphorylation of glucose-uptake genes or their protein products. Collectively, our work provides a resource of potentially new molecular effectors that play a role in the incompletely understood regulation of muscle insulin sensitivity by exercise.
    Keywords:  exercise metabolism; glucose uptake; insulin sensitivity; insulin signaling; resistance and endurance exercise; skeletal muscle
    DOI:  https://doi.org/10.1002/jcb.30179
  32. Acta Biomater. 2021 Nov 17. pii: S1742-7061(21)00756-X. [Epub ahead of print]
      Liver fibrosis is a common feature of progressive liver disease and is manifested as a dynamic series of alterations in both the biochemical and biophysical properties of the liver. Hepatic stellate cells (HSCs) reside within the perisinusoidal space of the liver sinusoid and are one of the main drivers of liver fibrosis, yet it remains unclear how changes to the sinusoidal microenvironment impact HSC phenotype in the context of liver fibrosis. Cellular microarrays were used to examine and deconstruct the impacts of bio-chemo-mechanical changes on activated HSCs in vitro. Extracellular matrix (ECM) composition and stiffness were found to act individually and in combination to regulate HSC fibrogenic phenotype and proliferation. Hyaluronic acid and collagen III promoted elevated collagen I expression while collagen IV mediated a decrease. Previously activated HSCs exhibited reduced lysyl oxidase (Lox) expression as array substrate stiffness increased, with less dependence on ECM composition. Collagens III and IV increased HSC proliferation, whereas hyaluronic acid had the opposite effect. Meta-analysis performed on these data revealed distinct phenotypic clusters (e.g. low fibrogenesis/high proliferation) as a direct function of their microenvironmental composition. Notably, soft microenvironments mimicking healthy tissue (1 kPa), promoted higher levels of intracellular collagen I and Lox expression in activated HSCs, compared to stiff microenvironments mimicking fibrotic tissue (25 kPa). Collectively, these data suggest potential HSC functional adaptations in response to specific bio-chemo-mechanical changes relevant towards the development of therapeutic interventions. These findings also underscore the importance of the microenvironment when interrogating HSC behavior in healthy, disease, and treatment settings. STATEMENT OF SIGNIFICANCE: : In this work we utilized high-throughput cellular microarray technology to systematically interrogate the complex interactions between HSCs and their microenvironment in the context of liver fibrosis. We observed that HSC phenotype is regulated by ECM composition and stiffness, and that these phenotypes can be classified into distinct clusters based on their microenvironmental context. Moreover, the range of these phenotypic responses to microenvironmental stimuli is substantial and a direct consequence of the combinatorial pairing of ECM protein and stiffness signals. We also observed a novel role for microenvironmental context in affecting HSC responses to potential fibrosis therapeutics.
    Keywords:  C1, collagen I; C3, collagen III; C4, collagen IV; C5, collagen V; DC, decorin; ECM, extracellular matrix; FN, fibronectin; HA, hyaluronic acid; HSC, hepatic stellate cell; LN, laminin; LU, lumican; Lox, lysyl oxidase; NASH, non-alcoholic steatohepatitis; PA, polyacrylamide; TC, tenascin C; TFM, traction force microscopy; fibrosis, extracellular matrix, clustering, fibrogenic, heterogeneity List of Abbreviations: NAFLD, non-alcoholic fatty liver disease
    DOI:  https://doi.org/10.1016/j.actbio.2021.11.015
  33. Nature. 2021 Nov 24.
      Extrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation1. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome2,3. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression. ecDNAs that encode multiple distinct oncogenes form hubs in diverse cancer cell types and primary tumours. Each ecDNA is more likely to transcribe the oncogene when spatially clustered with additional ecDNAs. ecDNA hubs are tethered by the bromodomain and extraterminal domain (BET) protein BRD4 in a MYC-amplified colorectal cancer cell line. The BET inhibitor JQ1 disperses ecDNA hubs and preferentially inhibits ecDNA-derived-oncogene transcription. The BRD4-bound PVT1 promoter is ectopically fused to MYC and duplicated in ecDNA, receiving promiscuous enhancer input to drive potent expression of MYC. Furthermore, the PVT1 promoter on an exogenous episome suffices to mediate gene activation in trans by ecDNA hubs in a JQ1-sensitive manner. Systematic silencing of ecDNA enhancers by CRISPR interference reveals intermolecular enhancer-gene activation among multiple oncogene loci that are amplified on distinct ecDNAs. Thus, protein-tethered ecDNA hubs enable intermolecular transcriptional regulation and may serve as units of oncogene function and cooperative evolution and as potential targets for cancer therapy.
    DOI:  https://doi.org/10.1038/s41586-021-04116-8
  34. Cancer Rep (Hoboken). 2021 Nov 24. e1527
      BACKGROUND: Progression in tumor assessments is often detected at a follow-up appointment rather than when actual change in progression has occurred, which can bias PFS outcomes.AIM: We sought to evaluate the frequency of tumor assessment scans in clinical trials of anti-cancer interventions and to compare this to recommended (National Comprehensive Cancer Network) and real-world frequencies of tumor assessments.
    METHODS: In a cross-sectional analysis, we searched for articles published in the three top oncology journals between July 2017 and June 2020. We included articles that were RCTs of patients that had unresectable or metastatic solid tumors and used an intervention that was designed to be anti-tumor. We abstracted median PFS survival for each group, the PFS hazard ratio, frequency of tumor assessment scans, tumor type, intervention type, and information regarding the study.
    RESULTS: We found that, in the 182 comparisons (163 articles), less frequent tumor assessment (occurring more than 9 weeks between assessments) was associated with higher median PFS values for both the intervention group (p < .0001) and the control group (p < .0001). PFS hazard ratios for studies scanning for tumors every 10 or more weeks were no different than for studies scanning for tumors more frequently (p = .88). Data on the frequency of tumor assessments in the real world is sparse.
    CONCLUSION: We found that less frequent tumor assessment frequency was associated with longer median PFS in both intervention and control groups of clinical oncology trials but was not associated with differences in PFS hazard ratios. Future research is needed to compare real world to trial assessment.
    Keywords:  clinical trial; progression; tumor assessment
    DOI:  https://doi.org/10.1002/cnr2.1527
  35. Elife. 2021 Nov 25. pii: e63678. [Epub ahead of print]10
      Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation - arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.
    Keywords:  cell biology; human; molecular biophysics; structural biology
    DOI:  https://doi.org/10.7554/eLife.63678