bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2021‒03‒28
78 papers selected by
Kıvanç Görgülü
Technical University of Munich


  1. Nature. 2021 Mar 24.
    Dominik Pfister, Nicolás Gonzalo Núñez, Roser Pinyol, Olivier Govaere, Matthias Pinter, Marta Szydlowska, Revant Gupta, Mengjie Qiu, Aleksandra Deczkowska, Assaf Weiner, Florian Müller, Ankit Sinha, Ekaterina Friebel, Thomas Engleitner, Daniela Lenggenhager, Anja Moncsek, Danijela Heide, Kristin Stirm, Jan Kosla, Eleni Kotsiliti, Valentina Leone, Michael Dudek, Suhail Yousuf, Donato Inverso, Indrabahadur Singh, Ana Teijeiro, Florian Castet, Carla Montironi, Philipp K Haber, Dina Tiniakos, Pierre Bedossa, Simon Cockell, Ramy Younes, Michele Vacca, Fabio Marra, Jörn M Schattenberg, Michael Allison, Elisabetta Bugianesi, Vlad Ratziu, Tiziana Pressiani, Antonio D'Alessio, Nicola Personeni, Lorenza Rimassa, Ann K Daly, Bernhard Scheiner, Katharina Pomej, Martha M Kirstein, Arndt Vogel, Markus Peck-Radosavljevic, Florian Hucke, Fabian Finkelmeier, Oliver Waidmann, Jörg Trojan, Kornelius Schulze, Henning Wege, Sandra Koch, Arndt Weinmann, Marco Bueter, Fabian Rössler, Alexander Siebenhüner, Sara De Dosso, Jan-Philipp Mallm, Viktor Umansky, Manfred Jugold, Tom Luedde, Andrea Schietinger, Peter Schirmacher, Brinda Emu, Hellmut G Augustin, Adrian Billeter, Beat Müller-Stich, Hiroto Kikuchi, Dan G Duda, Fabian Kütting, Dirk-Thomas Waldschmidt, Matthias Philip Ebert, Nuh Rahbari, Henrik E Mei, Axel Ronald Schulz, Marc Ringelhan, Nisar Malek, Stephan Spahn, Michael Bitzer, Marina Ruiz de Galarreta, Amaia Lujambio, Jean-Francois Dufour, Thomas U Marron, Ahmed Kaseb, Masatoshi Kudo, Yi-Hsiang Huang, Nabil Djouder, Katharina Wolter, Lars Zender, Parice N Marche, Thomas Decaens, David J Pinato, Roland Rad, Joachim C Mertens, Achim Weber, Kristian Unger, Felix Meissner, Susanne Roth, Zuzana Macek Jilkova, Manfred Claassen, Quentin M Anstee, Ido Amit, Percy Knolle, Burkhard Becher, Josep M Llovet, Mathias Heikenwalder.
      Hepatocellular carcinoma (HCC) can have viral or non-viral causes1-5. Non-alcoholic steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been approved for treating HCC, but biomarker-based stratification of patients for optimal response to therapy is an unmet need6,7. Here we report the progressive accumulation of exhausted, unconventionally activated CD8+PD1+ T cells in NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic immunotherapy targeted at programmed death-1 (PD1) expanded activated CD8+PD1+ T cells within tumours but did not lead to tumour regression, which indicates that tumour immune surveillance was impaired. When given prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH-HCC and in the number and size of tumour nodules, which correlated with increased hepatic CD8+PD1+CXCR6+, TOX+, and TNF+ T cells. The increase in HCC triggered by anti-PD1 treatment was prevented by depletion of CD8+ T cells or TNF neutralization, suggesting that CD8+ T cells help to induce NASH-HCC, rather than invigorating or executing immune surveillance. We found similar phenotypic and functional profiles in hepatic CD8+PD1+ T cells from humans with NAFLD or NASH. A meta-analysis of three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that immune therapy did not improve survival in patients with non-viral HCC. In two additional cohorts, patients with NASH-driven HCC who received anti-PD1 or anti-PDL1 treatment showed reduced overall survival compared to patients with other aetiologies. Collectively, these data show that non-viral HCC, and particularly NASH-HCC, might be less responsive to immunotherapy, probably owing to NASH-related aberrant T cell activation causing tissue damage that leads to impaired immune surveillance. Our data provide a rationale for stratification of patients with HCC according to underlying aetiology in studies of immunotherapy as a primary or adjuvant treatment.
    DOI:  https://doi.org/10.1038/s41586-021-03362-0
  2. EMBO J. 2021 Mar 25. e106048
      Cellular senescence is characterized by an irreversible cell cycle arrest as well as a pro-inflammatory phenotype, thought to contribute to aging and age-related diseases. Neutrophils have essential roles in inflammatory responses; however, in certain contexts their abundance is associated with a number of age-related diseases, including liver disease. The relationship between neutrophils and cellular senescence is not well understood. Here, we show that telomeres in non-immune cells are highly susceptible to oxidative damage caused by neighboring neutrophils. Neutrophils cause telomere dysfunction both in vitro and ex vivo in a ROS-dependent manner. In a mouse model of acute liver injury, depletion of neutrophils reduces telomere dysfunction and senescence. Finally, we show that senescent cells mediate the recruitment of neutrophils to the aged liver and propose that this may be a mechanism by which senescence spreads to surrounding cells. Our results suggest that interventions that counteract neutrophil-induced senescence may be beneficial during aging and age-related disease.
    Keywords:  aging; neutrophils; senescence; telomeres
    DOI:  https://doi.org/10.15252/embj.2020106048
  3. Nat Metab. 2021 Mar;3(3): 394-409
      Both obesity and sarcopenia are frequently associated in ageing, and together may promote the progression of related conditions such as diabetes and frailty. However, little is known about the pathophysiological mechanisms underpinning this association. Here we show that systemic alanine metabolism is linked to glycaemic control. We find that expression of alanine aminotransferases is increased in the liver in mice with obesity and diabetes, as well as in humans with type 2 diabetes. Hepatocyte-selective silencing of both alanine aminotransferase enzymes in mice with obesity and diabetes retards hyperglycaemia and reverses skeletal muscle atrophy through restoration of skeletal muscle protein synthesis. Mechanistically, liver alanine catabolism driven by chronic glucocorticoid and glucagon signalling promotes hyperglycaemia and skeletal muscle wasting. We further provide evidence for amino acid-induced metabolic cross-talk between the liver and skeletal muscle in ex vivo experiments. Taken together, we reveal a metabolic inter-tissue cross-talk that links skeletal muscle atrophy and hyperglycaemia in type 2 diabetes.
    DOI:  https://doi.org/10.1038/s42255-021-00369-9
  4. Nat Metab. 2021 Mar;3(3): 410-427
      TFEB, a key regulator of lysosomal biogenesis and autophagy, is induced not only by nutritional deficiency but also by organelle stress. Here, we find that Tfeb and its downstream genes are upregulated together with lipofuscin accumulation in adipose tissue macrophages (ATMs) of obese mice or humans, suggestive of obesity-associated lysosomal dysfunction/stress in ATMs. Macrophage-specific TFEB-overexpressing mice display complete abrogation of diet-induced obesity, adipose tissue inflammation and insulin resistance, which is independent of autophagy, but dependent on TFEB-induced GDF15 expression. Palmitic acid induces Gdf15 expression through lysosomal Ca2+-mediated TFEB nuclear translocation in response to lysosomal stress. In contrast, mice fed a high-fat diet with macrophage-specific Tfeb deletion show aggravated adipose tissue inflammation and insulin resistance, accompanied by reduced GDF15 level. Finally, we observe activation of TFEB-GDF15 in ATMs of obese humans as a consequence of lysosomal stress. These findings highlight the importance of the TFEB-GDF15 axis as a lysosomal stress response in obesity or metabolic syndrome and as a promising therapeutic target for treatment of these conditions.
    DOI:  https://doi.org/10.1038/s42255-021-00368-w
  5. Autophagy. 2021 Mar 23.
      Mitochondria are the main cellular energy powerhouses and supply most of the energy in the form of ATP to fuel essential neuronal functions through oxidative phosphorylation (OXPHOS). In Alzheimer disease (AD), metabolic and mitochondrial disruptions are an early feature preceding any histopathological and clinical manifestations. Mitochondrial malfunction is also linked to synaptic defects in early AD. Mitophagy serves as a key cellular quality control mechanism involving sequestration of damaged mitochondria within autophagosomes and their subsequent degradation in lysosomes. However, it remains largely unknown whether mitophagy is involved in the regulation of energy metabolism in neurons, and if so, whether metabolic deficiency in AD is attributed to mitophagy dysfunction. Here we reveal that mitophagy is broadly activated in metabolically enhanced neurons upon OXPHOS stimulation, which sustains high energetic activity by increasing mitochondrial turnover and hence facilitating mitochondrial maintenance. Unexpectedly, in AD-related mutant HsAPP Tg mouse brains, early stimulation of OXPHOS activity fails to correct energy deficits but exacerbates synapse loss as a consequence of mitophagy failure. Excitingly, lysosomal enhancement in AD neurons restores impaired metabolic function by promoting elimination of damaged mitochondria, protecting against synaptic damage in AD mouse brains. Taken together, we propose a new mechanism by which mitophagy controls bioenergetic status in neurons, furthering our understanding of the direct impact of mitophagy defects on AD-linked metabolic deficits and shedding light on the development of novel therapeutic strategies to treat AD by the early stimulation of mitochondrial metabolism combined with elevation of lysosomal proteolytic activity.
    Keywords:  Alzheimer; bioenergetics; energy metabolism; lysosomal proteolysis; metabolic deficiency; mitochondrial stress; mitophagosome; neuronal mitophagy; retrograde transport; synapse loss
    DOI:  https://doi.org/10.1080/15548627.2021.1907167
  6. Mol Cell. 2021 Mar 17. pii: S1097-2765(21)00176-3. [Epub ahead of print]
      The metazoan-specific acetyltransferase p300/CBP is involved in activating signal-induced, enhancer-mediated transcription of cell-type-specific genes. However, the global kinetics and mechanisms of p300/CBP activity-dependent transcription activation remain poorly understood. We performed genome-wide, time-resolved analyses to show that enhancers and super-enhancers are dynamically activated through p300/CBP-catalyzed acetylation, deactivated by the opposing deacetylase activity, and kinetic acetylation directly contributes to maintaining cell identity at very rapid (minutes) timescales. The acetyltransferase activity is dispensable for the recruitment of p300/CBP and transcription factors but essential for promoting the recruitment of TFIID and RNAPII at virtually all enhancers and enhancer-regulated genes. This identifies pre-initiation complex assembly as a dynamically controlled step in the transcription cycle and reveals p300/CBP-catalyzed acetylation as the signal that specifically promotes transcription initiation at enhancer-regulated genes. We propose that p300/CBP activity uses a "recruit-and-release" mechanism to simultaneously promote RNAPII recruitment and pause release and thereby enables kinetic activation of enhancer-mediated transcription.
    Keywords:  BRD4; PIC assembly; TFIID; acetylation; bromodomain; deacetylases; enhancer; p300/CBP; pause release; super-enhancer
    DOI:  https://doi.org/10.1016/j.molcel.2021.03.008
  7. Cancer Lett. 2021 Mar 17. pii: S0304-3835(21)00120-8. [Epub ahead of print]507 97-111
      KRAS mutation is associated with the progression and growth of pancreatic cancer and contributes to chemo-resistance, which poses a significant clinical challenge in pancreatic cancer. Here, we developed a RT22-ep59 antibody (Ab) that directly targets the intracellularly activated GTP-bound form of oncogenic KRAS mutants after it is internalized into cytosol by endocytosis through tumor-associated receptor of extracellular epithelial cell adhesion molecule (EpCAM) and investigated its synergistic anticancer effects in the presence of gemcitabine in pancreatic cancer. We first observed that RT22-ep59 specifically recognized tumor-associated EpCAM and reached the cytosol by endosomal escape. In addition, the anticancer effect of RT22-ep59 was observed in the high-EpCAM-expressing pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells, but it had little effect on the low-EpCAM-expressing pancreatic cancer cells. Additionally, co-treatment with RT22-ep59 and gemcitabine synergistically inhibited cell viability, migration, and invasion in 3D-cultures and exhibited synergistic anticancer activity by inhibiting the RAF/ERK or PI3K/AKT pathways in cells with high-EpCAM expression. In an orthotopic mouse model, combined administration of RT22-ep59 and gemcitabine significantly inhibited tumor growth. Furthermore, the co-treatment suppressed cancer metastasis by blocking EMT signaling in vitro and in vivo. Our results demonstrated that RT22-ep59 synergistically increased the antitumor activity of gemcitabine by inhibiting RAS signaling by specifically targeting KRAS. This indicates that co-treatment with RT22-ep59 and gemcitabine might be considered a potential therapeutic strategy for pancreatic cancer patients harboring KRAS mutation.
    Keywords:  Endosomal escape; Gemcitabine; KRAS target antibody; Pancreatic cancer
    DOI:  https://doi.org/10.1016/j.canlet.2021.03.015
  8. Immunity. 2021 Mar 18. pii: S1074-7613(21)00086-8. [Epub ahead of print]
      Immune cells identify and destroy tumors by recognizing cellular traits indicative of oncogenic transformation. In this study, we found that myocardin-related transcription factors (MRTFs), which promote migration and metastatic invasion, also sensitize cancer cells to the immune system. Melanoma and breast cancer cells with high MRTF expression were selectively eliminated by cytotoxic lymphocytes in mouse models of metastasis. This immunosurveillance phenotype was further enhanced by treatment with immune checkpoint blockade (ICB) antibodies. We also observed that high MRTF signaling in human melanoma is associated with ICB efficacy in patients. Using biophysical and functional assays, we showed that MRTF overexpression rigidified the filamentous actin cytoskeleton and that this mechanical change rendered mouse and human cancer cells more vulnerable to cytotoxic T lymphocytes and natural killer cells. Collectively, these results suggest that immunosurveillance has a mechanical dimension, which we call mechanosurveillance, that is particularly relevant for the targeting of metastatic disease.
    Keywords:  NK cell; T cell; cancer immunology; checkpoint blockade therapy; cytotoxicity; immunosurveillance; mechanobiology; metastasis; myocardin related transcription factor
    DOI:  https://doi.org/10.1016/j.immuni.2021.02.020
  9. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2025197118. [Epub ahead of print]118(13):
      Foxp3+CD4+ regulatory T cells (Tregs) regulate most types of immune response as well as several processes important for tissue homeostasis, for example, metabolism and repair. Dedicated Treg compartments-with distinct transcriptomes, T cell receptor repertoires, and growth/survival factor dependencies-have been identified in several nonlymphoid tissues. These Tregs are specifically adapted to function and operate in their home tissue-When, where, and how do they take on their specialized characteristics? We recently reported that a splenic Treg population expressing low levels of the transcription factor PPARγ (peroxisome proliferator-activated receptor gamma) contains precursors of Tregs residing in visceral adipose tissue. This finding made sense given that PPARγ, the "master regulator" of adipocyte differentiation, is required for the accumulation and function of Tregs in visceral adipose tissue but not in lymphoid tissues. Here we use single-cell RNA sequencing, single-cell Tcra and Tcrb sequencing, and adoptive-transfer experiments to show that, unexpectedly, the splenic PPARγlo Treg population is transcriptionally heterogeneous and engenders Tregs in multiple nonlymphoid tissues beyond visceral adipose tissue, such as skin and liver. The existence of a general pool of splenic precursors for nonlymphoid-tissue Tregs opens possibilities for regulating their emergence experimentally or therapeutically.
    Keywords:  immunoregulation; precursor; single-cell RNA-seq; tissue Treg cell
    DOI:  https://doi.org/10.1073/pnas.2025197118
  10. Nat Commun. 2021 03 22. 12(1): 1808
      Mutational activation of KRAS promotes the initiation and progression of cancers, especially in the colorectum, pancreas, lung, and blood plasma, with varying prevalence of specific activating missense mutations. Although epidemiological studies connect specific alleles to clinical outcomes, the mechanisms underlying the distinct clinical characteristics of mutant KRAS alleles are unclear. Here, we analyze 13,492 samples from these four tumor types to examine allele- and tissue-specific genetic properties associated with oncogenic KRAS mutations. The prevalence of known mutagenic mechanisms partially explains the observed spectrum of KRAS activating mutations. However, there are substantial differences between the observed and predicted frequencies for many alleles, suggesting that biological selection underlies the tissue-specific frequencies of mutant alleles. Consistent with experimental studies that have identified distinct signaling properties associated with each mutant form of KRAS, our genetic analysis reveals that each KRAS allele is associated with a distinct tissue-specific comutation network. Moreover, we identify tissue-specific genetic dependencies associated with specific mutant KRAS alleles. Overall, this analysis demonstrates that the genetic interactions of oncogenic KRAS mutations are allele- and tissue-specific, underscoring the complexity that drives their clinical consequences.
    DOI:  https://doi.org/10.1038/s41467-021-22125-z
  11. Nat Rev Cancer. 2021 Mar 23.
      Autophagy is a regulated mechanism that removes unnecessary or dysfunctional cellular components and recycles metabolic substrates. In response to stress signals in the tumour microenvironment, the autophagy pathway is altered in tumour cells and immune cells - thereby differentially affecting tumour progression, immunity and therapy. In this Review, we summarize our current understanding of the immunologically associated roles and modes of action of the autophagy pathway in cancer progression and therapy, and discuss potential approaches targeting autophagy to enhance antitumour immunity and improve the efficacy of current cancer therapy.
    DOI:  https://doi.org/10.1038/s41568-021-00344-2
  12. Biophys Rev. 2021 Feb;13(1): 123-138
      Cell migration plays vital roles in many biologically relevant processes such as tissue morphogenesis and cancer metastasis, and it has fascinated biophysicists over the past several decades. However, despite an increasing number of studies highlighting the orchestration of proteins involved in different signaling pathways, the functional roles of lipid membranes have been essentially overlooked. Lipid membranes are generally considered to be a functionless two-dimensional matrix of proteins, although many proteins regulating cell migration gain functions only after they are recruited to the membrane surface and self-organize their functional domains. In this review, we summarize how the logistical recruitment and release of proteins to and from lipid membranes coordinates complex spatiotemporal molecular processes. As predicted from the classical framework of the Smoluchowski equation of diffusion, lipid/protein membranes serve as a 2D reaction hub that contributes to the effective and robust regulation of polarization and migration of cells involving several competing pathways.
    Keywords:  Cell adhesion; Cell migration; Cell polarization; Lipid membranes
    DOI:  https://doi.org/10.1007/s12551-021-00781-1
  13. Cell. 2021 Mar 19. pii: S0092-8674(21)00237-3. [Epub ahead of print]
      Metastasis is the leading cause of cancer-related deaths, and greater knowledge of the metastatic microenvironment is necessary to effectively target this process. Microenvironmental changes occur at distant sites prior to clinically detectable metastatic disease; however, the key niche regulatory signals during metastatic progression remain poorly characterized. Here, we identify a core immune suppression gene signature in pre-metastatic niche formation that is expressed predominantly by myeloid cells. We target this immune suppression program by utilizing genetically engineered myeloid cells (GEMys) to deliver IL-12 to modulate the metastatic microenvironment. Our data demonstrate that IL12-GEMy treatment reverses immune suppression in the pre-metastatic niche by activating antigen presentation and T cell activation, resulting in reduced metastatic and primary tumor burden and improved survival of tumor-bearing mice. We demonstrate that IL12-GEMys can functionally modulate the core program of immune suppression in the pre-metastatic niche to successfully rebalance the dysregulated metastatic microenvironment in cancer.
    Keywords:  T cells; cancer immunology; genetically engineered myeloid cells; immune suppression; immunotherapy; interleukin 12; metastasis tumor microenvironment; pre-metastatic niche; stem cell niche
    DOI:  https://doi.org/10.1016/j.cell.2021.02.048
  14. Elife. 2021 Mar 26. pii: e57964. [Epub ahead of print]10
      Tissue organization is often characterized by specific patterns of cell morphology. How such patterns emerge in developing tissues is a fundamental open question. Here, we investigate the emergence of tissue-scale patterns of cell shape and mechanical tissue stress in the Drosophila wing imaginal disc during larval development. Using quantitative analysis of the cellular dynamics, we reveal a pattern of radially oriented cell rearrangements that is coupled to the buildup of tangential cell elongation. Developing a laser ablation method, we map tissue stresses and extract key parameters of tissue mechanics. We present a continuum theory showing that this pattern of cell morphology and tissue stress can arise via self-organization of a mechanical feedback that couples cell polarity to active cell rearrangements. The predictions of this model are supported by knockdown of MyoVI, a component of mechanosensitive feedback. Our work reveals a mechanism for the emergence of cellular patterns in morphogenesis.
    Keywords:  D. melanogaster; developmental biology; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.57964
  15. Nature. 2021 Mar 24.
      Our knowledge of copy number evolution during the expansion of primary breast tumours is limited1,2. Here, to investigate this process, we developed a single-cell, single-molecule DNA-sequencing method and performed copy number analysis of 16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The results show that breast tumours and cell lines comprise a large milieu of subclones (7-22) that are organized into a few (3-5) major superclones. Evolutionary analysis suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and genome doubling, there was a period of transient genomic instability followed by ongoing copy number evolution during the primary tumour expansion. By subcloning single daughter cells in culture, we show that tumour cells rediversify their genomes and do not retain isogenic properties. These data show that triple-negative breast cancers continue to evolve chromosome aberrations and maintain a reservoir of subclonal diversity during primary tumour growth.
    DOI:  https://doi.org/10.1038/s41586-021-03357-x
  16. Cell Metab. 2021 Mar 23. pii: S1550-4131(21)00110-8. [Epub ahead of print]
      Mitochondria have an independent genome (mtDNA) and protein synthesis machinery that coordinately activate for mitochondrial generation. Here, we report that the Krebs cycle intermediate fumarate links metabolism to mitobiogenesis through binding to malic enzyme 2 (ME2). Mechanistically, fumarate binds ME2 with two complementary consequences. First, promoting the formation of ME2 dimers, which activate deoxyuridine 5'-triphosphate nucleotidohydrolase (DUT). DUT fosters thymidine generation and an increase of mtDNA. Second, fumarate-induced ME2 dimers abrogate ME2 monomer binding to mitochondrial ribosome protein L45, freeing it for mitoribosome assembly and mtDNA-encoded protein production. Methylation of the ME2-fumarate binding site by protein arginine methyltransferase-1 inhibits fumarate signaling to constrain mitobiogenesis. Notably, acute myeloid leukemia is highly dependent on mitochondrial function and is sensitive to targeting of the fumarate-ME2 axis. Therefore, mitobiogenesis can be manipulated in normal and malignant cells through ME2, an unanticipated governor of mitochondrial biomass production that senses nutrient availability through fumarate.
    Keywords:  acute myeloid leukemia; arginine methylation; deoxyuridine 5′-triphosphate nucleotidohydrolase; fumarate; malic enzyme 2; mitobiogenesis; mitochondrial ribosome; mitochondrial ribosome protein L45; protein arginine methyltransferase 1
    DOI:  https://doi.org/10.1016/j.cmet.2021.03.003
  17. Cell Metab. 2021 Mar 18. pii: S1550-4131(21)00114-5. [Epub ahead of print]
      There is general agreement that the acute suppression of hepatic glucose production by insulin is mediated by both a direct and an indirect effect on the liver. There is, however, no consensus regarding the relative magnitude of these effects under physiological conditions. Extensive research over the past three decades in humans and animal models has provided discordant results between these two modes of insulin action. Here, we review the field to make the case that physiologically direct hepatic insulin action dominates acute suppression of glucose production, but that there is also a delayed, second order regulation of this process via extrahepatic effects. We further provide our views regarding the timing, dominance, and physiological relevance of these effects and discuss novel concepts regarding insulin regulation of adipose tissue fatty acid metabolism and central nervous system (CNS) signaling to the liver, as regulators of insulin's extrahepatic effects on glucose production.
    Keywords:  central nervous system; free fatty acids; glucagon; glucose; hepatic; insulin; portal vein
    DOI:  https://doi.org/10.1016/j.cmet.2021.03.007
  18. Nature. 2021 Mar 24.
      Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.
    DOI:  https://doi.org/10.1038/s41586-021-03233-8
  19. Nat Rev Mol Cell Biol. 2021 Mar 23.
      Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
    DOI:  https://doi.org/10.1038/s41580-021-00350-0
  20. Semin Cell Dev Biol. 2021 Mar 20. pii: S1084-9521(21)00036-7. [Epub ahead of print]
      The nuclear envelope surrounds the eukaryotic genome and, through the nuclear pore complexes, regulates transport in and out of the nucleus. Correct nucleo-cytoplasm compartmentations are essential for nuclear functions such as DNA replication or repair. During metazoan mitosis, the nuclear envelope disintegrates to allow the segregation of the two copies of DNA between daughter cells. At the end of mitosis, it reforms on each group of chromosomes in the daughter cells. However, nuclear envelope reformation is delayed on lagging chromosomes and DNA bridges. Defects in the coordination between nuclear envelope reformation and chromosome segregation impair the nuclear functions. Mechanical stress to which micronuclei and DNA bridges are subjected to combined with their particular architecture and the altered nuclear functions result in DNA damage. While micronuclei and DNA bridges were considered for more than 100 years as mere indicators of chromosomal instability, rapid technological advances are helping to better understand the biological consequences of these aberrant nuclear morphologies. Recent studies provide interesting evidence that micronuclei and chromatin bridges act as a key platforms for a catastrophic mutational process observed in cancers called chromothripsis and a trigger for the innate immune response. Therefore, they could affect cellular functions by both genetic and non-genetic means.
    Keywords:  Chromothripsis; DNA bridge; DNA damage; Micronucleus; Nuclear envelope
    DOI:  https://doi.org/10.1016/j.semcdb.2021.03.004
  21. Elife. 2021 Mar 23. pii: e64251. [Epub ahead of print]10
      SHP2 is a protein tyrosine phosphatase that normally potentiates intracellular signaling by growth factors, antigen receptors, and some cytokines, yet is frequently mutated in human cancer. Here, we examine the role of SHP2 in the responses of breast cancer cells to EGF by monitoring phosphoproteome dynamics when SHP2 is allosterically inhibited by SHP099. The dynamics of phosphotyrosine abundance at more than 400 tyrosine residues reveal six distinct response signatures following SHP099 treatment and washout. Remarkably, in addition to newly identified substrate sites on proteins such as occludin, ARHGAP35, and PLCγ2, another class of sites shows reduced phosphotyrosine abundance upon SHP2 inhibition. Sites of decreased phospho-abundance are enriched on proteins with two nearby phosphotyrosine residues, which can be directly protected from dephosphorylation by the paired SH2 domains of SHP2 itself. These findings highlight the distinct roles of the scaffolding and catalytic activities of SHP2 in effecting a transmembrane signaling response.
    Keywords:  biochemistry; chemical biology; human
    DOI:  https://doi.org/10.7554/eLife.64251
  22. Nat Commun. 2021 Mar 26. 12(1): 1905
      Brown and beige adipose tissue are emerging as distinct endocrine organs. These tissues are functionally associated with skeletal muscle, adipose tissue metabolism and systemic energy expenditure, suggesting an interorgan signaling network. Using metabolomics, we identify 3-methyl-2-oxovaleric acid, 5-oxoproline, and β-hydroxyisobutyric acid as small molecule metabokines synthesized in browning adipocytes and secreted via monocarboxylate transporters. 3-methyl-2-oxovaleric acid, 5-oxoproline and β-hydroxyisobutyric acid induce a brown adipocyte-specific phenotype in white adipocytes and mitochondrial oxidative energy metabolism in skeletal myocytes both in vitro and in vivo. 3-methyl-2-oxovaleric acid and 5-oxoproline signal through cAMP-PKA-p38 MAPK and β-hydroxyisobutyric acid via mTOR. In humans, plasma and adipose tissue 3-methyl-2-oxovaleric acid, 5-oxoproline and β-hydroxyisobutyric acid concentrations correlate with markers of adipose browning and inversely associate with body mass index. These metabolites reduce adiposity, increase energy expenditure and improve glucose and insulin homeostasis in mouse models of obesity and diabetes. Our findings identify beige adipose-brown adipose-muscle physiological metabokine crosstalk.
    DOI:  https://doi.org/10.1038/s41467-021-22272-3
  23. iScience. 2021 Mar 19. 24(3): 102217
      Systemic metabolic homeostasis is regulated by inter-organ metabolic cycles involving multiple organs. Obesity impairs inter-organ metabolic cycles, resulting in metabolic diseases. The systemic landscape of dysregulated inter-organ metabolic cycles in obesity has yet to be explored. Here, we measured the transcriptome, proteome, and metabolome in the liver and skeletal muscle and the metabolome in blood of fasted wild-type and leptin-deficient obese (ob/ob) mice, identifying components with differential abundance and differential regulation in ob/ob mice. By constructing and evaluating the trans-omic network controlling the differences in metabolic reactions between fasted wild-type and ob/ob mice, we provided potential mechanisms of the obesity-associated dysfunctions of metabolic cycles between liver and skeletal muscle involving glucose-alanine, glucose-lactate, and ketone bodies. Our study revealed obesity-associated systemic pathological mechanisms of dysfunction of inter-organ metabolic cycles.
    Keywords:  Biological Sciences; Endocrinology; Metabolomics; Omics; Proteomics; Systems Biology; Transcriptomic
    DOI:  https://doi.org/10.1016/j.isci.2021.102217
  24. EMBO J. 2021 Mar 23. e105806
      PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENβ. Here, we report the identification of PTENε (also named as PTEN5), a novel N-terminal-extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5'UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.
    Keywords:  PTEN5; PTENε; alternative initiation; filopodia formation; metastasis
    DOI:  https://doi.org/10.15252/embj.2020105806
  25. Cancer Metab. 2021 Mar 24. 9(1): 12
      BACKGROUND: Fructose is an abundant source of carbon and energy for cells to use for metabolism, but only certain cell types use fructose to proliferate. Tumor cells that acquire the ability to metabolize fructose have a fitness advantage over their neighboring cells, but the proteins that mediate fructose metabolism in this context are unknown. Here, we investigated the determinants of fructose-mediated cell proliferation.METHODS: Live cell imaging and crystal violet assays were used to characterize the ability of several cell lines (RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, PC3, DLD1 HCT116, and 22RV1) to proliferate in fructose (i.e., the fructolytic ability). Fructose metabolism gene expression was determined by RT-qPCR and western blot for each cell line. A positive selection approach was used to "train" non-fructolytic PC3 cells to utilize fructose for proliferation. RNA-seq was performed on parental and trained PC3 cells to find key transcripts associated with fructolytic ability. A CRISPR-cas9 plasmid containing KHK-specific sgRNA was transfected in 293T cells to generate KHK-/- cells. Lentiviral transduction was used to overexpress empty vector, KHK, or GLUT5 in cells. Metabolic profiling was done with seahorse metabolic flux analysis as well as LC/MS metabolomics. Cell Titer Glo was used to determine cell sensitivity to 2-deoxyglucose in media containing either fructose or glucose.
    RESULTS: We found that neither the tissue of origin nor expression level of any single gene related to fructose catabolism determine the fructolytic ability. However, cells cultured chronically in fructose can develop fructolytic ability. SLC2A5, encoding the fructose transporter, GLUT5, was specifically upregulated in these cells. Overexpression of GLUT5 in non-fructolytic cells enabled growth in fructose-containing media across cells of different origins. GLUT5 permitted fructose to flux through glycolysis using hexokinase (HK) and not ketohexokinase (KHK).
    CONCLUSIONS: We show that GLUT5 is a robust and generalizable driver of fructose-dependent cell proliferation. This indicates that fructose uptake is the limiting factor for fructose-mediated cell proliferation. We further demonstrate that cellular proliferation with fructose is independent of KHK.
    Keywords:  Fructose; GLUT5 (SLC2A5); Hexokinase; Ketohexokinase; Metabolism
    DOI:  https://doi.org/10.1186/s40170-021-00246-9
  26. Ann Surg Oncol. 2021 Mar 21.
      INTRODUCTION: Neoadjuvant therapy (NAT) is a growing strategy for patients with resectable pancreatic ductal adenocarcinoma (PDAC). Elderly patients are at increased risk of treatment withdrawal due to functional decline, and the benefit of NAT in this cohort remains to be studied.OBJECTIVE: The objective of this study was to compare outcomes of elderly patients with resectable head PDAC who underwent NAT or a surgery-first (SF) approach.
    METHODS: All patients 75 years of age and older with radiographically resectable (National Comprehensive Cancer Network criteria) PDAC who underwent pancreaticoduodenectomy at a single institution from 2008 to 2017 were analyzed. Baseline characteristics and perioperative outcomes were compared between the SF and NAT cohorts. Recurrence-free survival and overall survival (OS) were analyzed by treatment strategy.
    RESULTS: Overall, 158 patients were identified: SF cohort = 90 (57%) and NAT cohort = 68 (43%). Patients in the SF cohort were older (80 vs. 78 years; p = 0.01) but there were no differences in preoperative comorbidities or frailty indices. SF patients had a trend toward higher rates of major complications (38% vs. 24%; p = 0.06) with higher Comprehensive Complication Index totals (20.9 vs. 20; p = 0.03). There were similar rates of adjuvant therapy. NAT was associated with significantly longer OS (24.6 vs. 17.6 months; p = 0.01) in both the intent-to-treat and resected cohorts. On multivariable analysis (MVA), NAT remained an independent predictor of OS (hazard ratio 0.60; p = 0.02).
    CONCLUSION: NAT is safe and effective for elderly patients with PDAC. This study suggests NAT is associated with fewer complications after surgery, equal rates of adjuvant therapy receipt, and increased OS over a surgery-first approach.
    DOI:  https://doi.org/10.1245/s10434-021-09822-1
  27. Cancer Lett. 2021 Mar 22. pii: S0304-3835(21)00121-X. [Epub ahead of print]
      Perineural invasion (PNI) is a common feature of pancreatic ductal adenocarcinoma (PDAC) and is one of the important causes of local recurrence in resected pancreatic cancer, but the molecular mechanism remains largely unexplored. Here, we used immunohistochemistry staining to determine the expression of CD74. Then the in vivo PNI model, in vitro neuroplasticity assay, cell proliferation assay, wound healing and Transwell-based invasion assay were performed to examine the function of CD74 in pancreatic cancer cell lines. ChIP assay and Luciferase reporter assay were used to illustrate the mechanism underlying CD74 induced GDNF expression. We confirmed that the expression level of CD74 was an independent predictor of PNI and poor prognosis for PDAC. Moreover, we found that upregulation of CD74 on PDAC enhanced its migration and invasive capabilities and potentiated the secretion of neurotrophic factor GDNF to promote the neuroplasticity. Mechanistically, CD74 promoted GDNF production via the AKT/EGR-1/GDNF axis in PDAC. Taken together, our findings suggest a supportive role of CD74 in the PNI of PDAC, and deepen our understanding of how cancer cells promote neuroplasticity in the microenvironment of PDAC.
    Keywords:  CD74; GDNF; Pancreatic cancer; Perineural invasion
    DOI:  https://doi.org/10.1016/j.canlet.2021.03.016
  28. Nat Rev Immunol. 2021 Mar 26.
      The FOXP3+CD4+ regulatory T (Treg) cells located in non-lymphoid tissues differ in phenotype and function from their lymphoid organ counterparts. Tissue Treg cells have distinct transcriptomes, T cell receptor repertoires and growth and survival factor dependencies that arm them to survive and operate in their home tissue. Their functions extend beyond immune surveillance to tissue homeostasis, including regulation of local and systemic metabolism, promotion of tissue repair and regeneration, and control of the proliferation, differentiation and fate of non-lymphoid cell progenitors. Treg cells in diverse tissues share a common FOXP3+CD4+ precursor located within lymphoid organs. This precursor undergoes definitive specialization once in the home tissue, following a multilayered array of common and tissue-distinct transcriptional programmes. Our deepening knowledge of tissue Treg cell biology will inform ongoing attempts to harness Treg cells for precision immunotherapeutics.
    DOI:  https://doi.org/10.1038/s41577-021-00519-w
  29. Mol Cell. 2021 Mar 19. pii: S1097-2765(21)00178-7. [Epub ahead of print]
      Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.
    Keywords:  MXD2; Protein translation; S6K1; WTAP; YTHDF readers; cMyc; eIF4A; m(6)A mRNA modification; mRNA stability; mTORC1
    DOI:  https://doi.org/10.1016/j.molcel.2021.03.010
  30. Nat Commun. 2021 03 23. 12(1): 1836
      To prevent damage to the host or its commensal microbiota, epithelial tissues must match the intensity of the immune response to the severity of a biological threat. Toll-like receptors allow epithelial cells to identify microbe associated molecular patterns. However, the mechanisms that mitigate biological noise in single cells to ensure quantitatively appropriate responses remain unclear. Here we address this question using single cell and single molecule approaches in mammary epithelial cells and primary organoids. We find that epithelial tissues respond to bacterial microbe associated molecular patterns by activating a subset of cells in an all-or-nothing (i.e. digital) manner. The maximum fraction of responsive cells is regulated by a bimodal epigenetic switch that licenses the TLR2 promoter for transcription across multiple generations. This mechanism confers a flexible memory of inflammatory events as well as unique spatio-temporal control of epithelial tissue-level immune responses. We propose that epigenetic licensing in individual cells allows for long-term, quantitative fine-tuning of population-level responses.
    DOI:  https://doi.org/10.1038/s41467-021-22070-x
  31. Front Physiol. 2021 ;12 604210
      Glutathione is an important antioxidant that regulates cellular redox status and is disordered in many disease states. Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase that plays a pivotal role in redox control by catalyzing reversible protein deglutathionylation. As oxidized glutathione (GSSG) can stimulate mitochondrial fusion, we hypothesized that Grx2 may contribute to the maintenance of mitochondrial dynamics and ultrastructure. Here, we demonstrate that Grx2 deletion results in decreased GSH:GSSG, with a marked increase of GSSG in primary muscle cells isolated from C57BL/6 Grx2-/- mice. The altered glutathione redox was accompanied by increased mitochondrial length, consistent with a more fused mitochondrial reticulum. Electron microscopy of Grx2-/- skeletal muscle fibers revealed decreased mitochondrial surface area, profoundly disordered ultrastructure, and the appearance of multi-lamellar structures. Immunoblot analysis revealed that autophagic flux was augmented in Grx2-/- muscle as demonstrated by an increase in the ratio of LC3II/I expression. These molecular changes resulted in impaired complex I respiration and complex IV activity, a smaller diameter of tibialis anterior muscle, and decreased body weight in Grx2 deficient mice. Together, these are the first results to show that Grx2 regulates skeletal muscle mitochondrial structure, and autophagy.
    Keywords:  autophagy; disulfide relay system; glutaredoxin 2; glutathione; mitochondria; mitochondrial dynamics
    DOI:  https://doi.org/10.3389/fphys.2021.604210
  32. Clin Res Hepatol Gastroenterol. 2021 Mar 23. pii: S2210-7401(21)00001-2. [Epub ahead of print]45(6): 101622
      Pancreatic ductal adenocarcinoma PDAC is considered as one of the less immunogenic solid tumor types. Pancreatic tumors are also known to present a high autophagy flux which supports tumor progression. Autophagy was recently described as a tumor-intrinsic immune escape process during tumor development by sequestration of Major Histocompatibility Complex class I (MHC-I) inside the PDAC cells. We comment this discovery and discuss the implications on how to limit immune escape in patients and how to improve immunotherapy efficiency. Currently, pancreatic adenocarcinoma is the most frequent pancreatic cancer with a poor prognosis, an important lethality, and a 5-year overall survival less than 5%. The development of some therapeutic solutions like targeted therapies are promising [1]. However, it is still important to understand this morbid pathology to improve the treatment, because PDAC is predicted to be the second leading cause of death in Western countries [2].
    DOI:  https://doi.org/10.1016/j.clinre.2021.101622
  33. JCI Insight. 2021 Mar 25. pii: 141532. [Epub ahead of print]
      BACKGROUND AND AIMS: Pancreatic cancer is one of the deadliest cancers, still with low long term survival rates. Despite recent advances in treatment, it is extremely important to screen high-risk individuals in order to establish preventive and early detection measures and, in some cases, molecular driven therapeutic options. Familial pancreatic cancer (FPC) accounts for 4%-10% of pancreatic cancers. Several germline mutations are known to be related with an increased risk and might offer novel screening and therapy options. In this study, our goal was to discover the identity of a familial pancreatic cancer gene in two members of a family with FPC.METHODS: Whole exome sequencing and PCR confirmation was performed on the surgical specimen and peripheral blood of an index patient and her sister in a family with high incidence of pancreatic cancer, to identify somatic and germline mutations associated with familial pancreatic cancer. Compartment-specific gene expression data and immunohistochemistry was used to characterize PALLD expression.
    RESULTS: A germline mutation of the PALLD gene (NM_001166108.1:c.G154A:p.D52N) was detected in the index patient with pancreatic cancer. The identical PALLD mutation was identified in the tumor tissue of her sister. Whole genome sequencing showed similar somatic mutation patterns between the two sisters. Apart from the PALLD mutation, commonly mutated genes that characterize PDAC (KRAS and CDKN2A) were found in both tumor samples. However, the two patients harbored different somatic KRAS mutations (respectively G12D in the index patient and G12V in the index patient's sister). Analysis for PALLD mutation in the healthy siblings of the two sisters was negative, indicating that the identified PALLD mutation might have a disease specific impact. Of note, compartment-specific gene expression data and IHC suggested a predominant role in cancer associated fibroblasts (CAFs).
    CONCLUSION: We identified a germline mutation of the palladin (PALLD) gene in two siblings in Europe, affected by familial pancreatic cancer, with a predominant function in the tumor stroma.
    Keywords:  Cancer; Gastroenterology; Molecular genetics; Oncology
    DOI:  https://doi.org/10.1172/jci.insight.141532
  34. Mol Cell. 2021 Mar 11. pii: S1097-2765(21)00168-4. [Epub ahead of print]
      Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC. Mechanistically, KDM4A inhibition promoted the formation of liquid-like HP1γ puncta on heterochromatin and stall DNA replication, which activated tumor-cell-intrinsic cGAS-STING signaling through replication-stress-induced cytosolic DNA accumulation. Moreover, KDM4A inhibition collaborated with PD1 blockade to inhibit SCC growth and metastasis by recruiting and activating CD8+ T cells. In vivo lineage tracing demonstrated that KDM4A inhibition plus PD1 blockade efficiently eliminated cancer stem cells. Altogether, our results demonstrate that targeting KDM4A can activate anti-tumor immunity and enable PD1 blockade immunotherapy by aggravating replication stress in SCC cells.
    Keywords:  DNA replication stress; H3K9me3; KDM4A; PD-1 blockade; Phase separation; cancer stem cells; head and neck squamous cell carcinoma; heterochromatin condensates; immune surveillance; metastasis
    DOI:  https://doi.org/10.1016/j.molcel.2021.02.038
  35. Clin Cancer Res. 2021 Mar 25. pii: clincanres.2345.2020. [Epub ahead of print]
      Nowadays there is a huge effort to develop cancer immunotherapeutics capable of combating cancer cells as well as the biological environment in which they can grow, adapt and survive. For such treatments to benefit more patients, there is a great need to dissect the complex interplays between tumor cells and the host's immune system. Monitoring mechanisms of resistance to immunotherapeutics, can delineate the evolution of key players capable of driving an efficacious anti-tumor immune response. In doing so, simultaneous and systematic interrogation of multiple biomarkers beyond single biomarker approaches needs to be undertaken. Zooming into cell-to-cell interactions using technological advancements with unprecedented cellular resolution such as single cell spatial transcriptomics, advanced tissue histology approaches and new molecular immune profiling tools, promises to provide a unique level of molecular granularity of the tumor environment and may support better decision making during drug development. This review will focus on how such technological tools are applied in clinical settings, to inform the underlying tumor-immune biology of patients and offer a deeper understanding of cancer immune responsiveness to immuno-oncology treatments.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-20-2345
  36. Aging (Albany NY). 2021 03 22. 13
      Aging impairs mitochondrial function that leads to greater cardiac injury during ischemia and reperfusion. Cardiac endoplasm reticulum (ER) stress increases with age and contributes to mitochondrial dysfunction. Metformin is an anti-diabetic drug that protects cardiac mitochondria during acute ER stress. We hypothesized that metformin treatment would improve preexisting mitochondrial dysfunction in aged hearts by attenuating ER stress, followed by a decrease in cardiac injury during subsequent ischemia and reperfusion. Male young (3 mo.) and aged mice (24 mo.) received metformin (300 mg/kg/day) dissolved in drinking water with sucrose (0.2 g/100 ml) as sweetener for two weeks versus sucrose vehicle alone. Cytosol, subsarcolemmal (SSM), and interfibrillar mitochondria (IFM) were isolated. In separate groups, cardioprotection was evaluated using ex vivo isolated heart perfusion with 25 min. global ischemia and 60 min. reperfusion. Infarct size was measured. The contents of CHOP and cleaved ATF6 were decreased in metformin-treated 24 mo. mice compared to vehicle, supporting a decrease in ER stress. Metformin treatment improved OXPHOS in IFM in 24 mo. using a complex I substrate. Metformin treatment decreased infarct size following ischemia-reperfusion. Thus, metformin feeding decreased cardiac injury in aged mice during ischemia-reperfusion by improving pre-ischemic mitochondrial function via inhibition of ER stress.
    Keywords:  electron transport chain; electron transport complex I; endoplasmic reticulum stress; mitochondrial permeability transition pore; myocardial infarction
    DOI:  https://doi.org/10.18632/aging.202858
  37. Nat Rev Mol Cell Biol. 2021 Mar 26.
      In animals, systemic control of metabolism is conducted by metabolic tissues and relies on the regulated circulation of a plethora of molecules, such as hormones and lipoprotein complexes. MicroRNAs (miRNAs) are a family of post-transcriptional gene repressors that are present throughout the animal kingdom and have been widely associated with the regulation of gene expression in various contexts, including virtually all aspects of systemic control of metabolism. Here we focus on glucose and lipid metabolism and review current knowledge of the role of miRNAs in their systemic regulation. We survey miRNA-mediated regulation of healthy metabolism as well as the contribution of miRNAs to metabolic dysfunction in disease, particularly diabetes, obesity and liver disease. Although most miRNAs act on the tissue they are produced in, it is now well established that miRNAs can also circulate in bodily fluids, including their intercellular transport by extracellular vesicles, and we discuss the role of such extracellular miRNAs in systemic metabolic control and as potential biomarkers of metabolic status and metabolic disease.
    DOI:  https://doi.org/10.1038/s41580-021-00354-w
  38. J Exp Med. 2021 Apr 05. pii: e20201730. [Epub ahead of print]218(4):
      In response to infection, T cells adopt a range of differentiation states, creating numerous heterogeneous subsets that exhibit different phenotypes, functions, and migration patterns. This T cell heterogeneity is a universal feature of T cell immunity, needed to effectively control pathogens in a context-dependent manner and generate long-lived immunity to those pathogens. Here, we review new insights into differentiation state dynamics and population heterogeneity of CD8+ T cells in acute and chronic viral infections and cancer and highlight the parallels and distinctions between acute and chronic antigen stimulation settings. We focus on transcriptional and epigenetic networks that modulate the plasticity and terminal differentiation of antigen-specific CD8+ T cells and generate functionally diverse T cell subsets with different roles to combat infection and cancer.
    DOI:  https://doi.org/10.1084/jem.20201730
  39. J Cell Biol. 2021 Jun 07. pii: e202007182. [Epub ahead of print]220(6):
      Ezrin, radixin, and moesin (ERM) family proteins regulate cytoskeletal responses by tethering the plasma membrane to the underlying actin cortex. Mutations in ERM proteins lead to severe combined immunodeficiency, but the function of these proteins in T cells remains poorly defined. Using mice in which T cells lack all ERM proteins, we demonstrate a selective role for these proteins in facilitating S1P-dependent egress from lymphoid organs. ERM-deficient T cells display defective S1P-induced migration in vitro, despite normal responses to standard protein chemokines. Analysis of these defects revealed that S1P promotes a fundamentally different mode of migration than chemokines, characterized by intracellular pressurization and bleb-based motility. ERM proteins facilitate this process, controlling directional migration by limiting blebbing to the leading edge. We propose that the distinct modes of motility induced by S1P and chemokines are specialized to allow T cell migration across lymphatic barriers and through tissue stroma, respectively.
    DOI:  https://doi.org/10.1083/jcb.202007182
  40. Nat Rev Cancer. 2021 Mar 09.
      Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.
    DOI:  https://doi.org/10.1038/s41568-021-00339-z
  41. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2008772118. [Epub ahead of print]118(13):
      Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform-containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.
    Keywords:  CRISPR; TERT; cancer; glioblastoma; temozolomide
    DOI:  https://doi.org/10.1073/pnas.2008772118
  42. J Exp Med. 2021 May 03. pii: e20200924. [Epub ahead of print]218(5):
      Mutations in IDH induce epigenetic and transcriptional reprogramming, differentiation bias, and susceptibility to mitochondrial inhibitors in cancer cells. Here, we first show that cell lines, PDXs, and patients with acute myeloid leukemia (AML) harboring an IDH mutation displayed an enhanced mitochondrial oxidative metabolism. Along with an increase in TCA cycle intermediates, this AML-specific metabolic behavior mechanistically occurred through the increase in electron transport chain complex I activity, mitochondrial respiration, and methylation-driven CEBPα-induced fatty acid β-oxidation of IDH1 mutant cells. While IDH1 mutant inhibitor reduced 2-HG oncometabolite and CEBPα methylation, it failed to reverse FAO and OxPHOS. These mitochondrial activities were maintained through the inhibition of Akt and enhanced activation of peroxisome proliferator-activated receptor-γ coactivator-1 PGC1α upon IDH1 mutant inhibitor. Accordingly, OxPHOS inhibitors improved anti-AML efficacy of IDH mutant inhibitors in vivo. This work provides a scientific rationale for combinatory mitochondrial-targeted therapies to treat IDH mutant AML patients, especially those unresponsive to or relapsing from IDH mutant inhibitors.
    DOI:  https://doi.org/10.1084/jem.20200924
  43. EMBO J. 2021 Mar 22. e107238
      Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.
    Keywords:  GOLPH3; Golgi; Trafficking; cisternal maturation; mTOR
    DOI:  https://doi.org/10.15252/embj.2020107238
  44. Front Cell Dev Biol. 2021 ;9 637084
      Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.
    Keywords:  aggregation; aging; amyloid; phase separation; protein homeostasis; protein quality control
    DOI:  https://doi.org/10.3389/fcell.2021.637084
  45. Sci Rep. 2021 Mar 22. 11(1): 6586
      Standardized pathological evaluation of the regression assessment of neoadjuvant pancreatic cancer is necessary to improve prognostication and compare treatment outcomes in clinical trials. However, appropriate tissue sampling from surgically resected pancreatic cancer after neoadjuvant therapy has not been elucidated. We compared the tumor regression scores in the largest cancer slide determined macroscopically or histologically. We reviewed all slides and macroscopic photos of cut surfaces from resected pancreas of patients treated with neoadjuvant chemotherapy (n = 137; chemoradiotherapy or chemotherapy). The tumor regression scores (the Evans, College of American Pathologists, Japanese Pancreas Society grading systems, and Area of Residual Tumor [ART] score) were evaluated for the largest tumor slide determined by macroscopy or histologically as well as all slides from the resected pancreas. The largest cancer slides determined macroscopically and histologically were discrepant in 26% of the cases. Cancer cells were not detected in the largest macroscopically defined cut slides in 3%. Only ART scores assessed in the largest histological slides displayed significant difference in overall survival. We recommend obtaining the largest histological slides to provide adequate assessment for regression of neoadjuvant-treated pancreatic cancer. Sufficient sampling to detect the largest histological slides would be mandatory.
    DOI:  https://doi.org/10.1038/s41598-021-86152-y
  46. FEBS J. 2021 Mar 23.
      From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption, and physical force. Here, we summarize the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
    Keywords:  calcium; energy; exercise; force; growth; hypertrophy; muscle
    DOI:  https://doi.org/10.1111/febs.15820
  47. J Biol Chem. 2021 Mar 17. pii: S0021-9258(21)00336-7. [Epub ahead of print] 100558
      Computational de novo protein design is increasingly applied to address a number of key challenges in biomedicine and biological engineering. Successes in expanding applications are driven by advances in design principles and methods over several decades. Here, we review recent innovations in major aspects of de novo protein design, and include how these advances were informed by principles of protein architecture and interactions derived from the wealth of structures in the PDB. We describe developments in de novo generation of designable backbone structures, in optimization of sequences, in design scoring functions, and in design of function. The advances not only highlight design goals reachable now but also point to the challenges and opportunities for the future of the field.
    DOI:  https://doi.org/10.1016/j.jbc.2021.100558
  48. Cancer Discov. 2021 Mar 26.
      Blocking autophagy in cancer cells triggered transcription factor NRF2 to induce macropinocytosis.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2021-045
  49. Nat Commun. 2021 03 09. 12(1): 1541
      Pancreatic ductal adenocarcinoma (PDAC) is characterized by marked desmoplasia and drug resistance due, in part, to poor drug delivery to extravascular tumor tissue. Here, we report that carcinoma-associated fibroblasts (CAFs) induce β5 integrin expression in tumor cells in a TGF-β dependent manner, making them an efficient drug delivery target for the tumor-penetrating peptide iRGD. The capacity of iRGD to deliver conjugated and co-injected payloads is markedly suppressed when β5 integrins are knocked out in the tumor cells. Of note, β5 integrin knock-out in tumor cells leads to reduced disease burden and prolonged survival of the mice, demonstrating its contribution to PDAC progression. iRGD significantly potentiates co-injected chemotherapy in KPC mice with high β5 integrin expression and may be a powerful strategy to target an aggressive PDAC subpopulation.
    DOI:  https://doi.org/10.1038/s41467-021-21858-1
  50. Cytoskeleton (Hoboken). 2021 Mar 22.
      Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases. This article is protected by copyright. All rights reserved.
    Keywords:  cell softness; extracellular vesicles; immune cells; stem cells; substrate stiffness; tumor metastasis
    DOI:  https://doi.org/10.1002/cm.21658
  51. Life Sci Alliance. 2021 06;pii: e202000903. [Epub ahead of print]4(6):
      Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter's major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression.
    DOI:  https://doi.org/10.26508/lsa.202000903
  52. Pancreatology. 2021 Mar 18. pii: S1424-3903(21)00100-9. [Epub ahead of print]
      BACKGROUND: Peritoneal metastasis is one of the most important poor prognostic factors in advanced pancreatic cancer (PC). Whether the prognosis of PC with peritoneal metastasis has improved with the advent of gemcitabine plus nab-paclitaxel (GnP) and modified FOLFIRINOX (mFFX) is uncertain. The aim of this study was to evaluate the improvements in treatment outcomes of PC with peritoneal metastasis.METHODS: We retrospectively investigated consecutive PC patients with peritoneal metastasis treated with chemotherapy at our institution between 2010 and 2019. We compared the clinical characteristics and survival outcomes according to the period of diagnosis (group A, 2010-2014; group B, 2015-2019) and chemotherapy regimen. We also examined the prognostic factors for overall survival (OS).
    RESULTS: Among 180 patients included (GnP 88; mFFX 14; other regimens 78), distant metastasis was confined to the peritoneum in 89 patients. Although group B had a worse performance status compared to group A, median OS was significantly longer in group B. GnP and mFFX showed a significantly higher objective response rate and disease control rate in addition to longer progression free survival and OS compared to other regimens. The administration of GnP or mFFX, performance status, and neutrophil to lymphocyte ratio ≥5 were identified as independent prognostic factors for OS. Furthermore, the amount of ascites and extent of peritoneal metastasis were significantly associated with OS in patients with distant metastasis confined to the peritoneum.
    CONCLUSIONS: The prognosis of PC with peritoneal metastasis has significantly improved over time with the advent of GnP and mFFX.
    Keywords:  Ascites; Chemotherapy; Pancreatic cancer; Peritoneal metastasis; Prognosis
    DOI:  https://doi.org/10.1016/j.pan.2021.03.006
  53. Trends Cell Biol. 2021 Mar 23. pii: S0962-8924(21)00047-7. [Epub ahead of print]
      Phase separation is emerging as a paradigm to explain the self-assembly and organization of membraneless bodies in the cell. Recent advances show that this principle also extends to nucleoprotein complexes, including DNA-based structures. We discuss here recent observations on the role of phase separation in genome organization across the evolutionary spectrum from bacteria to mammals. These findings suggest that molecular interactions amongst DNA-binding proteins evolved to form a variety of biomolecular condensates with distinct material properties that affect genome organization and function. We suggest that phase separation contributes to genome organization across evolution and that the resulting phase behavior of genomes may underlie regulatory mechanisms and disease.
    Keywords:  biomolecular condensates; evolution; genome organization; phase separation; transcription
    DOI:  https://doi.org/10.1016/j.tcb.2021.03.001
  54. Mol Cell. 2021 Mar 17. pii: S1097-2765(21)00177-5. [Epub ahead of print]
      The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.
    Keywords:  Cell growth; MAT2A; Methionine cycle; N(6)-methyladenosine; Protein Synthesis; RNA metabolism; S-adenosylmethionine; WTAP; mTOR; mTORC1
    DOI:  https://doi.org/10.1016/j.molcel.2021.03.009
  55. Cancer Res. 2021 Mar 22. pii: canres.2870.2020. [Epub ahead of print]
      Neutrophils are the most abundant circulating leucocytes and are essential for innate immunity. In cancer, pro- or anti-tumor properties have been attributed to tumor-associated neutrophils (TAN). Here, focusing on TAN accumulation within lung tumors, we identify Glut1 as an essential glucose transporter for their tumor supportive behavior. Compared to normal neutrophils, Glut1 and glucose metabolism increased in TANs from a mouse model of lung adenocarcinoma. To elucidate the impact of glucose uptake on TANs, we used a strategy with two recombinases, dissociating tumor initiation from neutrophil-specific Glut1 deletion. Loss of Glut1 accelerated neutrophil turnover in tumors and reduced a subset of TANs expressing SiglecF. In the absence of Glut1 expression by TANs, tumor growth was diminished and the efficacy of radiotherapy was augmented. Our results demonstrate the importance of Glut1 in TANs, which may affect their pro- versus anti-tumor behavior. These results also suggest targeting metabolic vulnerabilities to favor anti-tumor neutrophils.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-20-2870
  56. Nat Rev Genet. 2021 Mar 24.
      Technological innovation and rapid reduction in sequencing costs have enabled the genomic profiling of hundreds of cancer-associated genes as a component of routine cancer care. Tumour genomic profiling can refine cancer subtype classification, identify which patients are most likely to benefit from systemic therapies and screen for germline variants that influence heritable cancer risk. Here, we discuss ongoing efforts to enhance the clinical utility of tumour genomic profiling by integrating tumour and germline analyses, characterizing allelic context and identifying mutational signatures that influence therapy response. We also discuss the potential clinical utility of more comprehensive whole-genome and whole-transcriptome sequencing and ultra-sensitive cell-free DNA profiling platforms, which allow for minimally invasive, serial analyses of tumour-derived DNA in blood.
    DOI:  https://doi.org/10.1038/s41576-021-00338-8
  57. J Cell Sci. 2021 Mar 26. pii: jcs244749. [Epub ahead of print]134(6):
      Eukaryotic nucleosomes organize chromatin by wrapping 147 bp of DNA around a histone core particle comprising two molecules each of histone H2A, H2B, H3 and H4. The DNA entering and exiting the particle may be bound by the linker histone H1. Whereas deposition of bulk histones is confined to S-phase, paralogs of the common histones, known as histone variants, are available to carry out functions throughout the cell cycle and accumulate in post-mitotic cells. Histone variants confer different structural properties on nucleosomes by wrapping more or less DNA or by altering nucleosome stability. They carry out specialized functions in DNA repair, chromosome segregation and regulation of transcription initiation, or perform tissue-specific roles. In this Cell Science at a Glance article and the accompanying poster, we briefly examine new insights into histone origins and discuss variants from each of the histone families, focusing on how structural differences may alter their functions.
    Keywords:  Chromatin; Epigenetics; Replacement histones
    DOI:  https://doi.org/10.1242/jcs.244749
  58. FASEB J. 2021 Apr;35(4): e21278
      Mitochondria share attributes of vesicular transport with their bacterial ancestors given their ability to form mitochondrial-derived vesicles (MDVs). MDVs are involved in mitochondrial quality control and their formation is enhanced with stress and may, therefore, play a potential role in mitochondrial-cellular communication. However, MDV proteomic cargo has remained mostly undefined. In this study, we strategically used an in vitro MDV budding/reconstitution assay on cardiac mitochondria, followed by graded oxidative stress, to identify and characterize the MDV proteome. Our results confirmed previously identified cardiac MDV markers, while also revealing a complete map of the MDV proteome, paving the way to a better understanding of the role of MDVs. The oxidative stress vulnerability of proteins directed the cargo loading of MDVs, which was enhanced by antimycin A (Ant-A). Among OXPHOS complexes, complexes III and V were found to be Ant-A-sensitive. Proteins from metabolic pathways such as the TCA cycle and fatty acid metabolism, along with Fe-S cluster, antioxidant response proteins, and autophagy were also found to be Ant-A sensitive. Intriguingly, proteins containing hyper-reactive cysteine residues, metabolic redox switches, including professional redox enzymes and those that mediate iron metabolism, were found to be components of MDV cargo with Ant-A sensitivity. Last, we revealed a possible contribution of MDVs to the formation of extracellular vesicles, which may indicate mitochondrial stress. In conclusion, our study provides an MDV proteomics signature that delineates MDV cargo selectivity and hints at the potential for MDVs and their novel protein cargo to serve as vital biomarkers during mitochondrial stress and related pathologies.
    Keywords:  hyper-reactive cysteine residues; mitochondrial iron transport; mitochondrial quality control; mitochondrial stress; mitochondrial-derived vesicle proteome
    DOI:  https://doi.org/10.1096/fj.202002151R
  59. Mol Cell. 2021 Mar 11. pii: S1097-2765(21)00167-2. [Epub ahead of print]
      The conserved Gcn2 protein kinase mediates cellular adaptations to amino acid limitation through translational control of gene expression that is exclusively executed by phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α). Using quantitative phosphoproteomics, however, we discovered that Gcn2 targets auxiliary effectors to modulate translation. Accordingly, Gcn2 also phosphorylates the β-subunit of the trimeric eIF2 G protein complex to promote its association with eIF5, which prevents spontaneous nucleotide exchange on eIF2 and thereby restricts the recycling of the initiator methionyl-tRNA-bound eIF2-GDP ternary complex in amino-acid-starved cells. This mechanism contributes to the inhibition of translation initiation in parallel to the sequestration of the nucleotide exchange factor eIF2B by phosphorylated eIF2α. Gcn2 further phosphorylates Gcn20 to antagonize, in an inhibitory feedback loop, the formation of the Gcn2-stimulatory Gcn1-Gcn20 complex. Thus, Gcn2 plays a substantially more intricate role in controlling translation initiation than hitherto appreciated.
    Keywords:  Gcn2; Gcn20; TORC1; amino acid starvation; eIF2; eIF5; eukaryotic initiation factor 2; eukaryotic initiation factor 5; general control nonderepressible 2; target of rapamycin complex 1; translation initiation
    DOI:  https://doi.org/10.1016/j.molcel.2021.02.037
  60. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2101618118. [Epub ahead of print]118(13):
      Protein stability affects the physiological functions of proteins and is also a desirable trait in many protein engineering tasks, yet improving protein stability is challenging because of limitations in methods for directly monitoring protein stability in cells. Here, we report an in vivo stability biosensor wherein a protein of interest (POI) is inserted into a microbial enzyme (CysGA) that catalyzes the formation of endogenous fluorescent compounds, thereby coupling POI stability to simple fluorescence readouts. We demonstrate the utility of the biosensor in directed evolution to obtain stabilized, less aggregation-prone variants of two POIs (including nonamyloidogenic variants of human islet amyloid polypeptide). Beyond engineering applications, we exploited our biosensor in deep mutational scanning for experimental delineation of the stability-related contributions of all residues throughout the catalytic domain of a histone H3K4 methyltransferase, thereby revealing its scientifically informative stability landscape. Thus, our highly accessible method for in vivo monitoring of the stability of diverse proteins will facilitate both basic research and applied protein engineering efforts.
    Keywords:  biosensor; deep mutational scanning; protein engineering; protein stability
    DOI:  https://doi.org/10.1073/pnas.2101618118
  61. Nat Commun. 2021 Mar 26. 12(1): 1916
      Multiphoton microscopy is a powerful technique for deep in vivo imaging in scattering samples. However, it requires precise, sample-dependent increases in excitation power with depth in order to generate contrast in scattering tissue, while minimizing photobleaching and phototoxicity. We show here how adaptive imaging can optimize illumination power at each point in a 3D volume as a function of the sample's shape, without the need for specialized fluorescent labeling. Our method relies on training a physics-based machine learning model using cells with identical fluorescent labels imaged in situ. We use this technique for in vivo imaging of immune responses in mouse lymph nodes following vaccination. We achieve visualization of physiologically realistic numbers of antigen-specific T cells (~2 orders of magnitude lower than previous studies), and demonstrate changes in the global organization and motility of dendritic cell networks during the early stages of the immune response. We provide a step-by-step tutorial for implementing this technique using exclusively open-source hardware and software.
    DOI:  https://doi.org/10.1038/s41467-021-22246-5
  62. Cell Death Dis. 2021 Mar 23. 12(4): 309
      Although autophagy is a type of programmed cell death, it is also essential for cell survival upon tolerable level of various stress events. For the cell to respond adequately to an external and/or internal stimulus induced by cellular stress, autophagy must be controlled in a highly regulated manner. By using systems biology techniques, here we explore the dynamical features of autophagy induction. We propose that the switch-like characteristic of autophagy induction is achieved by a control network, containing essential feedback loops of four components, so-called autophagy inducer, autophagy controller, mTORC1 and autophagy executor, respectively. We show how an autophagy inducer is capable to turn on autophagy in a cellular stress-specific way. The autophagy controller acts as a molecular switch and not only promotes autophagy but also blocks the permanent hyperactivation of the process via downregulating the autophagy inducer. In this theoretical analysis, we explore in detail the properties of all four proposed controlling elements and their connections. Here we also prove that the kinetic features of this control network can be considered accurate in various stress processes (such as starvation, endoplasmic reticulum stress and oxidative stress), even if the exact components may be different. The robust response of the resulting control network is essential during cellular stress.
    DOI:  https://doi.org/10.1038/s41419-021-03599-7
  63. Ageing Res Rev. 2021 Mar 17. pii: S1568-1637(21)00067-2. [Epub ahead of print] 101320
      Telomeres are protective structures, composed of nucleic acids and a complex protein mixture, located at the end of the chromosomes. They play an important role in preventing genomic instability and ensuring cell health. Defects in telomere integrity result in cell dysfunction and the development of diseases, including neurodegenerative disorders, cancer and premature aging syndromes, among others. Loss of telomere integrity during normal cell aging also initiates DNA damage signals that culminate in the senescence phenotype. Fluorescence microscopy has allowed researchers to study the dynamics, shape, localization, and co-distribution of telomeres with proteins of interest. The microscopy tools to investigate these structures have evolved, making it possible to understand in greater detail the molecular mechanisms affecting telomeres that contribute to cell aging and the development of age-related diseases. Using human fibroblasts as an example, we will highlight several characteristics of telomeres that can be investigated using three different microscopy systems, including wide-field microscopy, and the two super-resolution techniques called 3D Structured Illumination Microscopy (3D-SIM) and direct Stochastic Optical Reconstruction Microscopy (dSTORM). In this review, we will also discuss their limitations and highlight their importance in answering telomere-related scientific questions.
    Keywords:  fluorescence microscopy; senescence; super-resolution microscopy; telomere biology
    DOI:  https://doi.org/10.1016/j.arr.2021.101320
  64. Sci Rep. 2021 Mar 23. 11(1): 6596
      The major lysosomal proteases, Cathepsin B (CTSB), Cathepsin D (CTSD) and Cathepsin L (CTSL), are implicated in autophagic activity. To investigate the role of each cathepsin in the exocrine pancreas, we generated mice in which the pancreas was specifically deficient in Ctsb, Ctsd and Ctsl. Each of these gene knockout (KO) and Ctsb;Ctsl and Ctsd;Ctsl double-knockout (DKO) mice were almost normal. However, we found cytoplasmic degeneration in the pancreatic acinar cells of Ctsb;Ctsd DKO mice, similar to autophagy related 5 (Atg5) KO mice. LC3 and p62 (autophagy markers) showed remarkable accumulation and the numbers of autophagosomes and autolysosomes were increased in the pancreatic acinar cells of Ctsb;Ctsd DKO mice. Moreover, these Ctsb;Ctsd DKO mice also developed chronic pancreatitis (CP). Thus, we conclude that both Ctsb and Ctsd deficiency caused impaired autophagy in the pancreatic acinar cells, and induced CP in mice.
    DOI:  https://doi.org/10.1038/s41598-021-85898-9
  65. J Natl Cancer Inst. 2021 Mar 23. pii: djab038. [Epub ahead of print]
      BACKGROUND: Recent evidence suggests a rising incidence of cancer in younger individuals. Herein, we report the epidemiologic, pathologic, and molecular characteristics of a patient cohort with early-onset pancreas cancer (EOPC).METHODS: Institutional databases were queried for demographics, treatment history, genomic results and outcomes. Overall survival (OS) from date of diagnosis was estimated using Kaplan-Meier method.
    RESULTS: Four hundred and fifty patients with EOPC were identified at Memorial Sloan Kettering between 2008 and 2018. Median OS was 16.3 months (95% confidence interval [CI] = 14.6 to 17.7 months) in the entire cohort and 11.3 months (95% CI = 10.2 to 12.2 months) for patients with stage IV disease at diagnosis. One hundred and thirty-two (29.3% of the cohort) underwent somatic testing; 21 of 132 (15.9%) had RAS wild-type cancers with identification of several actionable alterations, including ETV6-NTRK3, TPR-NTRK1, SCLA5-NRG1 and ATP1B1-NRG1 fusions, IDH1 R132C mutation, and mismatch repair deficiency. One hundred and thirty-eight (30.7% of the cohort) underwent germline testing; 44 of 138 (31.9%) had a pathogenic germline variant (PGV) and 27.5% harbored alterations in cancer susceptibility genes. Of patients seen between 2015 and 2018, 30 of 193 (15.5%) had a pathogenic germline variant. Among 138 who underwent germline testing, those with a PGV had a reduced all-cause mortality compared to patients without a PGV controlling for stage and year of diagnosis (hazard ratio = 0.42, 95%CI = 0.26 to 0.69).
    CONCLUSIONS: PGVs are present in a substantial minority of patients with EOPC. Actionable somatic alterations were identified frequently in EOPC, enriched in the RAS wild-type subgroup. These observations underpin the recent guidelines for universal germline testing and somatic profiling in pancreatic ductal adenocarcinoma.
    DOI:  https://doi.org/10.1093/jnci/djab038
  66. Cell Death Differ. 2021 Mar 24.
      Maintenance of the pancreatic acinar cell phenotype suppresses tumor formation. Hence, repetitive acute or chronic pancreatitis, stress conditions in which the acinar cells dedifferentiate, predispose for cancer formation in the pancreas. Dedifferentiated acinar cells acquire a large panel of duct cell-specific markers. However, it remains unclear to what extent dedifferentiated acini differ from native duct cells and which genes are uniquely regulating acinar cell dedifferentiation. Moreover, most studies have been performed on mice since the availability of human cells is scarce. Here, we applied a non-genetic lineage tracing method of human pancreatic exocrine acinar and duct cells that allowed cell-type-specific gene expression profiling by RNA sequencing. Subsequent to this discovery analysis, one transcription factor that was unique for dedifferentiated acinar cells was functionally characterized. RNA sequencing analysis showed that human dedifferentiated acinar cells expressed genes in "Pathways of cancer" with a prominence of MECOM (EVI-1), a transcription factor that was not expressed by duct cells. During mouse embryonic development, pre-acinar cells also transiently expressed MECOM and in the adult mouse pancreas, MECOM was re-expressed when mice were subjected to acute and chronic pancreatitis, conditions in which acinar cells dedifferentiate. In human cells and in mice, MECOM expression correlated with and was directly regulated by SOX9. Mouse acinar cells that, by genetic manipulation, lose the ability to upregulate MECOM showed impaired cell adhesion, more prominent acinar cell death, and suppressed acinar cell dedifferentiation by limited ERK signaling. In conclusion, we transcriptionally profiled the two major human pancreatic exocrine cell types, acinar and duct cells, during experimental stress conditions. We provide insights that in dedifferentiated acinar cells, cancer pathways are upregulated in which MECOM is a critical regulator that suppresses acinar cell death by permitting cellular dedifferentiation.
    DOI:  https://doi.org/10.1038/s41418-021-00771-6
  67. Aging (Albany NY). 2021 Mar 23.
      
    Keywords:  aggregates; cancer; lipid droplets; mitochondria; protein homeostasis
    DOI:  https://doi.org/10.18632/aging.202883
  68. Front Cell Dev Biol. 2021 ;9 649265
      Aberrant regulation of angiogenesis involves in the growth and metastasis of tumors, but angiogenesis inhibitors fail to improve overall survival of pancreatic cancer patients in previous phase III clinical trials. A comprehensive knowledge of the mechanism of angiogenesis inhibitors against pancreatic cancer is helpful for clinical purpose and for the selection of patients who might benefit from the inhibitors. In this work, multi-omics analyses (transcriptomics, proteomics, and phosphoproteomics profiling) were carried out to delineate the mechanism of anlotinib, a novel angiogenesis inhibitor, against pancreatic cancer cells. The results showed that anlotinib exerted noteworthy cytotoxicity on pancreatic cancer cells. Multi-omics analyses revealed that anlotinib had a profound inhibitory effect on ribosome, and regulated cell cycle, RNA metabolism and lysosome. Based on the multi-omics results and available data deposited in public databases, an anlotinib-related gene signature was further constructed to identify a subgroup of pancreatic cancer patients who had a dismal prognosis and might be responsive to anlotinib.
    Keywords:  anlotinib; ingenuity pathway analysis; pancreatic cancer; phosphoproteomics; proteomics; transcriptomics
    DOI:  https://doi.org/10.3389/fcell.2021.649265
  69. Ann Surg Treat Res. 2021 Mar;100(3): 144-153
      Purpose: Diagnostic biomarkers of pancreatic ductal adenocarcinoma (PDAC) have been used for early detection to reduce its dismal survival rate. However, clinically feasible biomarkers are still rare. Therefore, in this study, we developed an automated multi-marker enzyme-linked immunosorbent assay (ELISA) kit using 3 biomarkers (leucine-rich alpha-2-glycoprotein [LRG1], transthyretin [TTR], and CA 19-9) that were previously discovered and proposed a diagnostic model for PDAC based on this kit for clinical usage.Methods: Individual LRG1, TTR, and CA 19-9 panels were combined into a single automated ELISA panel and tested on 728 plasma samples, including PDAC (n = 381) and normal samples (n = 347). The consistency between individual panels of 3 biomarkers and the automated multi-panel ELISA kit were accessed by correlation. The diagnostic model was developed using logistic regression according to the automated ELISA kit to predict the risk of pancreatic cancer (high-, intermediate-, and low-risk groups).
    Results: The Pearson correlation coefficient of predicted values between the triple-marker automated ELISA panel and the former individual ELISA was 0.865. The proposed model provided reliable prediction results with a positive predictive value of 92.05%, negative predictive value of 90.69%, specificity of 90.69%, and sensitivity of 92.05%, which all simultaneously exceed 90% cutoff value.
    Conclusion: This diagnostic model based on the triple ELISA kit showed better diagnostic performance than previous markers for PDAC. In the future, it needs external validation to be used in the clinic.
    Keywords:  Biomarkers; Enzyme-linked immunosorbent assay; Pancreatic intraductal neoplasms
    DOI:  https://doi.org/10.4174/astr.2021.100.3.144
  70. J Med Chem. 2021 Mar 26.
      Autophagy is the common name for a number of lysosome-based degradation pathways of cytosolic cargos. The key components of autophagy are members of Atg8 family proteins involved in almost all steps of the process, from autophagosome formation to their selective fusion with lysosomes. In this study, we show that the homologous members of the human Atg8 family proteins, LC3A and LC3B, are druggable by a small molecule inhibitor novobiocin. Structure-activity relationship (SAR) studies of the 4-hydroxy coumarin core scaffold were performed, supported by a crystal structure of the LC3A dihydronovobiocin complex. The study reports the first nonpeptide inhibitors for these protein interaction targets and will lay the foundation for the development of more potent chemical probes for the Atg8 protein family which may also find applications for the development of autophagy-mediated degraders (AUTACs).
    DOI:  https://doi.org/10.1021/acs.jmedchem.0c01564
  71. Onco Targets Ther. 2021 ;14 1953-1959
      Background: During cancer cachexia, both skeletal muscle and adipose tissue losses take place. The use of β2-agonists, formoterol in particular, has proven to be very successful in the treatment of the syndrome in pre-clinical models. The object of the present research was to study the effects of a combination of formoterol and dantrolene, an inhibitor of the ryanodine receptor 1 (RyR1), on body weight loss and cachexia in tumour-bearing animals.Methods: Rats were separated into two groups: controls (C) and tumour bearing (TB). TB group was further subdivided into four groups: untreated (saline as a vehicle), treated with Formoterol (TF) (0,3 mg/kg body weight in saline, subcutaneous (s.c.), daily), treated with Dantrolene (TD) (5 mg/kg body weight in saline, subcutaneous (s.c.), daily), and double-treated treated (TFD) with Formoterol (0,3 mg/kg body weight, subcutaneous (s.c.), daily) and Dantrolene (5 mg/kg body weight, subcutaneous (s.c.), daily). 7 days after tumour transplantation, muscle weight, grip force, and total physical activity were specified in all experimental groups.
    Results: While formoterol had, as in previous studies, a very positive effect in reducing muscle weight loss, dantrolene had no effects, neither on skeletal muscle nor on any of the parameters studied. Finally, the combined treatment (formoterol and dantrolene) did not result in any significant benefit on the action of the β2-agonist.
    Conclusion: It is concluded that, in the preclinical cachectic model used, no synergy exists between β2-agonist treatment and the blockade of sarcoplasmic-calcium flow.
    Keywords:  calcium; cancer cachexia; dantrolene; formoterol; ryanodine receptor 1; skeletal muscle
    DOI:  https://doi.org/10.2147/OTT.S293834
  72. Br J Cancer. 2021 Mar 25.
      BACKGROUND: Recent studies have emphasised the important role of amino acids in cancer metabolism. Cold physical plasma is an evolving technology employed to target tumour cells by introducing reactive oxygen species (ROS). However, limited understanding is available on the role of metabolic reprogramming in tumour cells fostering or reducing plasma-induced cancer cell death.METHODS: The utilisation and impact of major metabolic substrates of fatty acid, amino acid and TCA pathways were investigated in several tumour cell lines following plasma exposure by qPCR, immunoblotting and cell death analysis.
    RESULTS: Metabolic substrates were utilised in Panc-1 and HeLa but not in OVCAR3 and SK-MEL-28 cells following plasma treatment. Among the key genes governing these pathways, ASCT2 and SLC3A2 were consistently upregulated in Panc-1, Miapaca2GR, HeLa and MeWo cells. siRNA-mediated knockdown of ASCT2, glutamine depletion and pharmacological inhibition with V9302 sensitised HeLa cells to the plasma-induced cell death. Exogenous supplementation of glutamine, valine or tyrosine led to improved metabolism and viability of tumour cells following plasma treatment.
    CONCLUSION: These data suggest the amino acid influx driving metabolic reprogramming in tumour cells exposed to physical plasma, governing the extent of cell death. This pathway could be targeted in combination with existing anti-tumour agents.
    DOI:  https://doi.org/10.1038/s41416-021-01335-8
  73. STAR Protoc. 2021 Mar 19. 2(1): 100383
      Here, we present a protocol to analyze de novo genetic variants derived from the whole-exome sequencing (WES) of proband-parent trios. We provide stepwise instructions for using existing pipelines to call de novo mutations (DNMs) and determine whether the observed number of such mutations is enriched relative to the expected number. This protocol may be extended to any human disease trio-based cohort. Cohort size is a limiting determinant to the discovery of high-confidence pathogenic DNMs. For complete details on the use and execution of this protocol, please refer to Dong et al. (2020).
    Keywords:  Bioinformatics; Genetics; Genomics; High-throughput screening; Sequence analysis; Sequencing
    DOI:  https://doi.org/10.1016/j.xpro.2021.100383
  74. Histol Histopathol. 2021 Mar 26. 18332
      BACKGROUND: Tumor regression grading (TRG) based on histopathology is the main tool to assess therapy effects after neoadjuvant therapy (NAT) of pancreatic ductal adenocarcinoma (PDAC). However, reliable markers to distinguish therapy effects from pre-existing tumor features are lacking. The aim of this study was the characterization of PDAC after NAT, focusing on the stroma.MATERIAL AND METHODS: Tissue samples from patients resected for PDAC after NAT (n=27) were analyzed. TRG was assessed using the Royal North Shore (RNS) system. Stromal composition was evaluated by Movat's stain. Immunohistochemistry (IH) for Ki-67 and five previously established stroma markers (alpha Crystallin B, alpha-Smooth muscle actin (alpha SMA), Neurotrophin 3 (NT 3), SPARC and Tenascin C) was also performed. Results were compared with therapy-naïve PDACs (n=10).
    RESULTS: Most cases showed a moderate response (RNS 2; 74%), while 15% displayed a poor response (RNS 3), and 11% a good response (RNS 1). No complete response was observed. Poor regression was associated with mucin-rich stroma, while good regression was associated with collagen-rich stroma. Cases with poorer therapy response had significantly higher proliferation. Higher peritumoral staining intensity for alpha-SMA and Tenascin C also showed a trend towards an association with poor regression.
    CONCLUSIONS: Similar to the stroma in therapy-naïve PDAC, the stroma of PDAC after NAT is heterogeneous. Distinguishing between desmoplastic stroma and therapy-induced fibrosis by single markers is not possible. Movat's pentachrome stain, IH for Ki-67, and to some extent for Tenascin C and alpha-SMA, can help detect poor histopathological response to NAT.
    DOI:  https://doi.org/10.14670/HH-18-332
  75. FEBS J. 2021 Mar 22.
      Atg16-like (ATG16L) proteins were identified in higher eukaryotes for their resemblance to Atg16, a yeast protein previously characterized as a subunit of the Atg12-Atg5/Atg16 complex. In yeast, this complex catalyzes the lipidation of Atg8 on pre-autophagosomal structures, and is thereby required for the formation of autophagosomes. In higher eukaryotes, ATG16L1 is also almost exclusively present as part of an ATG12-ATG5/ATG16L1 complex, and has the same essential function in autophagy. However, ATG16L1 is three times bigger than Atg16. It displays in particular a carboxy-terminal extension, including a WD40 domain, which provides a platform for interaction with a variety of proteins, and allows for the recruitment of the ATG12-ATG5/ATG16L1 complex to membranes under different contexts. Furthermore, detailed analyses at the cellular level have revealed that some of the ATG16L1-driven activities are independent of the lipidation reaction catalyzed by the ATG12-ATG5/ATG16L1 complex. At the organ level, the use of mice that are hypomorphic for Atg16l1, or with cell-specific ablation of its expression, revealed a large panel of consequences of ATG16L1 dysfunctions. In this review, we recapitulate the current knowledge on ATG16L1 expression and functions. We emphasize in particular how it broadly acts as a brake on inflammation, thereby contributing to maintaining cell homeostasis. We also report on independent studies that converge to show that ATG16L1 is an important player in the regulation of intracellular traffic. Overall, autophagy-independent functions of ATG16L1 probably accounts for more of the phenotypes associated with ATG16L1 deficiencies than currently appreciated.
    Keywords:  ATG5-ATG12/ATG16L1 complex; Crohn’s disease; LC3-associated phagocytosis; LC3-lipidation; T300A variant; WD40 domain; autophagy
    DOI:  https://doi.org/10.1111/febs.15833
  76. Autophagy. 2021 Mar 22.
      Basal macroautophagy/autophagy has recently been found in anucleate platelets. Platelet autophagy is involved in platelet activation and thrombus formation. However, the mechanism underlying autophagy in anucleate platelets require further clarification. Our data revealed that LC3-II formation and SQSTM1/p62 degradation were noted in H2O2-activated human platelets, which could be blocked by 3-methyladenine and bafilomycin A1, indicating that platelet activation may cause platelet autophagy. AMPK phosphorylation and MTOR dephosphorylation were also detected, and block of AMPK activity by the AMPK inhibitor dorsomorphin could reverse SQSTM1 degradation and LC3-II formation. Moreover, autophagosome formation was observed through transmission electron microscopy and deconvolution microscopy. These findings suggest that platelet autophagy was induced partly through the AMPK-MTOR pathway. In addition, increased LC3-II expression occurred only in H2O2-treated Atg5f/f platelets, but not in H2O2-treated atg5-/- platelets, providing further evidence that platelet autophagy occurs during platelet activation. atg5-/- platelets also exhibited a lower aggregation in response to agonists, and platelet-specific atg5-/- mice exhibited delayed thrombus formation in mesenteric microvessles and decreased mortality rate due to pulmonary thrombosis. Notably, metabolic analysis revealed that sphingolipid metabolism is involved in platelet activation, as evidenced by observed several altered metabolites, which could be reversed by dorsomorphin. Therefore, platelet autophagy and platelet activation are positively correlated, partly through the interconnected network of sphingolipid metabolism. In conclusion, this study for the first time demonstrated that AMPK-MTOR signaling could regulate platelet autophagy. A novel linkage between AMPK-MTOR and sphingolipid metabolism in anucleate platelet autophagy was also identified: platelet autophagy and platelet activation are positively correlated.
    Keywords:  AMPK; autophagy; hydrogen peroxide; platelets; sphingolipid metabolism
    DOI:  https://doi.org/10.1080/15548627.2021.1904495