bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2021‒03‒07
seventy-two papers selected by
Kıvanç Görgülü
Technical University of Munich

  1. Cell Metab. 2021 Feb 20. pii: S1550-4131(21)00017-6. [Epub ahead of print]
      The protein leverage hypothesis predicts that low dietary protein should increase energy intake and cause adiposity. We designed 10 diets varying from 1% to 20% protein combined with either 60% or 20% fat, contrasting the expectation that very low protein did not cause increased food intake. Although these mice had activated hunger signaling, they ate less food, resulting in decreased body weight and improved glucose tolerance but not increased frailty, even under 60% fat. Moreover, they did not show hyperphagia when returned to a 20% protein diet, which could be mimicked by treatment with rapamycin. Intracerebroventricular injection of AAV-S6K1 significantly blunted the decrease in both food intake and body weight in mice fed 1% protein, an effect not observed with inhibition of eIF2a, TRPML1, and Fgf21 signaling. Hence, the 1% protein diet induced decreased food intake and body weight via a mechanism partially dependent on hypothalamic mTOR signaling.
    Keywords:  energy expenditure; energy intake; hunger; low protein; mTOR signaling; obesity
  2. Dev Biol. 2021 Feb 27. pii: S0012-1606(21)00051-8. [Epub ahead of print]
      Cell Competition is a selective process by which viable cells are eliminated from developing or adult tissues by interactions with their neighbors. In many cases, the eliminated cells (losers) display reduced fitness, yet they would be able to sustain tissue growth or maintenance in a homotypic environment, and are only eliminated when confronted with surrounding wild type cells (winners). In addition, cells with oncogenic mutations that do not show reduced fitness can also be eliminated from tissues when surrounded by wild type cells. Depending on the context, transformed cells can also become supercompetitors and eliminate surrounding wild type cells, thereby promoting tumor formation. Several factors have been shown to play essential roles in Cell Competition, including genes relevant in developmental growth, tumor formation and epithelial apico-basal polarity. Recent discoveries, however, suggest that energy metabolism plays a central role in very different models of cell competition. Here we review the involvement of mitochondrial dynamics and metabolism, autophagy and nutritional status in cell competition and discuss the possible implications of this emerging field.
    Keywords:  Apoptosis; Autophagy; Energy metabolism; Glycolysis; Lactate; Mitochondria; Tumor formation; Tumor suppression; Warburg effect
  3. Oncogene. 2021 Mar 01.
      Pancreatic ductal adenocarcinoma (PDA) is aggressive cancer characterized by rapid progression, metastatic recurrence, and highly resistant to treatment. PDA cells exhibit aerobic glycolysis, or the Warburg effect, which reduces the flux of pyruvate into mitochondria. As a result, more glycolytic metabolites are shunted to pathways for the production of building blocks (e.g., ribose) and reducing agents (e.g., NADPH) for biosynthesis that are necessary for cell proliferation. In addition, PDA cells are highly addicted to glutamine for both maintaining biosynthetic pathways and achieving redox balance. Mitochondrial uncoupling facilitates proton influx across the mitochondrial inner membrane without generating ATP, leading to a futile cycle that consumes glucose metabolites and glutamine. We synthesized a new mitochondrial uncoupler MB1-47 and tested its effect on cancer cell metabolism and the anticancer activity in pancreatic cancer cell models and murine tumor transplantation models. MB1-47 uncouples mitochondria in the pancreatic cancer cells, resulting in: (1) the acceleration of pyruvate oxidation and TCA turnover; (2) increases in AMP/ATP and ADP/AMP ratios; and (3) a decrease in the synthesis rate of nucleotides and sugar nucleotides. Moreover, MB1-47 arrests cell cycle at G0-G1 phase, reduces clonogenicity, and inhibits cell growth of murine and human pancreatic cancer cells. In vivo studies showed that MB1-47 inhibits tumor growth in murine tumor transplantation models, and inhibits the hepatic metastasis when tumor cells were transplanted intrasplenically. Our results provide proof of concept for a potentially new strategy of treating PDA, and a novel prototype experimental drug for future studies and development.
  4. Gut. 2021 Mar 01. pii: gutjnl-2020-321112. [Epub ahead of print]
      OBJECTIVE: Cellular senescence limits tumourigenesis by blocking the proliferation of premalignant cells. Additionally, however, senescent cells can exert paracrine effects influencing tumour growth. Senescent cells are present in premalignant pancreatic intraepithelial neoplasia (PanIN) lesions, yet their effects on the disease are poorly characterised. It is currently unknown whether senolytic drugs, aimed at eliminating senescent cells from lesions, could be beneficial in blocking tumour development.DESIGN: To uncover the functions of senescent cells and their potential contribution to early pancreatic tumourigenesis, we isolated and characterised senescent cells from PanINs formed in a Kras-driven mouse model, and tested the consequences of their targeted elimination through senolytic treatment.
    RESULTS: We found that senescent PanIN cells exert a tumour-promoting effect through expression of a proinflammatory signature that includes high Cox2 levels. Senolytic treatment with the Bcl2-family inhibitor ABT-737 eliminated Cox2-expressing senescent cells, and an intermittent short-duration treatment course dramatically reduced PanIN development and progression to pancreatic ductal adenocarcinoma.
    CONCLUSIONS: These findings reveal that senescent PanIN cells support tumour growth and progression, and provide a first indication that elimination of senescent cells may be effective as preventive therapy for the progression of precancerous lesions.
    Keywords:  cell biology; cell cycle control; pancreatic tumours
  5. Cell Metab. 2021 Feb 23. pii: S1550-4131(21)00061-9. [Epub ahead of print]
      Forward genetic screens across hundreds of cancer cell lines have started to define the genetic dependencies of proliferating human cells and how these vary by genotype and lineage. Most screens, however, have been carried out in culture media that poorly reflect metabolite availability in human blood. Here, we performed CRISPR-based screens in traditional versus human plasma-like medium (HPLM). Sets of conditionally essential genes in human cancer cell lines span several cellular processes and vary with both natural cell-intrinsic diversity and the combination of basal and serum components that comprise typical media. Notably, we traced the causes for each of three conditional CRISPR phenotypes to the availability of metabolites uniquely defined in HPLM versus conventional media. Our findings reveal the profound impact of medium composition on gene essentiality in human cells, and also suggest general strategies for using genetic screens in HPLM to uncover new cancer vulnerabilities and gene-nutrient interactions.
    Keywords:  CRISPR; HPLM; conditional gene essentiality; gene-nutrient interaction; genetic screen; physiologic medium
  6. Cancers (Basel). 2021 Feb 16. pii: 818. [Epub ahead of print]13(4):
      The Plexins family of proteins are well-characterized transmembrane receptors of semaphorins, axon guidance cue molecules, that mediate the cell attraction or repelling effects for such cues. Plexins and their ligands are involved in numerous cellular activities, such as motility, invasion, and adhesion to the basement membrane. The detachment of cells and the gain in motility and invasion are hallmarks of the cancer metastasis cascade, thus generating interest in exploring the role of plexins in cancer metastasis. Semaphorin-plexin complexes can act as tumor promoters or suppressors, depending upon the cancer type, and are under investigation for therapeutic purposes. Our group has identified Semaphorin-5A (SEMA5A)/Plexin-B3 as an attractive targetable complex for pancreatic cancer (PC) metastasis. However, our understanding of the Plexin-B3 function and pathological expression in PC is limited, and our present study delineates the role of Plexin-B3 in PC malignancy. We examined the pathological expression of Plexin-B3 in PC tumors and metastasis using a human tissue microarray, disease progression model of PDX-Cre-Kras(G12D) (KC) mice, and different metastatic sites obtained from the KrasG12D; Trp53R172H; Pdx1-Cre (KPC) mice model. We observed a higher Plexin-B3 expression in PC tumor cores than the normal pancreas, and different metastatic sites were positive for Plexin-B3 expression. However, in the KC mice model, the Plexin-B3 expression increased initially and then decreased with the disease progression. Next, to evaluate the functional role of Plexin-B3, we utilized T3M-4- and CD18/HPAF-Control and -Plexin B3 knockdown cells for different in vivo and in vitro studies. The knockdown of Plexin-B3 enhanced the in vitro cellular migration, invasiveness, and impaired colony formation in three-dimensional culture, along with an increase in cellular spread and remodeling of the actin filaments. We also observed a higher metastasis in nude mice injected with T3M-4- and CD18/HPAF-shPlexin-B3 cells compared to their respective control cells. Furthermore, we observed a lower number of proliferating Ki-67-positive cells and higher ALDH1-A1-positive cells in the tumors formed by Plexin-B3 knockdown cells compared to tumors formed by the control cells. Together, our data suggest that the loss of Plexin-B3 is associated with the interference of cell division machinery and the induction of stem cell-like characteristics in PC cells.
    Keywords:  Plexin-B3; cancer stem cells; cellular motility; metastasis; pancreatic cancer
  7. Nat Commun. 2021 Mar 05. 12(1): 1482
      Immune evasion is a hallmark of KRAS-driven cancers, but the underlying causes remain unresolved. Here, we use a mouse model of pancreatic ductal adenocarcinoma to inactivate KRAS by CRISPR-mediated genome editing. We demonstrate that at an advanced tumor stage, dependence on KRAS for tumor growth is reduced and is manifested in the suppression of antitumor immunity. KRAS-deficient cells retain the ability to form tumors in immunodeficient mice. However, they fail to evade the host immune system in syngeneic wild-type mice, triggering strong antitumor response. We uncover changes both in tumor cells and host immune cells attributable to oncogenic KRAS expression. We identify BRAF and MYC as key mediators of KRAS-driven tumor immune suppression and show that loss of BRAF effectively blocks tumor growth in mice. Applying our results to human PDAC we show that lowering KRAS activity is likewise associated with a more vigorous immune environment.
  8. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2003014118. [Epub ahead of print]118(10):
      Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify nongenetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.
    Keywords:  epigenetics; glutamine synthetase; mTORC1; nutrient deprivation; pancreatic cancer
  9. EMBO J. 2021 Mar 05. e106283
      Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.
    Keywords:  ATAD3B; mitochondrial DNA; mitophagy; oxidative stress
  10. Elife. 2021 Mar 05. pii: e59594. [Epub ahead of print]10
      Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.
    Keywords:  D. melanogaster; cell biology; neuroscience
  11. Elife. 2021 Mar 01. pii: e63326. [Epub ahead of print]10
      The mechanistic target of rapamycin complex 1 (mTORC1) stimulates a coordinated anabolic program in response to growth-promoting signals. Paradoxically, recent studies indicate that mTORC1 can activate the transcription factor ATF4 through mechanisms distinct from its canonical induction by the integrated stress response (ISR). However, its broader roles as a downstream target of mTORC1 are unknown. Therefore, we directly compared ATF4-dependent transcriptional changes induced upon insulin-stimulated mTORC1 signaling to those activated by the ISR. In multiple mouse embryo fibroblast (MEF) and human cancer cell lines, the mTORC1-ATF4 pathway stimulated expression of only a subset of the ATF4 target genes induced by the ISR, including genes involved in amino acid uptake, synthesis, and tRNA charging. We demonstrate that ATF4 is a metabolic effector of mTORC1 involved in both its established role in promoting protein synthesis and in a previously unappreciated function for mTORC1 in stimulating cellular cystine uptake and glutathione synthesis.
    Keywords:  cancer biology; cell biology; human; mouse; rat
  12. Oncogene. 2021 Mar 01.
      Recent findings suggest that the dissemination of tumor cells occurs at the early stage of breast and pancreatic carcinogenesis, which is known as early dissemination. The evidence of early dissemination has been demonstrated predominantly in the bloodstream and bone marrow; however, limited evidence has revealed the existence and behavior of disseminated cells in distant organs. Here, we show that premalignant pancreatic cells seed distant stealth metastasis that eventually develops into manifest metastasis. By analyzing lineage-labeled pancreatic cancer mouse models (KPCT/TFF1KO; Pdx1-Cre/LSL-KRASG12D/LSL-p53R172H/LSL-tdTomato/TFF1KO), we found that premalignant pancreatic cells, rather than mature malignant cells, were prone to enter the bloodstream and reside in the bone marrow, liver, and lung. While these metastatic cells exhibited the characteristics of the cells of host organs and did not behave as malignant cells, they underwent malignant transformation and formed distinct tumors. Surprisingly, the manifestation of distant metastasis occurred even before tumor development in the primary site. Our data revealed that disseminated premalignant cells reside stealthily in distant organs and evolve in parallel with the progression of the primary tumor. These observations suggest that we must rebuild a therapeutic strategy for metastatic pancreatic cancer.
  13. EMBO Mol Med. 2021 Mar 05. e12461
      By accentuating drug efficacy and impeding resistance mechanisms, combinatorial, multi-agent therapies have emerged as key approaches in the treatment of complex diseases, most notably cancer. Using high-throughput drug screens, we uncovered distinct metabolic vulnerabilities and thereby identified drug combinations synergistically causing a starvation-like lethal catabolic response in tumor cells from different cancer entities. Domperidone, a dopamine receptor antagonist, as well as several tricyclic antidepressants (TCAs), including imipramine, induced cancer cell death in combination with the mitochondrial uncoupler niclosamide ethanolamine (NEN) through activation of the integrated stress response pathway and the catabolic CLEAR network. Using transcriptome and metabolome analyses, we characterized a combinatorial response, mainly driven by the transcription factors CHOP and TFE3, which resulted in cell death through enhanced pyrimidine catabolism as well as reduced pyrimidine synthesis. Remarkably, the drug combinations sensitized human organoid cultures to the standard-of-care chemotherapy paclitaxel. Thus, our combinatorial approach could be clinically implemented into established treatment regimen, which would be further facilitated by the advantages of drug repurposing.
    Keywords:  cancer metabolism; integrated stress response; metabolic vulnerabilities; pyrimidine metabolism; tricyclic antidepressants
  14. Bio Protoc. 2020 May 20. 10(10): e3627
      Mitochondrial dysfunction is a principal feature of acute pancreatitis (AP) although the underlying mechanisms are still unclear. AP precipitants induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP) in pancreatic acinar cells (PACs), leading to ATP depletion and necrosis. Evaluations of mitochondrial bioenergetics have mainly been performed in isolated PACs using confocal microscopy, with assessment of mitochondrial membrane potential, NADH/FAD+ and ATP levels, coupled with patch-clamp electrophysiology. These studies are technically demanding and time-consuming. Application of Seahorse flux analysis now allows detailed investigations of bioenergetics changes to be performed in cell populations using a multi-well plate-reader format; rates of oxygen consumption (OCR) and extracellular acidification (ECAR) provide important information about cellular respiration and glycolysis, respectively. Parameters such as maximal respiration, ATP-linked capacity and proton leak can be derived from application of a respiratory function "stress" test that involves pharmacological manipulation of the electron transport chain. The use of Seahorse Flux analysis therefore provides a quick, and convenient means to measure detailed cellular bioenergetics and allows results to be coupled with other plate-reader based assays, providing a fuller understanding of the pathophysiological consequences of mitochondrial bioenergetics alterations.
    Keywords:  Acute pancreatitis; Bioenergetics; Glycolysis; Mitochondrial dysfunction; Pancreatic acinar cells; Respiration; Seahorse
  15. Aging Cell. 2021 Mar 06. e13322
      The causes of the decline in skeletal muscle mass and function with age, known as sarcopenia, are poorly understood. Nutrition (calorie restriction) interventions impact many cellular processes and increase lifespan and preserve muscle mass and function with age. As we previously observed an increase in life span and muscle function in aging mice on a ketogenic diet (KD), we aimed to investigate the effect of a KD on the maintenance of skeletal muscle mass with age and the potential molecular mechanisms of this action. Twelve-month-old mice were assigned to an isocaloric control or KD until 16 or 26 months of age, at which time skeletal muscle was collected for evaluating mass, morphology, and biochemical properties. Skeletal muscle mass was significantly greater at 26 months in the gastrocnemius of mice on the KD. This result in KD mice was associated with a shift in fiber type from type IIb to IIa fibers and a range of molecular parameters including increased markers of NMJ remodeling, mitochondrial biogenesis, oxidative metabolism, and antioxidant capacity, while decreasing endoplasmic reticulum (ER) stress, protein synthesis, and proteasome activity. Overall, this study shows the effectiveness of a long-term KD in mitigating sarcopenia. The diet preferentially preserved oxidative muscle fibers and improved mitochondrial and antioxidant capacity. These adaptations may result in a healthier cellular environment, decreasing oxidative and ER stress resulting in less protein turnover. These shifts allow mice to better maintain muscle mass and function with age.
    Keywords:  aging; ketogenic diet; mice; sarcopenia; skeletal muscle
  16. Cancer Res. 2021 Mar 02. pii: canres.3991.2020. [Epub ahead of print]
      Lung carcinogenesis is a complex and stepwise process involving accumulation of genetic mutations in signaling and oncogenic pathways via interactions with environmental factors and host susceptibility. Tobacco exposure is the leading cause of lung cancer, but its relationship to clinically relevant mutations and the composite tumor mutation burden (TMB) has not been fully elucidated. In this study, we investigated the dose-response relationship in a retrospective observational study of 931 patients treated for advanced stage non-small cell lung cancer (NSCLC) between April 2013 and February 2020 at the Dana Farber Cancer Institute and Brigham and Women's Hospital. Doubling smoking pack-years was associated with increased KRASG12C mutations and less frequent EGFRdel19 and EGFRL858R mutations, while doubling smoking-free months was associated with more frequent EGFRL858R. In advanced lung adenocarcinoma, doubling smoking pack-years was associated with an increase in TMB, while doubling smoking-free months was associated with a decrease in TMB, after controlling for age, gender and stage. There is a significant dose-response association of smoking history with genetic alterations in cancer-related pathways and tumor mutation burden in advanced lung adenocarcinoma.
  17. Cancer Cell. 2021 Feb 25. pii: S1535-6108(21)00109-4. [Epub ahead of print]
      Stromal desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC) involves significant accumulation of type I collagen (Col1). However, the precise molecular and mechanistic contribution of Col1 in PDAC progression remains unknown. Activated pancreatic stellate cells/αSMA+ myofibroblasts are major contributors of Col1 in the PDAC stroma. We use a dual-recombinase genetic mouse model of spontaneous PDAC to delete Col1 specifically in myofibroblasts. This results in significant reduction of total stromal Col1 content and accelerates the emergence of PanINs and PDAC, decreasing overall survival. Col1 deletion leads to Cxcl5 upregulation in cancer cells via SOX9. Increase in Cxcl5 is associated with recruitment of myeloid-derived suppressor cells and suppression of CD8+ T cells, which can be attenuated with combined targeting of CXCR2 and CCR2 to restrain accelerated PDAC progression in the setting of stromal Col1 deletion. Our results unravel the fundamental role of myofibroblast-derived Co1l in regulating tumor immunity and restraining PDAC progression.
    Keywords:  B cells; T cells; extracellular matrix; fibroblasts; genetically engineered mouse models; myeloid-derived suppressor cells (MDSCs); pancreatic ductal adenocarcinoma (PDAC); tumor immunology; tumor microenvironment; type I collagen
  18. Dev Cell. 2021 Feb 25. pii: S1534-5807(21)00122-2. [Epub ahead of print]
      Loss of insulin-secreting pancreatic β cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains β cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce β cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. β cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by β cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of β cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents β cell death and metabolic abnormalities. These data uncover a pathway for β cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.
    Keywords:  ARC; alpha-1 antitrypsin; cell death; diabetes; serpins
  19. EMBO Rep. 2021 Mar 03. e51606
      Reduction of mitochondrial membrane potential (Δψm ) is a hallmark of mitochondrial dysfunction. It activates adaptive responses in organisms from yeast to human to rewire metabolism, remove depolarized mitochondria, and degrade unimported precursor proteins. It remains unclear how cells maintain Δψm , which is critical for maintaining iron-sulfur cluster (ISC) synthesis, an indispensable function of mitochondria. Here, we show that yeast oxidative phosphorylation mutants deficient in complex III, IV, V, and mtDNA, respectively, exhibit activated stress responses and progressive reduction of Δψm . Extensive omics analyses of these mutants show that these mutants progressively activate adaptive responses, including transcriptional downregulation of ATP synthase inhibitor Inh1 and OXPHOS subunits, Puf3-mediated upregulation of import receptor Mia40 and global mitochondrial biogenesis, Snf1/AMPK-mediated upregulation of glycolysis and repression of ribosome biogenesis, and transcriptional upregulation of cytoplasmic chaperones. These adaptations disinhibit mitochondrial ATP hydrolysis, remodel mitochondrial proteome, and optimize ATP supply to mitochondria to convergently maintain Δψm , ISC biosynthesis, and cell proliferation.
    Keywords:  mitochondrial membrane potential; mitochondrial stress responses; oxidative phosphorylation
  20. Nat Commun. 2021 03 01. 12(1): 1353
      Cells are under threat of osmotic perturbation; cell volume maintenance is critical in cerebral edema, inflammation and aging, in which prominent changes in intracellular or extracellular osmolality emerge. After osmotic stress-enforced cell swelling or shrinkage, the cells regulate intracellular osmolality to recover their volume. However, the mechanisms recognizing osmotic stress remain obscured. We previously clarified that apoptosis signal-regulating kinase 3 (ASK3) bidirectionally responds to osmotic stress and regulates cell volume recovery. Here, we show that macromolecular crowding induces liquid-demixing condensates of ASK3 under hyperosmotic stress, which transduce osmosensing signal into ASK3 inactivation. A genome-wide small interfering RNA (siRNA) screen identifies an ASK3 inactivation regulator, nicotinamide phosphoribosyltransferase (NAMPT), related to poly(ADP-ribose) signaling. Furthermore, we clarify that poly(ADP-ribose) keeps ASK3 condensates in the liquid phase and enables ASK3 to become inactivated under hyperosmotic stress. Our findings demonstrate that cells rationally incorporate physicochemical phase separation into their osmosensing systems.
  21. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2020187118. [Epub ahead of print]118(10):
      Identification of common patterns of cancer metabolic reprogramming could assist the development of new therapeutic strategies. Recent attention in this field has focused on identifying and targeting signal transduction pathways that interface directly with major metabolic control processes. In the current study we demonstrate the importance of signaling by the diphosphoinositol pentakisphosphate kinases (PPIP5Ks) to the metabolism and proliferation of the HCT116 colonic tumor cell line. We observed reciprocal cross talk between PPIP5K catalytic activity and glucose metabolism, and we show that CRISPR-mediated PPIP5K deletion suppresses HCT116 cell proliferation in glucose-limited culture conditions that mimic the tumor cell microenvironment. We conducted detailed, global metabolomic analyses of wild-type and PPIP5K knockout (KO) cells by measuring both steady-state metabolite levels and by performing isotope tracing experiments. We attribute the growth-impaired phenotype to a specific reduction in the supply of precursor material for de novo nucleotide biosynthesis from the one carbon serine/glycine pathway and the pentose phosphate pathway. We identify two enzymatic control points that are inhibited in the PPIP5K KO cells: serine hydroxymethyltransferase and phosphoribosyl pyrophosphate synthetase, a known downstream target of AMP-regulated protein kinase, which we show is noncanonically activated independently of adenine nucleotide status. Finally, we show the proliferative defect in PPIP5K KO cells can be significantly rescued either by addition of inosine monophosphate or a nucleoside mixture or by stable expression of PPIP5K activity. Overall, our data describe multiple, far-reaching metabolic consequences for metabolic supervision by PPIP5Ks in a tumor cell line.
    Keywords:  PPIP5K; inositol pyrophosphates; nucleotide synthesis; pentose phosphate pathway; serine–glycine–one-carbon metabolism
  22. Am J Clin Nutr. 2021 Mar 01. pii: nqaa440. [Epub ahead of print]
      BACKGROUND: There is an emerging viewpoint that change in body weight is not sufficiently sensitive to promptly identify clinically meaningful change in body composition, such as skeletal muscle depletion.OBJECTIVES: We aimed to determine whether body weight stability is associated with skeletal muscle depletion and whether skeletal muscle depletion is prognostic of death independently of change in body weight.
    METHODS: This retrospective cohort included 1921 patients with stage I-III colorectal cancer. Computed tomography (CT)-based skeletal muscle characteristics and body weight were measured at diagnosis and after a mean 15.0-mo follow-up. Body weight stability was defined as weight change less than ±5% during follow-up. Sarcopenia and myosteatosis were defined using established thresholds for patients with cancer. Multivariable-adjusted logistic and flexible parametric proportional hazards survival models were used to quantify statistical associations.
    RESULTS: At follow-up, 1026 (53.3%) patients were weight stable. Among patients with weight stability, incident sarcopenia and myosteatosis occurred in 8.5% (95% CI: 6.3%, 10.6%) and 13.5% (95% CI: 11.1%, 15.9%), respectively. Men were more likely to be weight stable than were women (56.7% compared with 49.9%; P = 0.04). Weight-stable men were less likely to develop incident sarcopenia (5.4% compared with 15.4%; P = 0.003) and myosteatosis (9.3% compared with 20.8%; P = 0.001) than weight-stable women. Among all patients, the development of incident sarcopenia (HR: 1.40; 95% CI: 1.02, 1.91) and of myosteatosis (HR: 1.41; 95% CI: 1.05, 1.90) were associated with a higher risk of death, independently of change in body weight. Patient sex did not modify the relation between skeletal muscle depletion and death.
    CONCLUSIONS: Body weight stability masks clinically meaningful skeletal muscle depletion. Body composition quantified using clinically acquired CT images may provide a vital sign to identify patients at increased risk of death. These data may inform the design of future cachexia trials.
    Keywords:  cachexia; colorectal neoplasms; metabolism; myosteatosis; obesity; sarcopenia
  23. Clin Cancer Res. 2021 Mar 02. pii: clincanres.4712.2020. [Epub ahead of print]
      Pancreatic ductal adenocarcinoma (PDAC) is a treatment-refractory malignancy in urgent need of a molecular framework for guiding therapeutic strategies. Bulk transcriptomic efforts over the past decade have yielded two broad consensus subtypes: classical-pancreatic/epithelial versus basal-like/squamous/quasi-mesenchymal. While this binary classification enables prognostic stratification, it does not currently inform the administration of treatments uniquely sensitive to either subtype. Furthermore, bulk mRNA studies are challenged by distinguishing contributions from the neoplastic compartment versus other cell types in the microenvironment, which is accentuated in PDAC given that neoplastic cellularity can be low. The application of single-cell transcriptomics to pancreatic tumors has generally lagged behind other cancer types due in part to the difficulty of extracting high-quality RNA from enzymatically-degradative tissue, but emerging studies have and will continue to shed light on intra-tumoral heterogeneity, malignant-stromal interactions, and subtle transcriptional programs previously obscured at the bulk level. In conjunction with insights provided by single-cell/nucleus dissociative techniques, spatially resolved technologies should also facilitate the contextualization of gene programs and inferred cell-cell interactions within the tumor architecture. Finally, given that patients often receive neoadjuvant chemotherapy and/or chemoradiotherapy even in resectable disease, deciphering the gene programs enriched in or induced by cytotoxic therapy will be crucial for developing insights into complementary treatments aimed at eradicating residual cancer cells. Taken together, single-cell and spatial technologies provide an unprecedented opportunity to refine the foundations laid by prior bulk molecular studies and significantly augment precision oncology efforts in pancreatic cancer.
  24. Nat Chem Biol. 2021 Mar 01.
      Whole-genome sequencing data mining efforts have revealed numerous histone mutations in a wide range of cancer types. These occur in all four core histones in both the tail and globular domains and remain largely uncharacterized. Here we used two high-throughput approaches, a DNA-barcoded mononucleosome library and a humanized yeast library, to profile the biochemical and cellular effects of these mutations. We identified cancer-associated mutations in the histone globular domains that enhance fundamental chromatin remodeling processes, histone exchange and nucleosome sliding, and are lethal in yeast. In mammalian cells, these mutations upregulate cancer-associated gene pathways and inhibit cellular differentiation by altering expression of lineage-specific transcription factors. This work represents a comprehensive functional analysis of the histone mutational landscape in human cancers and leads to a model in which histone mutations that perturb nucleosome remodeling may contribute to disease development and/or progression.
  25. Nature. 2021 Mar 03.
      Symmetric cell division requires the even partitioning of genetic information and cytoplasmic contents between daughter cells. Whereas the mechanisms coordinating the segregation of the genome are well known, the processes that ensure organelle segregation between daughter cells remain less well understood1. Here we identify multiple actin assemblies with distinct but complementary roles in mitochondrial organization and inheritance in mitosis. First, we find a dense meshwork of subcortical actin cables assembled throughout the mitotic cytoplasm. This network scaffolds the endoplasmic reticulum and organizes three-dimensional mitochondrial positioning to ensure the equal segregation of mitochondrial mass at cytokinesis. Second, we identify a dynamic wave of actin filaments reversibly assembling on the surface of mitochondria during mitosis. Mitochondria sampled by this wave are enveloped within actin clouds that can spontaneously break symmetry to form elongated comet tails. Mitochondrial comet tails promote randomly directed bursts of movement that shuffle mitochondrial position within the mother cell to randomize inheritance of healthy and damaged mitochondria between daughter cells. Thus, parallel mechanisms mediated by the actin cytoskeleton ensure both equal and random inheritance of mitochondria in symmetrically dividing cells.
  26. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e1917853118. [Epub ahead of print]118(10):
      Epithelia have distinct cellular architectures which are established in development, reestablished after wounding, and maintained during tissue homeostasis despite cell turnover and mechanical perturbations. In turn, cell shape also controls tissue function as a regulator of cell differentiation, proliferation, and motility. Here, we investigate cell shape changes in a model epithelial monolayer. After the onset of confluence, cells continue to proliferate and change shape over time, eventually leading to a final architecture characterized by arrested motion and more regular cell shapes. Such monolayer remodeling is robust, with qualitatively similar evolution in cell shape and dynamics observed across disparate perturbations. Here, we quantify differences in monolayer remodeling guided by the active vertex model to identify underlying order parameters controlling epithelial architecture. When monolayers are formed atop an extracellular matrix with varied stiffness, we find the cell density at which motion arrests varies significantly, but the cell shape remains constant, consistent with the onset of tissue rigidity. In contrast, pharmacological perturbations can significantly alter the cell shape at which tissue dynamics are arrested, consistent with varied amounts of active stress within the tissue. Across all experimental conditions, the final cell shape is well correlated to the cell proliferation rate, and cell cycle inhibition immediately arrests cell motility. Finally, we demonstrate cell cycle variation in junctional tension as a source of active stress within the monolayer. Thus, the architecture and mechanics of epithelial tissue can arise from an interplay between cell mechanics and stresses arising from cell cycle dynamics.
    Keywords:  cell cycle; cell mechanics; epithelial tissue; vertex model
  27. Aging Cell. 2021 Mar 04. e13331
      Telomere erosion in cells with insufficient levels of the telomerase reverse transcriptase (TERT), contributes to age-associated tissue dysfunction and senescence, and p53 plays a crucial role in this response. We undertook a genome-wide CRISPR screen to identify gene deletions that sensitized p53-positive human cells to telomerase inhibition. We uncovered a previously unannotated gene, C16ORF72, which we term Telomere Attrition and p53 Response 1 (TAPR1), that exhibited a synthetic-sick relationship with TERT loss. A subsequent genome-wide CRISPR screen in TAPR1-disrupted cells reciprocally identified TERT as a sensitizing gene deletion. Cells lacking TAPR1 or TERT possessed elevated p53 levels and transcriptional signatures consistent with p53 upregulation. The elevated p53 response in TERT- or TAPR1-deficient cells was exacerbated by treatment with the MDM2 inhibitor and p53 stabilizer nutlin-3a and coincided with a further reduction in cell fitness. Importantly, the sensitivity to treatment with nutlin-3a in TERT- or TAPR1-deficient cells was rescued by loss of p53. These data suggest that TAPR1 buffers against the deleterious consequences of telomere erosion or DNA damage by constraining p53. These findings identify C16ORF72/TAPR1 as new regulator at the nexus of telomere integrity and p53 regulation.
    Keywords:  C16ORF72; CRISPR-Cas9; Telomere Attrition and P53 Response 1; genome-wide screen; p53; synthetic-sick-lethal; telomerase inhibitor (BIBR1532); telomere erosion
  28. Cancer Discov. 2021 Mar 02. pii: candisc.0119.2020. [Epub ahead of print]
      Although pancreatic ductal adenocarcinoma (PDAC) cells are exposed to a nutrient-depleted tumor microenvironment, they can acquire nutrients via macropinocytosis, an endocytic form of protein scavenging that functions to support cancer metabolism. Here, we provide evidence that macropinocytosis is operational in the pancreatic tumor stroma. We find that glutamine deficiency triggers macropinocytic uptake in pancreatic cancer-associated fibroblasts (CAFs). Mechanistically, we decipher that stromal macropinocytosis is potentiated via the enhancement of cytosolic Ca2+ and dependent on ARHGEF2 and CaMKK2-AMPK signaling. We elucidate that macropinocytosis has dual function in CAFs - it serves as a source of intracellular amino acids that sustain CAF cell fitness and function, and it provides secreted amino acids that promote tumor cell survival. Importantly, we demonstrate that stromal macropinocytosis supports PDAC tumor growth. These results highlight the functional role of macropinocytosis in the tumor stroma and provide a mechanistic understanding of how nutrient deficiency can control stromal protein scavenging.
  29. EMBO J. 2021 Mar 01. e106922
      The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell's organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.
    Keywords:  ESCRT; autophagy; endocytosis; lysosome; membrane repair
  30. Bio Protoc. 2019 Jul 05. 9(13): e3290
      The chick chorioallantoic membrane (CAM) is an extra-embryonic organ and thus well accessible for seeding and harvesting 3D cell cultures. Samples from CAM assays are suitable for protein and gene expression analysis as well as for immuno-histochemical studies. Here we present the CAM assay as a possible model to study autophagy in different types of cancer using immunohistochemistry. Compared with other 3D and xenograft models, the CAM assay displays several advantages such as lower costs, shorter experimental times, physiological environment and reproducibility. Macroautophagy hereafter simply referred to as "autophagy" is a conserved cellular catabolic process that degrades and recycles cellular components. Under basal conditions, autophagy contributes to the maintenance of cellular homeostasis whereas under cellular stress, such as starvation or hypoxia, autophagy is activated as a survival mechanism. Dysregulation of autophagy has been described in many diseases. In cancer, autophagy has been suggested to play a dual role. Whereas autophagy has been reported to play a tumor suppressive role in early stages, it seems to be rather tumor supportive in later stages. Here we provide a method to study autophagy in 3D microtumors of cancer cells grown on the CAM.
    Keywords:  Autophagy; CAM; Cancer; Immunohistochemistry; LC3B; OE19; p62
  31. Nat Commun. 2021 03 03. 12(1): 1419
      Epigenetic mechanisms contribute to the initiation and development of cancer, and epigenetic variation promotes dynamic gene expression patterns that facilitate tumor evolution and adaptation. While the NCI-60 panel represents a diverse set of human cancer cell lines that has been used to screen chemical compounds, a comprehensive epigenomic atlas of these cells has been lacking. Here, we report an integrative analysis of 60 human cancer epigenomes, representing a catalog of activating and repressive histone modifications. We identify genome-wide maps of canonical sharp and broad H3K4me3 domains at promoter regions of tumor suppressors, H3K27ac-marked conventional enhancers and super enhancers, and widespread inter-cancer and intra-cancer specific variability in H3K9me3 and H4K20me3-marked heterochromatin domains. Furthermore, we identify features of chromatin states, including chromatin state switching along chromosomes, correlation of histone modification density with genetic mutations, DNA methylation, enrichment of DNA binding motifs in regulatory regions, and gene activity and inactivity. These findings underscore the importance of integrating epigenomic maps with gene expression and genetic variation data to understand the molecular basis of human cancer. Our findings provide a resource for mining epigenomic maps of human cancer cells and for identifying epigenetic therapeutic targets.
  32. Autophagy. 2021 Mar 03. 1-20
      Ion exchange between intracellular and extracellular spaces is the basic mechanism for controlling cell metabolism and signal transduction. This process is mediated by ion channels and transporters on the plasma membrane, or intracellular membranes that surround various organelles, in response to environmental stimuli. Macroautophagy (hereafter referred to as autophagy) is one of the lysosomal-dependent degradation pathways that maintains homeostasis through the degradation and recycling of cellular components (e.g., dysfunctional proteins and damaged organelles). Although autophagy-related (ATG) proteins play a central role in regulating the formation of autophagy-related member structures (e.g., phagophores, autophagosomes, and autolysosomes), the autophagic process also involves changes in expression and function of ion channels and transporters. Here we discuss current knowledge of the mechanisms that regulate autophagy in mammalian cells, with special attention to the ion channels and transporters. We also highlight prospects for the development of drugs targeting ion channels and transporters in autophagy.
    Keywords:  Autophagy; channels; ion; lysosomes; mitochondria; transporters
  33. Amino Acids. 2021 Feb 28.
      Dysregulated cellular energetics has recently been recognized as a hallmark of cancer and garnered attention as a potential targeting strategy for cancer therapeutics. Cancer cells reprogram metabolic activities to meet bio-energetic, biosynthetic and redox requirements needed to sustain indefinite proliferation. In many cases, metabolic reprogramming is the result of complex interactions between genetic alterations in well-known oncogenes and tumor suppressors and epigenetic changes. While the metabolism of the two most abundant nutrients, glucose and glutamine, is reprogrammed in a wide range of cancers, accumulating evidence demonstrates that additional metabolic pathways are also critical for cell survival and growth. Proline metabolism is one such metabolic pathway that promotes tumorigenesis in multiple cancer types, including liver cancer, which is the fourth main cause of cancer mortality in the world. Despite the recent spate of approved treatments, including targeted therapy and combined immunotherapies, there has been no significant gain in clinical benefits in the majority of liver cancer patients. Thus, exploring novel therapeutic strategies and identifying new molecular targets remains a top priority for liver cancer. Two of the enzymes in the proline biosynthetic pathway, pyrroline-5-carboxylate reductase (PYCR1) and Aldehyde Dehydrogenase 18 Family Member A1 (ALDH18A1), are upregulated in liver cancer of both human and animal models, while proline catabolic enzymes, such as proline dehydrogenase (PRODH) are downregulated. Here we review the latest evidence linking proline metabolism to liver and other cancers and potential mechanisms of action for the proline pathway in cancer development.
    Keywords:  Cancer; Enzyme; Hepatocellular carcinoma; Metabolism; Proline
  34. Stat Med. 2021 Mar 02.
      Unlike chemotherapy, the maximum tolerated dose (MTD) of molecularly targeted agents and immunotherapy may not pose significant clinical benefit over the lower doses. By simultaneously considering both toxicity and efficacy endpoints, phase I/II trials can identify a more clinically meaningful dose for subsequent phase II trials than traditional toxicity-based phase I trials in terms of risk-benefit tradeoff. To strengthen and simplify the current practice of phase I/II trials, we propose a utility-based toxicity probability interval (uTPI) design for finding the optimal biological dose, based on a numerical utility that provides a clinically meaningful, one-dimensional summary representation of the patient's bivariate toxicity and efficacy outcome. The uTPI design does not rely on any parametric specification of the dose-response relationship, and it directly models the dose desirability through a quasi binomial likelihood. Toxicity probability intervals are used to screen out overly toxic dose levels, and then the dose escalation/de-escalation decisions are made adaptively by comparing the posterior desirability distributions of the adjacent levels of the current dose. The uTPI design is flexible in accommodating various dose desirability formulations, while only requiring minimum design parameters. It has a clear decision structure such that a dose-assignment decision table can be calculated before the trial starts and can be used throughout the trial, which simplifies the practical implementation of the design. Extensive simulation studies demonstrate that the proposed uTPI design yields desirable as well as robust performance under various scenarios.
    Keywords:  Bayesian quasi likelihood; dose desirability; dose finding; optimal biological dose; phase I/II trials; utility
  35. Dev Cell. 2021 Feb 24. pii: S1534-5807(21)00120-9. [Epub ahead of print]
      Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
    Keywords:  ISR; MDVs; UPRmt; UPS; mitochondria; mitochondrial dynamics; mitophagy; mitoproteases
  36. Bio Protoc. 2019 Oct 20. 9(20): e3396
      Centrosome numerical abnormalities have been reported in a variety of tumors. Centrosome numbers in cancer cells display both inter-tumor and intra-tumor heterogeneity. The over production of centrosomes (centrosome amplification) is unique in cancer cells and is a promising target for therapy. Thus, a method to quantify centrosome numbers on a single cell level is needed. Here, we describe a protocol to quantify centrosome numbers in formalin fixed paraffin embedded (FFPE) tissue samples by multiplexing antibodies to define bona fide centrosomes and cell borders. Centrosomes in single cells are identified using high resolution immunofluorescent microscopy with Z-sectioning. This protocol is easy to perform and has been used to quantify centrosome numbers on a single cell level in a variety of human tissue samples.
    Keywords:  Cancer; Centrosome; FFPE; High resolution immunofluorescent microscopy; Tissue
  37. Cell Stem Cell. 2021 Mar 04. pii: S1934-5909(21)00061-8. [Epub ahead of print]28(3): 394-408
      Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
    Keywords:  L-2-HG; ROS; TCA cycle; acetyl-CoA; epigenetics; mitochondrial dynamics; pyruvate
  38. Sci Immunol. 2021 Mar 01. pii: eabd5515. [Epub ahead of print]6(57):
      Mutations in the RAS oncogenes occur in multiple cancers, and ways to target these mutations has been the subject of intense research for decades. Most of these efforts are focused on conventional small-molecule drugs rather than antibody-based therapies because the RAS proteins are intracellular. Peptides derived from recurrent RAS mutations, G12V and Q61H/L/R, are presented on cancer cells in the context of two common human leukocyte antigen (HLA) alleles, HLA-A3 and HLA-A1, respectively. Using phage display, we isolated single-chain variable fragments (scFvs) specific for each of these mutant peptide-HLA complexes. The scFvs did not recognize the peptides derived from the wild-type form of RAS proteins or other related peptides. We then sought to develop an immunotherapeutic agent that was capable of killing cells presenting very low levels of these RAS-derived peptide-HLA complexes. Among many variations of bispecific antibodies tested, one particular format, the single-chain diabody (scDb), exhibited superior reactivity to cells expressing low levels of neoantigens. We converted the scFvs to this scDb format and demonstrated that they were capable of inducing T cell activation and killing of target cancer cells expressing endogenous levels of the mutant RAS proteins and cognate HLA alleles. CRISPR-mediated alterations of the HLA and RAS genes provided strong genetic evidence for the specificity of the scDbs. Thus, this approach could be applied to other common oncogenic mutations that are difficult to target by conventional means, allowing for more specific anticancer therapeutics.
  39. Biomarkers. 2021 Mar 05. 1-15
      BACKGROUND: Identification of metastatic pancreatic cancer (mPC) patients with worst prognosis could help to tailor therapy. We evaluated readily available biomarkers for the prediction of 90-day mortality in a nationwide cohort of mPC patients.METHODS: Patients with synchronous mPC were included from the Netherlands Cancer Registry (2015-2017). Baseline CA19-9, albumin, CRP, LDH, CRP/albumin ratio, and (modified) Glasgow Prognostic Score ((m)GPS composed of albumin and CRP) were evaluated. Multivariable logistic regression analyses were performed to identify predictors of 90-day mortality. Prognostic value per predictor was quantified by Nagelkerke's partial R2.RESULTS: Overall, 4248 patients were included. Median overall survival was 2.2 months and 90-day mortality was 59.4% (n = 1629). All biomarkers predicted 90-day mortality in univariable analysis, and remained statistically significant after adjustment for clinically-relevant factors and all other biomarkers (all p < 0.001). The prognostic value of the biomarkers combined was similar to WHO performance status. Patients who received chemotherapy had better outcomes than those who did not, regardless of biomarker levels.CONCLUSIONS: In mPC patients, albumin, CA19-9, CRP, LDH, CRP/albumin ratio, and (m)GPS are prognostic for poor survival. Biomarkers did not predict response to chemotherapy. These readily available biomarkers can be used to better inform patients and to stratify in clinical trials.
    Keywords:  GPS; Pancreatic cancer; population-based; prognosis; readily available biomarkers
  40. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2017184118. [Epub ahead of print]118(10):
      Biomolecular condensates enable spatial and temporal control over cellular processes by concentrating biomolecules into nonstoichiometric assemblies. Many condensates form via reversible phase transitions of condensate-specific multivalent macromolecules known as scaffolds. Phase transitions of scaffolds can be regulated by changing the concentrations of ligands, which are defined as nonscaffold molecules that bind to specific sites on scaffolds. Here, we use theory and computation to uncover rules that underlie ligand-mediated control over scaffold phase behavior. We use the stickers-and-spacers model wherein reversible noncovalent cross-links among stickers drive phase transitions of scaffolds, and spacers modulate the driving forces for phase transitions. We find that the modulatory effects of ligands are governed by the valence of ligands, whether they bind directly to stickers versus spacers, and the relative affinities of ligand-scaffold versus scaffold-scaffold interactions. In general, all ligands have a diluting effect on the concentration of scaffolds within condensates. Whereas monovalent ligands destabilize condensates, multivalent ligands can stabilize condensates by binding directly to spacers or destabilize condensates by binding directly to stickers. Bipartite ligands that bind to stickers and spacers can alter the structural organization of scaffold molecules within condensates even when they have a null effect on condensate stability. Our work highlights the importance of measuring dilute phase concentrations of scaffolds as a function of ligand concentration in cells. This can reveal whether ligands modulate scaffold phase behavior by enabling or suppressing phase separation at endogenous levels, thereby regulating the formation and dissolution of condensates in vivo.
    Keywords:  condensate; ligand; polyphasic linkage; regulation
  41. Cells. 2021 Feb 18. pii: 431. [Epub ahead of print]10(2):
      Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death and the search for a resolutive therapy is still a challenge. Since KRAS is commonly mutated in PDAC and is one of the main drivers of PDAC progression, its inhibition should be a key strategy for treatment, especially considering the recent development of specific KRAS inhibitors. Nevertheless, the effects of KRAS inhibition can be increased through the co-inhibition of other nodes important for cancer development. One of them could be the hexosamine biosynthetic pathway (HBP), whose enhancement is considered fundamental for PDAC. Here, we demonstrate that PDAC cells expressing oncogenic KRAS, owing to an increase in the HBP flux, become strongly reliant on HBP for both proliferation and survival. In particular, upon treatment with two different compounds, 2-deoxyglucose and FR054, inhibiting both HBP and protein N-glycosylation, these cells undergo apoptosis significantly more than PDAC cells expressing wild-type KRAS. Importantly, we also show that the combined treatment between FR054 and the pan-RAS inhibitor BI-2852 has an additive negative effect on cell proliferation and survival by means of the suppression of both Akt activity and cyclin D1 expression. Thus, co-inhibition of HBP and oncogenic RAS may represent a novel therapy for PDAC patients.
    Keywords:  KRAS; KRAS inhibitors; PDAC; cancer treatment; glycosylations; hexosamine biosynthetic pathway
  42. Curr Opin Chem Biol. 2021 Mar 02. pii: S1367-5931(21)00014-4. [Epub ahead of print]63 11-18
      Chromatin and associated epigenetic marks provide important platforms for gene regulation in response to metabolic changes associated with environmental exposures, including physiological stress, nutritional deprivation, and starvation. Numerous studies have shown that fluctuations of key metabolites can influence chromatin modifications, but their effects on chromatin structure (e.g. chromatin compaction, nucleosome arrangement, and chromatin loops) and how they appropriately deposit specific chemical modification on chromatin are largely unknown. Here, focusing on methionine metabolism, we discuss recent developments of metabolic effects on chromatin modifications and structure, as well as consequences on gene regulation.
    Keywords:  Chromatin; Epigenetics; Metabolism; Methionine; Transcription
  43. Commun Biol. 2021 Mar 05. 4(1): 294
      Tissue clearing is one of the most powerful strategies for a comprehensive analysis of disease progression. Here, we established an integrated pipeline that combines tissue clearing, 3D imaging, and machine learning and applied to a mouse tumour model of experimental lung metastasis using human lung adenocarcinoma A549 cells. This pipeline provided the spatial information of the tumour microenvironment. We further explored the role of transforming growth factor-β (TGF-β) in cancer metastasis. TGF-β-stimulated cancer cells enhanced metastatic colonization of unstimulated-cancer cells in vivo when both cells were mixed. RNA-sequencing analysis showed that expression of the genes related to coagulation and inflammation were up-regulated in TGF-β-stimulated cancer cells. Further, whole-organ analysis revealed accumulation of platelets or macrophages with TGF-β-stimulated cancer cells, suggesting that TGF-β might promote remodelling of the tumour microenvironment, enhancing the colonization of cancer cells. Hence, our integrated pipeline for 3D profiling will help the understanding of the tumour microenvironment.
  44. Pharmacol Ther. 2021 Mar 01. pii: S0163-7258(21)00029-2. [Epub ahead of print] 107827
      Metabolic reprogramming is a hallmark of cancer and increasing evidence suggests that reprogrammed cell metabolism supports tumor initiation, progression, metastasis and drug resistance. Understanding metabolic dysregulation may provide therapeutic targets and facilitate drug research and development for cancer therapy. Metabolomics enables the high-throughput characterization of a large scale of small molecule metabolites in cells, tissues and biofluids, while metabolic flux analysis (MFA) tracks dynamic metabolic activities using stable isotope tracer methods. Recent advances in metabolomics and MFA technologies make them powerful tools for metabolic profiling and characterizing metabolic activities in health and disease, especially in cancer research. In this review, we introduce recent advances in metabolomics and MFA analytical technologies, and provide the first comprehensive summary of the most commonly used isotope tracing methods. In addition, we highlight how metabolomics and MFA are applied in cancer pharmacology studies particularly for discovering targetable metabolic vulnerabilities, understanding the mechanisms of drug action and drug resistance, exploring potential strategies with dietary intervention, identifying cancer biomarkers, as well as enabling precision treatment with pharmacometabolomics.
    Keywords:  cancer; drug discovery; metabolic flux; metabolomics; pharmacology
  45. Nat Genet. 2021 Mar 01.
      Resistance to immune checkpoint inhibitors (ICIs) is a key challenge in cancer therapy. To elucidate underlying mechanisms, we developed Perturb-CITE-sequencing (Perturb-CITE-seq), enabling pooled clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 perturbations with single-cell transcriptome and protein readouts. In patient-derived melanoma cells and autologous tumor-infiltrating lymphocyte (TIL) co-cultures, we profiled transcriptomes and 20 proteins in ~218,000 cells under ~750 perturbations associated with cancer cell-intrinsic ICI resistance (ICR). We recover known mechanisms of resistance, including defects in the interferon-γ (IFN-γ)-JAK/STAT and antigen-presentation pathways in RNA, protein and perturbation space, and new ones, including loss/downregulation of CD58. Loss of CD58 conferred immune evasion in multiple co-culture models and was downregulated in tumors of melanoma patients with ICR. CD58 protein expression was not induced by IFN-γ signaling, and CD58 loss conferred immune evasion without compromising major histocompatibility complex (MHC) expression, suggesting that it acts orthogonally to known mechanisms of ICR. This work provides a framework for the deciphering of complex mechanisms by large-scale perturbation screens with multimodal, single-cell readouts, and discovers potentially clinically relevant mechanisms of immune evasion.
  46. Cancers (Basel). 2021 Feb 13. pii: 778. [Epub ahead of print]13(4):
      Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) mutations have been considered a critical driver of PDAC initiation and progression. However, the effects of mutant KRAS alone do not recapitulate the full spectrum of pancreatic pathologies associated with PDAC development in adults. Historically, mutant KRAS was regarded as constitutively active; however, recent studies have shown that endogenous levels of mutant KRAS are not constitutively fully active and its activity is still subject to up-regulation by upstream stimuli. Obesity is a metabolic disease that induces a chronic, low-grade inflammation called meta-inflammation and has long been recognized clinically as a major modifiable risk factor for pancreatic cancer. It has been shown in different animal models that obesogenic high-fat diet (HFD) and pancreatic inflammation promote the rapid development of mutant KRAS-mediated PDAC with high penetrance. However, it is not clear why the pancreas with endogenous levels of mutant KRAS is vulnerable to chronic HFD and inflammatory challenges. Recently, the discovery of fibroblast growth factor 21 (FGF21) as a novel anti-obesity and anti-inflammatory factor and as a downstream target of mutant KRAS has shed new light on this problem. This review is intended to provide an update on our knowledge of the vulnerability of the pancreas to KRAS-mediated invasive PDAC in the context of challenges engendered by obesity and associated inflammation.
    Keywords:  FGF21; KRAS; PDAC; inflammation; obesity
  47. Aging (Albany NY). 2021 Feb 26. 13
      Pancreatic stellate cells (PSCs) are important components of the tumor microenvironment in pancreatic cancer (PC) and contribute to its development and metastasis through mechanisms that remain incompletely characterized. Tumor hypoxia affects the function and behavior of PC and stromal cells, and can alter exosomal content to modify cell-cell communication. The present study explored the effects of exosomal miRNAs produced by hypoxia-preconditioned PSCs on the growth and metastatic potential of PC cells. Subcutaneous xenografts and liver metastasis mouse models revealed increased tumorigenic potential upon co-implantation of PC cells and PSCs as compared to PC cells alone. Screening miRNA profiles of mouse plasma exosomes and cultured PSCs, followed by miRNA overexpression and inhibition assays, enabled us to identify miR-4465 and miR-616-3p as prominent hypoxia-induced, PSC-derived, exosomal miRNAs promoting PC cell proliferation, migration, and invasion. Proteomics analysis of PC cells incubated with exosomes derived from hypoxic PSCs showed significant downregulation of PTEN. Dual-luciferase reporter assays and western blotting showed that both miR-4465 and miR-616-3p target PTEN and activate AKT signaling in PC cells. We conclude that hypoxia upregulates miR-4465 and miR-616-3p expression in PSC-derived exosomes. Following exosome uptake, these miRNAs promote PC progression and metastasis by suppressing the PTEN/AKT pathway.
    Keywords:  PTEN/AKT pathway; exosomal microRNAs; metastasis; pancreatic cancer
  48. Proc Natl Acad Sci U S A. 2021 Mar 09. pii: e2026507118. [Epub ahead of print]118(10):
      Ki-67 is a nuclear protein that is expressed in all proliferating vertebrate cells. Here, we demonstrate that, although Ki-67 is not required for cell proliferation, its genetic ablation inhibits each step of tumor initiation, growth, and metastasis. Mice lacking Ki-67 are resistant to chemical or genetic induction of intestinal tumorigenesis. In established cancer cells, Ki-67 knockout causes global transcriptome remodeling that alters the epithelial-mesenchymal balance and suppresses stem cell characteristics. When grafted into mice, tumor growth is slowed, and metastasis is abrogated, despite normal cell proliferation rates. Yet, Ki-67 loss also down-regulates major histocompatibility complex class I antigen presentation and, in the 4T1 syngeneic model of mammary carcinoma, leads to an immune-suppressive environment that prevents the early phase of tumor regression. Finally, genes involved in xenobiotic metabolism are down-regulated, and cells are sensitized to various drug classes. Our results suggest that Ki-67 enables transcriptional programs required for cellular adaptation to the environment. This facilitates multiple steps of carcinogenesis and drug resistance, yet may render cancer cells more susceptible to antitumor immune responses.
    Keywords:  Ki-67; cancer; genetically modified mice; transcription
  49. Cancers (Basel). 2021 Feb 18. pii: 864. [Epub ahead of print]13(4):
      Cancer-associated fibroblasts (CAFs) are important in tumor progression. The autophagy adaptor protein, p62/SQSTM1/Sequestosome-1, is up-regulated in tumors, but down-regulated in CAFs in the early stages of lung adenocarcinoma. We investigated whether p62-induced autophagy might control CAF activation. Under CAF-inducing conditions, like hypoxia or cancer cell co-cultures, p62 ablation or autophagy inhibition with hydroxychloroquine (HCQ) impaired CAF activation and reduced transforming growth factor beta (TGFβ) production, which impeded tumor growth. During CAF activation, p62-induced autophagy up-regulated the expression of the anti-oxidant signaling protein, nuclear factor erythroid 2-related factor 2 (Nrf2), and the ER-stress response regulator, activating transcription factor 6 (ATF6). Genetically or pharmacologically inhibiting the Nrf2-ATF6 pathway totally blocked CAF activation and tumor progression. These results demonstrate that p62 is a key modulator of primary lung adenocarcinoma progression. Thus, targeting the p62-Nrf2 autophagy signaling pathway might be a novel, stroma-focused, cancer prevention and/or treatment strategy.
    Keywords:  activating transcription factor 6; cancer-associated fibroblast; lung adenocarcinoma; nuclear factor erythroid 2-related factor 2; p62/SQSTM1/Sequestosome-1; selective autophagy; tumor microenvironment
  50. Science. 2021 Mar 05. 371(6533): 1019-1025
      In vivo models that recapitulate human erythropoiesis with persistence of circulating red blood cells (RBCs) have remained elusive. We report an immunodeficient murine model in which combined human liver and cytokine humanization confer enhanced human erythropoiesis and RBC survival in the circulation. We deleted the fumarylacetoacetate hydrolase (Fah) gene in MISTRG mice expressing several human cytokines in place of their murine counterparts. Liver humanization by intrasplenic injection of human hepatocytes (huHep) eliminated murine complement C3 and reduced murine Kupffer cell density. Engraftment of human sickle cell disease (SCD)-derived hematopoietic stem cells in huHepMISTRGFah -/- mice resulted in vaso-occlusion that replicated acute SCD pathology. Combined liver-cytokine-humanized mice will facilitate the study of diseases afflicting RBCs, including bone marrow failure, hemoglobinopathies, and malaria, and also preclinical testing of therapies.
  51. Bio Protoc. 2020 Jun 05. 10(11): e3631
      As obesity becomes a global epidemic, the metabolism research field is increasingly focusing on studying the physiological and pathological roles of adipose tissues (AT). However, extracting proteins from AT is challenging due to abundant fat content of intracellular lipid droplets. Several commercial kits for extraction of AT proteins are available, as are protocols (such as the RELi protocol as well as other protein precipitation protocols). The protocols have been introduced to improve the quality and yield of extractions, but these methods either increase the cost or involve multiple steps. Herein, we describe a detailed protocol for mouse AT protein extractions based on our daily laboratory practice. This protocol requires only very common reagents and instruments, and can be completed in 90-120 min and provides good recovery of total protein content. Thus, this protocol is an economically attractive, time-saving and efficient way to extract proteins from the AT.
    Keywords:  Adipose Tissue; Lipid Contamination; Metabolism; Mouse; Obesity; Protein; Time and Cost Effective
  52. Cancers (Basel). 2021 Feb 24. pii: 945. [Epub ahead of print]13(5):
      Pancreatic ductal adenocarcinoma (PDAC) arises from precursor lesions, such as pancreatic intra-epithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN). The prognosis of high-grade precancerous lesions, including high-grade PanIN and high-grade IPMN, without invasive carcinoma is good, despite the overall poor prognosis of PDAC. High-grade PanIN, as a lesion preceding invasive PDAC, is therefore a primary target for intervention. However, detection of localized high-grade PanIN is difficult when using standard radiological approaches. Therefore, most studies of high-grade PanIN have been conducted using specimens that harbor invasive PDAC. Recently, imaging characteristics of high-grade PanIN have been revealed. Obstruction of the pancreatic duct due to high-grade PanIN may induce a loss of acinar cells replaced by fibrosis and lobular parenchymal atrophy. These changes and additional inflammation around the branch pancreatic ducts (BPDs) result in main pancreatic duct (MPD) stenosis, dilation, retention cysts (BPD dilation), focal pancreatic parenchymal atrophy, and/or hypoechoic changes around the MPD. These indirect imaging findings have become important clues for localized, high-grade PanIN detection. To obtain pre-operative histopathological confirmation of suspected cases, serial pancreatic-juice aspiration cytologic examination is effective. In this review, we outline current knowledge on imaging characteristics of high-grade PanIN.
    Keywords:  endoscopic ultrasound; high-grade; intraductal papillary mucinous neoplasm; pancreatic cancer; pancreatic duct; pancreatic ductal adenocarcinoma; pancreatic intra-epithelial neoplasia; pancreatic juice cytology; parenchymal atrophy
  53. Nat Commun. 2021 03 01. 12(1): 1360
      In eukaryotes, DNA is packed inside the cell nucleus in the form of chromatin, which consists of DNA, proteins such as histones, and RNA. Euchromatin, which is permissive for transcription, is spatially organized into transcriptionally inactive domains interspersed with pockets of transcriptional activity. While transcription and RNA have been implicated in euchromatin organization, it remains unclear how their interplay forms and maintains transcription pockets. Here we combine theory and experiment to analyze the dynamics of euchromatin organization as pluripotent zebrafish cells exit mitosis and begin transcription. We show that accumulation of RNA induces formation of transcription pockets which displace transcriptionally inactive chromatin. We propose that the accumulating RNA recruits RNA-binding proteins that together tend to separate from transcriptionally inactive euchromatin. Full phase separation is prevented because RNA remains tethered to transcribed euchromatin through RNA polymerases. Instead, smaller scale microphases emerge that do not grow further and form the typical pattern of euchromatin organization.
  54. Trends Cancer. 2021 Feb 26. pii: S2405-8033(21)00044-3. [Epub ahead of print]
  55. Pancreatology. 2021 Feb 19. pii: S1424-3903(21)00063-6. [Epub ahead of print]
      BACKGROUND: The MNK1 protein kinase is directly activated by the MAPK pathway and is specifically expressed in pancreatic acinar cells. Both the MNK1 kinase and the MAPK pathway are required for response to pancreatitis, suggesting that their pharmacological targeting would be of therapeutic interest. Because the mRNA cap-binding protein and translation initiation factor eIF4E is the major known MNK1 substrate, one could anticipate that the protective function of MNK1 in pancreatitis is mediated by eIF4E phosphorylation.METHODS: Acute pancreatitis was induced by the intraperitoneal administration of cerulein in wild-type mice and in transgenic mice carrying two non-phosphorylatable Eif4e alleles. The expression and phosphorylation of proteins of the MNK1-eIF4E pathway was visualized by western-blotting. The severity of pancreatitis was monitored by the measure of serum amylase levels and by histopathology and immunohistochemistry using apoptosis and immune infiltrate markers.
    RESULTS: Despite a strong induction in MNK1 kinase activity in both wild-type and transgenic mice, precluding eIF4E phosphorylation has no impact on the severity of acute pancreatitis. Serum amylase is equally induced in both mouse genotypes and neither acinar cell apoptosis nor immune infiltrate is exacerbated.
    CONCLUSION: eIF4E phosphorylation is not required for response to pancreatitis indicating that the acinar-cell-specific MNK1 kinase acts in acute pancreatitis via another substrate.
    Keywords:  Acute pancreatitis; MNK1; eIF4E
  56. Cancer Discov. 2021 Mar 02. pii: candisc.0987.2020. [Epub ahead of print]
      Inactivation of Beta 2-Microglobulin (B2M) is considered a determinant of resistance to immune checkpoint inhibitor (ICPi) in melanoma and lung cancers. In contrast, B2M loss does not appear to impact response to ICPi in Mismatch Repair deficient (MMRd) colorectal tumors where biallelic inactivation of B2M is frequently observed. We inactivated B2M in multiple murine MMRd cancer models. While MMRd cells would not readily grow in immunocompetent mice, MMRd B2M null cells were tumorigenic and regressed when treated with anti-PD-1 and anti-CTLA-4. The efficacy of ICPi against MMRd B2M null tumors did not require CD8+ T cells but relied on the presence of CD4+ T cells. Human tumors expressing low level of B2M display increased intra-tumoral CD4+ T cells. We conclude that B2M inactivation does not blunt the efficacy of ICPi in MMRd tumors and we identify a unique role for CD4+ T cells in tumor rejection.
  57. Nat Commun. 2021 03 04. 12(1): 1434
      Although melanoma is initiated by acquisition of point mutations and limited focal copy number alterations in melanocytes-of-origin, the nature of genetic changes that characterise lethal metastatic disease is poorly understood. Here, we analyze the evolution of human melanoma progressing from early to late disease in 13 patients by sampling their tumours at multiple sites and times. Whole exome and genome sequencing data from 88 tumour samples reveals only limited gain of point mutations generally, with net mutational loss in some metastases. In contrast, melanoma evolution is dominated by whole genome doubling and large-scale aneuploidy, in which widespread loss of heterozygosity sculpts the burden of point mutations, neoantigens and structural variants even in treatment-naïve and primary cutaneous melanomas in some patients. These results imply that dysregulation of genomic integrity is a key driver of selective clonal advantage during melanoma progression.
  58. Trends Cell Biol. 2021 Mar 02. pii: S0962-8924(21)00030-1. [Epub ahead of print]
      Peroxisomes are involved in multiple metabolic processes, including fatty acid oxidation, ether lipid synthesis, and reactive oxygen species (ROS) metabolism. Recent studies suggest that peroxisomes are critical mediators of cellular responses to various forms of stress, including oxidative stress, hypoxia, starvation, cold exposure, and noise. As dynamic organelles, peroxisomes can modulate their proliferation, morphology, and movement within cells, and engage in crosstalk with other organelles in response to external cues. Although peroxisome-derived hydrogen peroxide has a key role in cellular signaling related to stress, emerging studies suggest that other products of peroxisomal metabolism, such as acetyl-CoA and ether lipids, are also important for metabolic adaptation to stress. Here, we review molecular mechanisms through which peroxisomes regulate metabolic and environmental stress.
    Keywords:  ether lipid; lipid metabolism; peroxisome; plasmalogen; reactive oxygen species; stress
  59. Clin Cancer Res. 2021 Mar 05. pii: clincanres.3975.2019. [Epub ahead of print]
      PURPOSE: Gemcitabine is most commonly used for pancreatic cancer (PC). However, the molecular features and mechanisms of the frequently occurred resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment.EXPERIMENTAL DESIGN: In present study, we established 66 patient-derived xenografts (PDXs) based on clinical PC specimens and treated them with gemcitabine. We generated multi-omics data (including whole exome-seq, RNA-seq, miRNA-seq and DNA methylation array) of 15 drug sensitive and 13 resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and required resistance. Then, shRNA-based high-content screening was implemented to validate the function of the de-regulated genes.
    RESULTS: The comprehensive multi-omics analysis and functional experiment revealed that MRPS5 and GSPT1 had strong effects on cell proliferation, and CD55 and DHTKD1 contributed to gemcitabine resistance in PC cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of PC patients and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, HIF-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance.
    CONCLUSIONS: This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in PC and provide potential therapy targets for overcoming gemcitabine resistance.
  60. Trends Biochem Sci. 2021 Feb 27. pii: S0968-0004(21)00027-X. [Epub ahead of print]
      The inability to make broad, minimally biased measurements of a cell's proteome stands as a major bottleneck for understanding how gene expression translates into cellular phenotype. Unlike sequencing for nucleic acids, there is no dominant method for making single-cell proteomic measurements. Instead, methods typically focus on either absolute quantification of a small number of proteins or highly multiplexed protein measurements. Advances in microfluidics and output encoding have led to major improvements in both aspects. Here, we review the most recent progress that has enabled hundreds of protein measurements and ultrahigh-sensitivity quantification. We also highlight emerging technologies such as single-cell mass spectrometry that may enable unbiased measurement of cellular proteomes.
    Keywords:  multiomic; multiplexing; proteome; targeted proteomics; untargeted proteomics
  61. Nat Commun. 2021 Mar 05. 12(1): 1453
      A major roadblock prohibiting effective cellular immunotherapy of pancreatic ductal adenocarcinoma (PDAC) is the lack of suitable tumor-specific antigens. To address this challenge, here we combine flow cytometry screenings, bioinformatic expression analyses and a cyclic immunofluorescence platform. We identify CLA, CD66c, CD318 and TSPAN8 as target candidates among 371 antigens and generate 32 CARs specific for these molecules. CAR T cell activity is evaluated in vitro based on target cell lysis, T cell activation and cytokine release. Promising constructs are evaluated in vivo. CAR T cells specific for CD66c, CD318 and TSPAN8 demonstrate efficacies ranging from stabilized disease to complete tumor eradication with CD318 followed by TSPAN8 being the most promising candidates for clinical translation based on functionality and predicted safety profiles. This study reveals potential target candidates for CAR T cell based immunotherapy of PDAC together with a functional set of CAR constructs specific for these molecules.
  62. Oncol Rep. 2021 Apr;45(4): 1
      Hypoxia Inducible Lipid Droplet Associated (HILPDA) is frequently overexpressed in tumors and promotes neutral lipid storage. The impact of Hilpda on pancreatic ductal adenocarcinoma (PDAC) tumor growth is not known. In order to evaluate Hilpda‑dependent lipid storage mechanisms, expression of Hilpda in murine pancreatic cells (KPC) was genetically manipulated. Lipid droplet (LD) abundance and triglyceride content in vitro were measured, and model tumor growth in nu/nu mice was determined. The results showed that excess lipid supply increased triglyceride storage and LD formation in KPC cells in a HILPDA‑dependent manner. Contrary to published results, inhibition of Adipose Triglyceride Lipase (ATGL) did not ameliorate the triglyceride abundance differences between Hilpda WT and KO cells. Hilpda ablation significantly decreased the growth rate of model tumors in immunocompromised mice. In conclusion, Hilpda is a positive regulator of triglyceride storage and lipid droplet formation in murine pancreatic cancer cells in vitro and lipid accumulation and tumor growth in vivo. Our data suggest that deregulated ATGL is not responsible for the absence of LDs in KO cells in this context.
  63. Science. 2021 Mar 05. pii: eabc8697. [Epub ahead of print]371(6533):
      TP53 (tumor protein p53) is the most commonly mutated cancer driver gene, but drugs that target mutant tumor suppressor genes, such as TP53, are not yet available. Here, we describe the identification of an antibody highly specific to the most common TP53 mutation (R175H, in which arginine at position 175 is replaced with histidine) in complex with a common human leukocyte antigen-A (HLA-A) allele on the cell surface. We describe the structural basis of this specificity and its conversion into an immunotherapeutic agent: a bispecific single-chain diabody. Despite the extremely low p53 peptide-HLA complex density on the cancer cell surface, the bispecific antibody effectively activated T cells to lyse cancer cells that presented the neoantigen in vitro and in mice. This approach could in theory be used to target cancers containing mutations that are difficult to target in conventional ways.
  64. Semin Oncol. 2021 Feb 23. pii: S0093-7754(21)00007-5. [Epub ahead of print]
      Pancreatic cancer is still one of the most lethal cancers with a reported 5-year relative survival rate of approximatively 9% and medical treatment remains a major challenge. Systemic treatment is recommended in every setting: resectable, borderline resectable, locally advanced and metastatic. Yet, few groundbreaking changes in practice have occurred in the last 30 years compared to other cancers and new treatments options are highly desirable. Most treatment approaches using chemotherapy have failed to improve patients' life expectancy and the few therapies finally found to have statistically significant benefit actually have modest clinical impact. It is becoming imperative to find new paths for improvement, such as encapsulated agents, new generation targeted therapies and treatments directed against the tumor microenvironment. We report here the new drugs of interest in pancreatic cancer and analyze the most recent failures.
    Keywords:  Future direction; Microenvironment; Pancreatic cancer; Precision medicine; Stroma; Targeted therapies
  65. Nat Cancer. 2021 Feb;2(2): 174-188
      Glioblastoma (GBM) is a devastating human malignancy. GBM stem-like cells (GSCs) drive tumor initiation and progression. Yet, the molecular determinants defining GSCs in their native state in patients remain poorly understood. Here we used single cell datasets and identified GSCs at the apex of the differentiation hierarchy of GBM. By reconstructing the GSCs' regulatory network, we identified the YAP/TAZ coactivators as master regulators of this cell state, irrespectively of GBM subtypes. YAP/TAZ are required to install GSC properties in primary cells downstream of multiple oncogenic lesions, and required for tumor initiation and maintenance in vivo in different mouse and human GBM models. YAP/TAZ act as main roadblock of GSC differentiation and their inhibition irreversibly lock differentiated GBM cells into a non-tumorigenic state, preventing plasticity and regeneration of GSC-like cells. Thus, GSC identity is linked to a key molecular hub integrating genetics and microenvironmental inputs within the multifaceted biology of GBM.
  66. Bio Protoc. 2019 Dec 20. 9(24): e3455
      The process of autophagy is an essential cellular mechanism, required to maintain general cell health through the removal of dysfunctional organelles, such as the ER, peroxisomes and mitochondria, as well as protein aggregates, and bacteria. Autophagy is an extremely dynamic process, and tools are constantly being developed to study the various steps of this process. This protocol details a method to study the end steps of autophagy-lysosomal fusion and the formation of the autolysosome. Many techniques have been used to study the various steps of the autophagy process. Here we describe the RedGreen-assay (RG-assay), an immunofluorescence-based technique used to visualize the targeting of substrates to the autolysosome in live cells. This technique takes advantage of the low lysosomal pH and over-expression of a tandem GFP-mCherry tagged protein targeted to an organelle of interest. While in the neutral cytosol or autophagosome, both GFP and RFP will fluoresce. However, within the autolysosome, the GFP signal is quenched due to the low pH environment and the RFP emission signal will predominate. This technique is readily quantifiable and amenable to high throughput experiments. Additionally, by tagging the GFP-RFP tandem fluorescent protein with organelle specific targeting sequences, it can be used to measure a wide range of substrates of autophagy.
    Keywords:  Autolysosome; Autophagy; Live-cell imaging; Lysosome; Microscopy; Mitophagy; Pexophagy
  67. Clin Nutr. 2021 Feb 17. pii: S0261-5614(21)00086-8. [Epub ahead of print]
      In evolution, genes survived that could code for metabolic pathways, promoting long term survival during famines or fasting when suffering from trauma, disease or during physiological growth. This requires utilization of substrates, already present in some form in the body. Carbohydrate stores are limited and to survive long, their utilization is restricted to survival pathways, by inhibiting glucose oxidation and glycogen synthesis. This leads to insulin resistance and spares muscle protein, because being the main supplier of carbon for new glucose production. In these survival pathways, part of the glucose is degraded in glycolysis in peripheral (muscle) tissues to pyruvate and lactate (Warburg effect), which are partly reutilized for glucose formation in liver and kidney, completing the Cori-cycle. Another part of the glucose taken up by muscle contributes, together with muscle derived amino acids, to the production of substrates consisting of a complete amino acid mix but extra non-essential amino acids like glutamine, alanine, glycine and proline. These support cell proliferation, matrix deposition and redox regulation in tissues, specifically active in host response and during growth. In these tissues, also glucose is taken up delivering glycolytic intermediates, that branch off and act as building blocks and produce reducing equivalents. Lactate is also produced and released in the circulation, adding to the lactate released by muscle in the Cori-cycle and completing secondary glucose cycles. Increased fluxes through these cycles lead to modest hyperglycemia and hyperlactatemia in states of healthy growth and disease and are often misinterpreted as induced by hypoxia.
    Keywords:  Cori-cycle; Growth; Inflammation; Insulin resistance; Trauma/Disease; Warburg effect
  68. Bio Protoc. 2020 Sep 20. 10(18): e3749
      Most organs and tissues are composed of many types of cells. To characterize cellular state, various transcription profiling approaches are currently available, including whole-tissue bulk RNA sequencing, single cell RNA sequencing (scRNA-Seq), and cell type-specific RNA sequencing. What is missing in this repertoire is a simple, versatile method for bulk transcriptional profiling of cell types for which cell type-specific genetic markers or antibodies are not readily available. We therefore developed Probe-Seq, which uses hybridization of gene-specific probes to RNA markers for isolation of specific types of cells, to enable downstream FACS isolation and bulk RNA sequencing. We show that this method can enable isolation and profiling of specific cell types from mouse retina, frozen human retina, Drosophila midgut, and developing chick retina, suggesting that it is likely useful for most organisms.
    Keywords:  Cell Types; FISH; RNA; RNA-sequencing; Transcriptional Profiling
  69. Cell Death Dis. 2021 Mar 05. 12(3): 250
      Tumors are composed of subpopulations of cancer cells with functionally distinct features. Intratumoral heterogeneity limits the therapeutic effectiveness of cancer drugs. To address this issue, it is important to understand the regulatory mechanisms driving a subclonal variety within a therapy-resistant tumor. We identified tumor subclones of HN9 head and neck cancer cells showing distinct responses to radiation with different levels of p62 expression. Genetically identical grounds but epigenetic heterogeneity of the p62 promoter regions revealed that radioresistant HN9-R clones displayed low p62 expression via the creation of repressive chromatin architecture, in which cooperation between DNMT1 (DNA methyltransferases 1) and HDAC1 (histone deacetylases 1) resulted in DNA methylation and repressive H3K9me3 and H3K27me3 marks in the p62 promoter. Combined inhibition of DNMT1 and HDAC1 by genetic depletion or inhibitors enhanced the suppressive effects on proliferative capacity and in vivo tumorigenesis following irradiation. Importantly, ectopically p62-overexpressed HN9-R clones increased the induction of senescence along with p62-dependent autophagy activation. These results demonstrate the heterogeneous expression of p62 as the key component of clonal variation within a tumor against irradiation. Understanding the epigenetic diversity of p62 heterogeneity among subclones allows for improved identification of the functional state of subclones and provides a novel treatment option to resolve resistance to current therapies.