bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2021‒01‒10
110 papers selected by
Kıvanç Görgülü
Technical University of Munich

  1. Cell Metab. 2021 Jan 05. pii: S1550-4131(20)30664-1. [Epub ahead of print]33(1): 9-20
      Sustained proliferative potential of cancer cells creates heightened energetic and biosynthetic demands. The resulting overt dependence of cancer cells on unperturbed nutrient supply has prompted a widespread interest in amino acid restriction strategies as potential cancer therapeutics. However, owing to rapid signaling and metabolic reprogramming in cancer cells, the prospects for success of amino acid restriction approaches remain unclear. We thus recognize that the identification of co-vulnerabilities of amino acid-restricted cancers may inform actionable targets for effective combined interventions. In this perspective, we outline the current state of key cellular mechanisms underlying adaptation to amino acid restriction and discuss the role of signal transduction pathways governing cancer cell resistance to amino acid restriction, with potential ramifications for the design of future therapeutic efforts.
    Keywords:  ATF4; MAPK; NRF2; adaptation; amino acids; c-MYC; cancer; mTORC1; metabolism; resistance
  2. Nat Commun. 2021 Jan 08. 12(1): 174
      The immunosuppressive microenvironment that is shaped by hepatic metastatic pancreatic ductal adenocarcinoma (PDAC) is essential for tumor cell evasion of immune destruction. Neutrophils are important components of the metastatic tumor microenvironment and exhibit heterogeneity. However, the specific phenotypes, functions and regulatory mechanisms of neutrophils in PDAC liver metastases remain unknown. Here, we show that a subset of P2RX1-negative neutrophils accumulate in clinical and murine PDAC liver metastases. RNA sequencing of murine PDAC liver metastasis-infiltrated neutrophils show that P2RX1-deficient neutrophils express increased levels of immunosuppressive molecules, including PD-L1, and have enhanced mitochondrial metabolism. Mechanistically, the transcription factor Nrf2 is upregulated in P2RX1-deficient neutrophils and associated with PD-L1 expression and metabolic reprogramming. An anti-PD-1 neutralizing antibody is sufficient to compromise the immunosuppressive effects of P2RX1-deficient neutrophils on OVA-activated OT1 CD8+ T cells. Therefore, our study uncovers a mechanism by which metastatic PDAC tumors evade antitumor immunity by accumulating a subset of immunosuppressive P2RX1-negative neutrophils.
  3. Nat Immunol. 2021 Jan 04.
      Metabolic reprograming toward aerobic glycolysis is a pivotal mechanism shaping immune responses. Here we show that deficiency in NF-κB-inducing kinase (NIK) impairs glycolysis induction, rendering CD8+ effector T cells hypofunctional in the tumor microenvironment. Conversely, ectopic expression of NIK promotes CD8+ T cell metabolism and effector function, thereby profoundly enhancing antitumor immunity and improving the efficacy of T cell adoptive therapy. NIK regulates T cell metabolism via a NF-κB-independent mechanism that involves stabilization of hexokinase 2 (HK2), a rate-limiting enzyme of the glycolytic pathway. NIK prevents autophagic degradation of HK2 through controlling cellular reactive oxygen species levels, which in turn involves modulation of glucose-6-phosphate dehydrogenase (G6PD), an enzyme that mediates production of the antioxidant NADPH. We show that the G6PD-NADPH redox system is important for HK2 stability and metabolism in activated T cells. These findings establish NIK as a pivotal regulator of T cell metabolism and highlight a post-translational mechanism of metabolic regulation.
  4. Nat Metab. 2021 Jan 04.
      Metabolic transformation is a hallmark of cancer and a critical target for cancer therapy. Cancer metabolism and behaviour are regulated by cell-intrinsic factors as well as metabolite availability in the tumour microenvironment (TME). This metabolic niche within the TME is shaped by four tiers of regulation: (1) intrinsic tumour cell metabolism, (2) interactions between cancer cells and non-cancerous cells, (3) tumour location and heterogeneity and (4) whole-body metabolic homeostasis. Here, we define these modes of metabolic regulation and review how distinct cell types contribute to the metabolite composition of the TME. Finally, we connect these insights to understand how each of these tiers offers unique therapeutic potential to modulate the metabolic profile and function of all cells inhabiting the TME.
  5. Elife. 2021 Jan 04. pii: e55117. [Epub ahead of print]10
      Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of 'cancer stem cells (CSCs)' in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.
    Keywords:  cancer biology; human; mouse
  6. Nature. 2021 Jan 06.
      Ordered two-dimensional arrays such as S-layers1,2 and designed analogues3-5 have intrigued bioengineers6,7, but with the exception of a single lattice formed with flexible linkers8, they are constituted from just one protein component. Materials composed of two components have considerable potential advantages for modulating assembly dynamics and incorporating more complex functionality9-12. Here we describe a computational method to generate co-assembling binary layers by designing rigid interfaces between pairs of dihedral protein building blocks, and use it to design a p6m lattice. The designed array components are soluble at millimolar concentrations, but when combined at nanomolar concentrations, they rapidly assemble into nearly crystalline micrometre-scale arrays nearly identical to the computational design model in vitro and in cells without the need for a two-dimensional support. Because the material is designed from the ground up, the components can be readily functionalized and their symmetry reconfigured, enabling formation of ligand arrays with distinguishable surfaces, which we demonstrate can drive extensive receptor clustering, downstream protein recruitment and signalling. Using atomic force microscopy on supported bilayers and quantitative microscopy on living cells, we show that arrays assembled on membranes have component stoichiometry and structure similar to arrays formed in vitro, and that our material can therefore impose order onto fundamentally disordered substrates such as cell membranes. In contrast to previously characterized cell surface receptor binding assemblies such as antibodies and nanocages, which are rapidly endocytosed, we find that large arrays assembled at the cell surface suppress endocytosis in a tunable manner, with potential therapeutic relevance for extending receptor engagement and immune evasion. Our work provides a foundation for a synthetic cell biology in which multi-protein macroscale materials are designed to modulate cell responses and reshape synthetic and living systems.
  7. J Clin Med. 2021 Jan 04. pii: E149. [Epub ahead of print]10(1):
      Substantial progress in recent years has dramatically increased our knowledge of the molecular basis of cancer, revealing new potential therapeutic targets and paving the way for effective personalised medicine for the treatment of many tumour types. However, pancreatic cancer has been lagging behind in this success and continues to be one of the most lethal solid malignancies. Its molecular heterogeneity and the unselected design of the majority of clinical trials to date can in part explain the reason for our failure to make a significant change in the survival outcomes for patients with pancreatic cancer. A changing paradigm in drug development is required to validate the new molecular taxonomy and to rapidly translate preclinical discovery into clinical trials. Here, we review the molecular subtyping of pancreatic cancer, the challenges in identifying effective treatment regimens according to defined low-prevalence molecular subgroups and we illustrate a new model of translational therapeutic development that was established in the U.K. (Precision-Panc) as a potentially effective solution to improve outcomes for patients with pancreatic cancer.
    Keywords:  Precision-Panc; molecular subtypes; pancreatic cancer; pancreatic ductal adenocarcinoma; precision medicine
  8. Gastroenterology. 2020 Dec 31. pii: S0016-5085(20)35626-2. [Epub ahead of print]
      BACKGROUND AND AIM: Oncogenic KrasG12D induces neoplastic transformation of pancreatic acinar cells through acinar-to-ductal metaplasia (ADM), an actin-based morphogenetic process, and drives pancreatic ductal adenocarcinoma (PDAC). mTOR (mechanistic target of rapamycin kinase) complex 1 (mTORC1) and 2 (mTORC2) contain Rptor and Rictor, respectively, and are activated downstream of KrasG12D thereby contributing to PDAC. Yet, whether and how mTORC1 and mTORC2 impact on ADM and the identity of the actin nucleator(s) mediating such actin rearrangements remain unknown.METHODS: A mouse model of inflammation-accelerated KrasG12D-driven early pancreatic carcinogenesis was used. Rptor, Rictor and Arpc4 (Actin-related protein 2/3 complex subunit 4) were conditionally ablated in acinar cells to deactivate the function of mTORC1, mTORC2 and the Actin-related protein (Arp) 2/3 complex, respectively.
    RESULTS: We found that mTORC1 and mTORC2 are markedly activated in human and mouse ADM lesions, and cooperate to promote KrasG12D-driven ADM in mice and in vitro. They utilize the Arp2/3 complex as a common downstream effector to induce the remodeling the actin cytoskeleton leading to ADM. In particular, mTORC1 regulates the translation of Rac1 (Rac family small GTPase 1) and the Arp2/3-complex subunit Arp3, whereas mTORC2 activates the Arp2/3 complex by promoting Akt/Rac1 signaling. Consistently, genetic ablation of the Arp2/3 complex prevents KrasG12D-driven ADM in vivo. In acinar cells, the Arp2/3 complex and its actin-nucleation activity mediated the formation of a basolateral actin cortex, which is indispensable for ADM and pre-neoplastic transformation.
    CONCLUSION: Here, we show that mTORC1 and mTORC2 attain a dual, yet non-redundant regulatory role in ADM and early pancreatic carcinogenesis by promoting Arp2/3 complex function. Thus, the role of Arp2/3 complex as a common effector of mTORC1 and mTORC2 fills the gap between oncogenic signals and actin dynamics underlying PDAC initiation.
    Keywords:  ADM; Arp2/3 complex; PDAC; Rictor; Rptor; mTOR
  9. Cancer Res. 2021 Jan 08. pii: canres.2828.2020. [Epub ahead of print]
      The tumor suppressor protein RB acts as a transcription repressor via interaction of its pocket domain with an LXCXE motif in HDAC proteins such as HDAC1. Here we demonstrate that HDAC5 deficient for the LXCXE motif interacts with both RB-N (via an FXXXV motif) and RB-C segments, and such interactions are diminished by phosphorlyation of RB serine-249/threonine-252 and threonine-821. HDAC5 was frequently downregulated or deleted in human cancers such as prostate cancer. Loss of HDAC5 increased histone H3 lysine 27 acetylation (H3K27-ac) and circumvented RB-mediated repression of cell cycle-related pro-oncogenic genes. HDAC5 loss also conferred resistance to CDK4/6 inhibitors such as Palbociclib in prostate and breast cancer cells in vitro and prostate tumors in vivo, but this effect was overcome by the BET-CBP/p300 dual inhibitor NEO2734. Our findings reveal an unknown role of HDAC5 in RB-mediated histone deacetylation and gene repression and define a new mechanism modulating CDK4/6 inhibitor therapeutic sensitivity in cancer cells.
  10. Sci Signal. 2021 Jan 05. pii: eabc4436. [Epub ahead of print]14(664):
      Understanding the mechanisms of the Warburg shift to aerobic glycolysis is critical to defining the metabolic basis of cancer. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an aggressive cancer characterized by biallelic inactivation of the gene encoding the Krebs cycle enzyme fumarate hydratase, an early shift to aerobic glycolysis, and rapid metastasis. We observed impairment of the mitochondrial respiratory chain in tumors from patients with HLRCC. Biochemical and transcriptomic analyses revealed that respiratory chain dysfunction in the tumors was due to loss of expression of mitochondrial DNA (mtDNA)-encoded subunits of respiratory chain complexes, caused by a marked decrease in mtDNA content and increased mtDNA mutations. We demonstrated that accumulation of fumarate in HLRCC tumors inactivated the core factors responsible for replication and proofreading of mtDNA, leading to loss of respiratory chain components, thereby promoting the shift to aerobic glycolysis and disease progression in this prototypic model of glucose-dependent human cancer.
  11. Cancer Metab. 2021 Jan 07. 9(1): 2
      Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
    Keywords:  Cellular membrane; De novo synthesis; Fatty acid; Lipid; Lipid droplets; Mitochondria; Oxidation; Peroxisome
  12. Genome Biol. 2021 Jan 04. 22(1): 4
      BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers due to its high metastasis rate in the liver. However, little is known about the molecular features of hepatic metastases due to difficulty in obtaining fresh tissues and low tumor cellularity.RESULTS: We conduct exome sequencing and RNA sequencing for synchronous surgically resected primary tumors and the paired hepatic metastases from 17 hepatic oligometastatic pancreatic ductal adenocarcinoma and validate our findings in specimens from 35 of such cases. The comprehensive analysis of somatic mutations, copy number alterations, and gene expressions show high similarity between primary tumors and hepatic metastases. However, hepatic metastases also show unique characteristics, such as a higher degree of 3p21.1 loss, stronger abilities of proliferation, downregulation of epithelial to mesenchymal transition activity, and metabolic rewiring. More interesting, altered tumor microenvironments are observed in hepatic metastases, especially a higher proportion of tumor infiltrating M2 macrophage and upregulation of complement cascade. Further experiments demonstrate that expression of C1q increases in primary tumors and hepatic metastases, C1q is mainly produced by M2 macrophage, and C1q promotes migration and invasion of PDAC cells.
    CONCLUSION: Taken together, we find potential factors that contribute to different stages of PDAC metastasis. Our study broadens the understanding of molecular mechanisms driving PDAC metastasis.
    Keywords:  C1q; Genomics; Hepatic metastasis; Pancreatic ductal adenocarcinoma; Transcriptomics; Tumor microenvironment
  13. Cell Metab. 2021 Jan 05. pii: S1550-4131(20)30670-7. [Epub ahead of print]33(1): 33-50
      Key pathological, including oncogenic, signaling pathways regulate the canonical functions of metabolic enzymes that serve the cellular metabolic needs. Importantly, these signaling pathways also confer a large number of metabolic enzymes to have noncanonical or nonmetabolic functions that are referred to as "moonlighting" functions. In this review, we highlight how aberrantly regulated metabolic enzymes with such activities play critical roles in the governing of a wide spectrum of instrumental cellular activities, including gene expression, cell-cycle progression, DNA repair, cell proliferation, survival, apoptosis, and tumor microenvironment remodeling, thereby promoting the pathologic progression of disease, including cancer.
    Keywords:  DNA repair; apoptosis; cell proliferation; cell-cycle progression; gene expression; metabolic enzyme; noncanonical function; survival; tumor microenvironment
  14. Cancers (Basel). 2020 Dec 30. pii: E96. [Epub ahead of print]13(1):
      In pancreatic cancer the tumor microenvironment (TME) can account for up to 90% of the tumor mass. The TME drives essential functions in disease progression, invasion and metastasis. Tumor cells can use epigenetic modulation to evade immune recognition and shape the TME toward an immunosuppressive phenotype. Bromodomain inhibitors are a class of drugs that target BET (bromodomain and extra-terminal) proteins, impairing their ability to bind to acetylated lysines and therefore interfering with transcriptional initiation and elongation. INCB057643 is a new generation, orally bioavailable BET inhibitor that was developed for treating patients with advanced malignancies. KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) mice mimic human disease, with similar progression and incidence of metastasis. Treatment of established tumors in KPC mice with INCB057643 increased survival by an average of 55 days, compared to the control group. Moreover, INCB057643 reduced metastatic burden in these mice. KPC mice treated with INCB057643, starting at 4 weeks of age, showed beneficial changes in immune cell populations in the pancreas and liver. Similarly, INCB057643 modified immune cell populations in the pancreas of KrasG12D/+; Pdx-1-Cre (KC) mice with pancreatitis, an inflammatory process known to promote pancreatic cancer progression. The data presented here suggest that the bromodomain inhibitor INCB057643 modulates the TME, reducing disease burden in two mouse models of pancreatic cancer. Furthermore, this work suggests that BRD4 may play a role in establishing the TME in the liver, a primary metastatic site for pancreatic cancer.
    Keywords:  bromodomain inhibitors; inflammatory tumor microenvironment; pancreatic cancer
  15. FEBS J. 2021 Jan 07.
      The MAP kinase p38α is associated with numerous processes in eukaryotes and its elevated activity is a prominent feature of inflammatory diseases, allergies and aging. Since p38α is a nodal component of a complex signaling network, it is difficult to reveal exactly how p38α contributes to disparate outcomes. Identification of p38α-specific effects requires activation of p38α per se in vivo. We generated a transgenic mouse model that meets this requirement by allowing inducible and reversible expression of an intrinsically active p38α molecule (p38αD176A+F327S ). p38α 's activation across all murine tissues resulted in a significant loss of body weight and death of about 40% of the mice within 17 weeks of activation, although most tissues were unaffected. Flow cytometric analysis of the lungs and bronchoalveolar lavage (BAL) fluid detected an accumulation of 'debris' within the airways, suggesting impaired clearance. It also revealed increased numbers of alternatively activated alveolar macrophages and myeloid-derived suppressor cells (MDSCs) within the lung, pointing at suppression and resolution of inflammation. Blood count suggested that mice expressing p38αD176A+F327S suffer from hemolytic anemia. Flow cytometry of bone marrow revealed a reduced number of hematopoietic stem cells and abnormalities in the erythroid lineage. Unexpectedly, p38α's substrate MK2 was downregulated in mice expressing p38αD176A+F327S , suggesting that constitutive activity of p38α may impose pathological phenotypes by downregulating downstream components, perhaps via a feedback inhibition mechanism. In summary, this new mouse model shows that induced p38α activity per se is hazardous to mice vitality and welfare, although pathological parameters are apparent only in blood count, bone marrow and lungs.
    Keywords:  active variants; anemia; immunosuppressive cells; p38α; transgenic mouse
  16. Nat Metab. 2021 Jan 04.
      Organelles use specialized molecules to regulate their essential cellular processes. However, systematically elucidating the subcellular distribution and function of molecules such as long non-coding RNAs (lncRNAs) in cellular homeostasis and diseases has not been fully achieved. Here, we reveal the diverse and abundant subcellular distribution of organelle-associated lncRNAs from mitochondria, lysosomes and endoplasmic reticulum. Among them, we identify the mitochondrially localized lncRNA growth-arrest-specific 5 (GAS5) as a tumour suppressor in maintaining cellular energy homeostasis. Mechanistically, energy-stress-induced GAS5 modulates mitochondrial tricarboxylic acid flux by disrupting metabolic enzyme tandem association of fumarate hydratase, malate dehydrogenase and citrate synthase, the canonical members of the tricarboxylic acid cycle. GAS5 negatively correlates with levels of its associated mitochondrial metabolic enzymes in tumours and benefits overall survival in individuals with breast cancer. Together, our detailed annotation of subcellular lncRNA distribution identifies a functional role for lncRNAs in regulating cellular metabolic homeostasis, highlighting organelle-associated lncRNAs as potential clinical targets to manipulate cellular metabolism and diseases.
  17. Autophagy. 2021 Jan 06.
      Macroautophagy (hereafter referred to as "autophagy") is a lysosome-mediated degradation process that plays a complex role in cellular stress, either promoting survival or triggering death. Early studies suggest that ferroptosis, an iron-dependent form of regulated cell death, is not related to autophagy. Conversely, recent evidence indicates that the molecular machinery of autophagy facilitates ferroptosis through the selective degradation of anti-ferroptosis regulators. However, the mechanism of autophagy-dependent ferroptosis remains incompletely understood. Here, we examine the early dynamic change in protein expression of autophagic (e.g., MAP1LC3B and SQSTM1) or ferroptotic (e.g., SLC7A11 and GPX4) regulators in 60 human cancer cell lines in response to two classical ferroptosis activators (erastin and RSL3) in the absence or presence of the lysosomal inhibitor chloroquine. Compared to erastin, RSL3 exhibits wider and stronger activity in the upregulation of MAP1LC3B-II or downregulation of SQSTM1 in 80% (48/60) or 63% (38/60) of cell lines, respectively. Both RSL3 and erastin failed to affect SLC7A11 expression, but they led to GPX4 downregulation in 12% (7/60) and 3% (2/60) of cell lines, respectively. Additionally, the intracellular iron exporter SLC40A1 was identified as a new substrate for autophagic elimination, and its degradation by SQSTM1 promoted ferroptosis in vitro and in xenograft tumor mouse models. Together, these findings show tumor heterogeneity in autophagy-dependent ferroptosis, which might have different biological behaviors with regard to the dynamic characteristics of cell death.
    Keywords:  autophagy; cell death; ferroptosis; heterogeneity; tumor therapy
  18. Nat Med. 2021 Jan 04.
      Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models. Patients with liver metastases derive limited benefit from immunotherapy independent of other established biomarkers of response. In multiple mouse models, we show that liver metastases siphon activated CD8+ T cells from systemic circulation. Within the liver, activated antigen-specific Fas+CD8+ T cells undergo apoptosis following their interaction with FasL+CD11b+F4/80+ monocyte-derived macrophages. Consequently, liver metastases create a systemic immune desert in preclinical models. Similarly, patients with liver metastases have reduced peripheral T cell numbers and diminished tumoral T cell diversity and function. In preclinical models, liver-directed radiotherapy eliminates immunosuppressive hepatic macrophages, increases hepatic T cell survival and reduces hepatic siphoning of T cells. Thus, liver metastases co-opt host peripheral tolerance mechanisms to cause acquired immunotherapy resistance through CD8+ T cell deletion, and the combination of liver-directed radiotherapy and immunotherapy could promote systemic antitumor immunity.
  19. Autophagy. 2021 Jan 06.
      Retinal ganglion cell axons are heavily myelinated (98%) and myelin damage in the optic nerve (ON) severely affects vision. Understanding the molecular mechanism of oligodendrocyte progenitor cell (OPC) differentiation into mature oligodendrocytes will be essential for developing new therapeutic approaches for ON demyelinating diseases. To this end, we developed a new method for isolation and culture of ON-derived oligodendrocyte lineage cells and used it to study OPC differentiation. A critical aspect of cellular differentiation is macroautophagy/autophagy, a catabolic process that allows for cell remodeling by degradation of excess or damaged cellular molecules and organelles. Knockdown of ATG9A and BECN1 (pro-autophagic proteins involved in the early stages of autophagosome formation) led to a significant reduction in proliferation and survival of OPCs. We also found that autophagy flux (a measure of autophagic degradation activity) is significantly increased during progression of oligodendrocyte differentiation. Additionally, we demonstrate a significant change in mitochondrial dynamics during oligodendrocyte differentiation, which is associated with a significant increase in programmed mitophagy (selective autophagic clearance of mitochondria). This process is mediated by the mitophagy receptor BNIP3L (BCL2/adenovirus E1B interacting protein 3-like). BNIP3L-mediated mitophagy plays a crucial role in the regulation of mitochondrial network formation, mitochondrial function and the viability of newly differentiated oligodendrocytes. Our studies provide novel evidence that proper mitochondrial dynamics is required for establishment of functional mitochondria in mature oligodendrocytes. These findings are significant because targeting BNIP3L-mediated programmed mitophagy may provide a novel therapeutic approach for stimulating myelin repair in ON demyelinating diseases.
    Keywords:  ATG9A; autophagy; autophagy flux; co-culture; demyelinating diseases; glial cells; mitochondrial dynamics; myelin; oligodendrocyte lineage cells; retinal ganglion cell axons
  20. J Mol Med (Berl). 2021 Jan 03.
      Fibrosis is a pathological process characterized by accumulation of fibrous connective tissue in organs, leading to organ malfunction and failure. At the cellular level, tissue injury or cellular stress results in aberrant and/or sustained fibroblast "activation" leading to excessive extracellular matrix (ECM) accumulation and remodeling, as well as abnormal crosstalk with other cell types. Fibroblast functions within the fibrotic milieu are broad and complex, but among the most prominent are regulation of tissue architecture via modulation of ECM deposition and synthesis, and production of, activation of, and response to growth factors. Thus, both integrins and growth factor receptors (GFRs) play critical roles in fibroblast orchestration of tissue remodeling. However, the interplay between integrins and GFRs in this context is not fully understood. Their interaction has been described for other diseases, such as cancer. Here, we review the literature relevant to integrin/GFR interactions in the context of fibrosis, classify the known interactions into broad categories, and discuss research opportunities that may yield novel therapeutic targets for a broad range of debilitating chronic diseases.
    Keywords:  Epidermal growth factor receptor (EGFR); Extracellular matrix (ECM); Fibroblast; Idiopathic pulmonary fibrosis (IPF); Transforming growth factor BETA (TGFβ)
  21. Biology (Basel). 2021 Jan 06. pii: E33. [Epub ahead of print]10(1):
      Cancer is one of the world's deadliest afflictions. Despite recent advances in diagnostic and surgical technologies, as well as improved treatments of some individual tumor types, there is currently no universal cure to prevent or impede the uncontrolled proliferation of malignant cells. Targeting tumors by inducing apoptosis is one of the pillars of cancer treatment. Changes in mitochondrial morphology precede intrinsic apoptosis, but mitochondrial dynamics has only recently been recognized as a viable pharmacological target. In many cancers, oncogenic transformation is accompanied by accumulation of elevated cellular levels of ROS leading to redox imbalance. Hence, a common chemotherapeutic strategy against such tumor types involves deploying pro-oxidant agents to increase ROS levels above an apoptotic death-inducing threshold. The aim of this chapter is to investigate the benefit of stimulating mitochondrial fission-dependent production of ROS for enhanced killing of solid tumors. The main question to be addressed is whether a sudden and abrupt change in mitochondrial shape toward the fragmented phenotype can be pharmacologically harnessed to trigger a burst of mitochondrial ROS sufficient to initiate apoptosis specifically in cancer cells but not in non-transformed healthy tissues.
    Keywords:  apoptosis; cancer; chemotherapy; cyclin C; mitochondria; mitochondrial dynamics; mitophagy; oxidative stress; reactive oxygen species; stress signaling
  22. Nat Genet. 2021 Jan;53(1): 16-26
      Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.
  23. JCI Insight. 2021 Jan 07. pii: 141323. [Epub ahead of print]
      Glucagon regulates glucose and lipid metabolism and also promotes weight loss. Thus, therapeutics stimulating glucagon-receptor (GCGR) signaling are promising for obesity treatment; however, the underlying mechanism(s) have yet to be fully elucidated. We previously identified that hepatic GCGR signaling increases circulating Fibroblast Growth Factor 21 (FGF21), a potent regulator of energy balance. We reported that mice deficient for liver Fgf21 are partially resistant to GCGR-mediated weight loss, implicating FGF21 as a regulator of glucagon's weight-loss effects. FGF21 signaling requires an obligate co-receptor (B-Klotho, KLB), with expression limited to adipose tissue, liver, pancreas, and brain. We hypothesized that the GCGR-FGF21 system mediates weight loss through a central mechanism. Mice deficient for neuronal Klb (Klb∆CNS) exhibit a partial reduction in body weight with chronic GCGR-agonism (via IUB288) compared to controls (p<0.0001), supporting a role for central FGF21 signaling in GCGR-mediated weight loss. Substantiating these results, mice with central KLB inhibition via a pharmacological KLB antagonist (1153) also display partial weight loss (p<0.0001). Central KLB, however, is dispensable for GCGR-mediated improvements in plasma cholesterol and liver triglycerides. Together, these data suggest GCGR-agonism mediates part of its weight loss properties through central KLB and has implications for future treatments against obesity and metabolic syndrome.
    Keywords:  Metabolism; Obesity
  24. Lancet Oncol. 2021 01;pii: S1470-2045(20)30532-5. [Epub ahead of print]22(1): 118-131
      BACKGROUND: Standard chemotherapy remains inadequate in metastatic pancreatic adenocarcinoma. Combining an agonistic CD40 monoclonal antibody with chemotherapy induces T-cell-dependent tumour regression in mice and improves survival. In this study, we aimed to evaluate the safety of combining APX005M (sotigalimab) with gemcitabine plus nab-paclitaxel, with and without nivolumab, in patients with pancreatic adenocarcinoma to establish the recommended phase 2 dose.METHODS: This non-randomised, open-label, multicentre, four-cohort, phase 1b study was done at seven academic hospitals in the USA. Eligible patients were adults aged 18 years and older with untreated metastatic pancreatic adenocarcinoma, Eastern Cooperative Oncology Group performance status score of 0-1, and measurable disease by Response Evaluation Criteria in Solid Tumors version 1.1. All patients were treated with 1000 mg/m2 intravenous gemcitabine and 125 mg/m2 intravenous nab-paclitaxel. Patients received 0·1 mg/kg intravenous APX005M in cohorts B1 and C1 and 0·3 mg/kg in cohorts B2 and C2. In cohorts C1 and C2, patients also received 240 mg intravenous nivolumab. Primary endpoints comprised incidence of adverse events in all patients who received at least one dose of any study drug, incidence of dose-limiting toxicities (DLTs) in all patients who had a DLT or received at least two doses of gemcitabine plus nab-paclitaxel and one dose of APX005M during cycle 1, and establishing the recommended phase 2 dose of intravenous APX005M. Objective response rate in the DLT-evaluable population was a key secondary endpoint. This trial (PRINCE, PICI0002) is registered with, NCT03214250 and is ongoing.
    FINDINGS: Between Aug 22, 2017, and July 10, 2018, of 42 patients screened, 30 patients were enrolled and received at least one dose of any study drug; 24 were DLT-evaluable with median follow-up 17·8 months (IQR 16·0-19·4; cohort B1 22·0 months [21·4-22·7], cohort B2 18·2 months [17·0-18·9], cohort C1 17·9 months [14·3-19·7], cohort C2 15·9 months [12·7-16·1]). Two DLTs, both febrile neutropenia, were observed, occurring in one patient each for cohorts B2 (grade 3) and C1 (grade 4). The most common grade 3-4 treatment-related adverse events were lymphocyte count decreased (20 [67%]; five in B1, seven in B2, four in C1, four in C2), anaemia (11 [37%]; two in B1, four in B2, four in C1, one in C2), and neutrophil count decreased (nine [30%]; three in B1, three in B2, one in C1, two in C2). 14 (47%) of 30 patients (four each in B1, B2, C1; two in C2) had a treatment-related serious adverse event. The most common serious adverse event was pyrexia (six [20%] of 30; one in B2, three in C1, two in C2). There were two chemotherapy-related deaths due to adverse events: one sepsis in B1 and one septic shock in C1. The recommended phase 2 dose of APX005M was 0·3 mg/kg. Responses were observed in 14 (58%) of 24 DLT-evaluable patients (four each in B1, C1, C2; two in B2).
    INTERPRETATION: APX005M and gemcitabine plus nab-paclitaxel, with or without nivolumab, is tolerable in metastatic pancreatic adenocarcinoma and shows clinical activity. If confirmed in later phase trials, this treatment regimen could replace chemotherapy-only standard of care in this population.
    FUNDING: Parker Institute for Cancer Immunotherapy, Cancer Research Institute, and Bristol Myers Squibb.
  25. Neoplasia. 2021 Jan 05. pii: S1476-5586(20)30190-1. [Epub ahead of print]23(2): 234-245
      Tumor cells often switch from mitochondrial oxidative metabolism to glycolytic metabolism even under aerobic conditions. Tumor cell glycolysis is accompanied by several nonenzymatic activities among which induction of drug resistance has important therapeutic implications. In this article, we review the main aspects of glycolysis-induced drug resistance. We discuss the classes of antitumor drugs that are affected and the components of the glycolytic pathway (transporters, enzymes, metabolites) that are involved in the induction of drug resistance. Glycolysis-associated drug resistance occurs in response to stimuli, either cell-autonomous (e.g., oncoproteins) or deriving from the tumor microenvironment (e.g., hypoxia or pseudohypoxia, mechanical cues, etc.). Several mechanisms mediate the induction of drug resistance in response to glycolytic metabolism: inhibition of apoptosis, induction of epithelial-mesenchymal transition, induction of autophagy, inhibition of drug influx and increase of drug efflux. We suggest that drug resistance in response to glycolysis comes into play in presence of qualitative (e.g., expression of embryonic enzyme isoforms, post-translational enzyme modifications) or quantitative (e.g., overexpression of enzymes or overproduction of metabolites) alterations of glycolytic metabolism. We also discern similarities between changes occurring in tumor cells in response to stimuli inducing glycolysis-associated drug resistance and those occurring in cells of the innate immune system in response to danger signals and that have been referred to as danger-associated metabolic modifications. Eventually, we briefly address that also mitochondrial oxidative metabolism may induce drug resistance and discuss the therapeutic implications deriving from the fact that the main energy-generating metabolic pathways may be both at the origin of antitumor drug resistance.
    Keywords:  Apoptosis; Danger; Drug resistance; EMT; Glycolysis; Tumors
  26. Nat Commun. 2021 Jan 08. 12(1): 183
      We have reported that autophagy is crucial for clearance of amyloidogenic human IAPP (hIAPP) oligomer, suggesting that an autophagy enhancer could be a therapeutic modality against human diabetes with amyloid accumulation. Here, we show that a recently identified autophagy enhancer (MSL-7) reduces hIAPP oligomer accumulation in human induced pluripotent stem cell-derived β-cells (hiPSC-β-cells) and diminishes oligomer-mediated apoptosis of β-cells. Protective effects of MSL-7 against hIAPP oligomer accumulation and hIAPP oligomer-mediated β-cell death are significantly reduced in cells with knockout of MiTF/TFE family members such as Tfeb or Tfe3. MSL-7 improves glucose tolerance and β-cell function of hIAPP+ mice on high-fat diet, accompanied by reduced hIAPP oligomer/amyloid accumulation and β-cell apoptosis. Protective effects of MSL-7 against hIAPP oligomer-mediated β-cell death and the development of diabetes are also significantly reduced by β-cell-specific knockout of Tfeb. These results suggest that an autophagy enhancer could have therapeutic potential against human diabetes characterized by islet amyloid accumulation.
  27. Nat Genet. 2021 Jan;53(1): 11-15
      In multiple cancer types, high tumor mutational burden (TMB) is associated with longer survival after treatment with immune checkpoint inhibitors (ICIs). The association of TMB with survival outside of the immunotherapy context is poorly understood. We analyzed 10,233 patients (80% non-ICI-treated, 20% ICI-treated) with 17 cancer types before/without ICI treatment or after ICI treatment. In non-ICI-treated patients, higher TMB (higher percentile within cancer type) was not associated with better prognosis; in fact, in many cancer types, higher TMB was associated with poorer survival, in contrast to ICI-treated patients in whom higher TMB was associated with longer survival.
  28. Nat Commun. 2021 01 04. 12(1): 16
      Autophagy contributes to the selective degradation of liquid droplets, including the P-Granule, Ape1-complex and p62/SQSTM1-body, although the molecular mechanisms and physiological relevance of selective degradation remain unclear. In this report, we describe the properties of endogenous p62-bodies, the effect of autophagosome biogenesis on these bodies, and the in vivo significance of their turnover. p62-bodies are low-liquidity gels containing ubiquitin and core autophagy-related proteins. Multiple autophagosomes form on the p62-gels, and the interaction of autophagosome-localizing Atg8-proteins with p62 directs autophagosome formation toward the p62-gel. Keap1 also reversibly translocates to the p62-gels in a p62-binding dependent fashion to activate the transcription factor Nrf2. Mice deficient for Atg8-interaction-dependent selective autophagy show that impaired turnover of p62-gels leads to Nrf2 hyperactivation in vivo. These results indicate that p62-gels are not simple substrates for autophagy but serve as platforms for both autophagosome formation and anti-oxidative stress.
  29. Gastroenterology. 2021 Jan 05. pii: S0016-5085(21)00008-1. [Epub ahead of print]
      Rising trends in the incidence and mortality of early-onset CRC in those who are ages less than 50 years have been well-established. These trends have spurred intense investigation focused on elucidating the epidemiology and characteristics of early-onset CRC, as well on identifying strategies for early detection and prevention. In this review, we provide a contemporary update on early-onset CRC with a particular focus on epidemiology, molecular characterization, red flag signs and symptoms, and screening for early-onset CRC.
  30. Cells. 2021 Jan 06. pii: E79. [Epub ahead of print]10(1):
      The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
    Keywords:  Parkinson’s disease; aging; aging-driven degenerative disease; autophagy; longevity; mitochondrial permeability transition; mitophagy; reactive oxygen species
  31. Cell Metab. 2021 Jan 05. pii: S1550-4131(20)30666-5. [Epub ahead of print]33(1): 78-93.e7
      Obesity is often linked to malignancies including multiple myeloma, and the underlying mechanisms remain elusive. Here we showed that acetyl-CoA synthetase 2 (ACSS2) may be an important linker in obesity-related myeloma. ACSS2 is overexpressed in myeloma cells derived from obese patients and contributes to myeloma progression. We identified adipocyte-secreted angiotensin II as a direct cause of adiposity in increased ACSS2 expression. ACSS2 interacts with oncoprotein interferon regulatory factor 4 (IRF4), and enhances IRF4 stability and IRF4-mediated gene transcription through activation of acetylation. The importance of ACSS2 overexpression in myeloma is confirmed by the finding that an inhibitor of ACSS2 reduces myeloma growth both in vitro and in a diet-induced obese mouse model. Our findings demonstrate a key impact for obesity-induced ACSS2 on the progression of myeloma. Given the central role of ACSS2 in many tumors, this mechanism could be important to other obesity-related malignancies.
    Keywords:  ACSS2; IRF4; adipocytes; angiotensin II; autophagy; lysine acetylation; multiple myeloma; obesity
  32. Cell. 2021 Jan 07. pii: S0092-8674(20)31535-X. [Epub ahead of print]184(1): 226-242.e21
      Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.
    Keywords:  MRD; autophagy; barcode; chemotherapy; colorectal cancer; diapause; drug tolerant persisters; equipotent; mTOR; slow-cycling
  33. Cancer Cell. 2020 Dec 31. pii: S1535-6108(20)30610-3. [Epub ahead of print]
      Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.
    Keywords:  biomolecular condensates; cancer; cancer therapeutics; dysregulated state; intrinsically disordered protein; phase separation
  34. Int J Cancer. 2021 Jan 04.
      Cancer is well established as an age-associated disease, and there is substantial overlap in the molecular, cellular and physiological changes observed with both ageing and the progression of cancer. Age-specific declines in resilience mechanisms such as DNA repair or epigenetic maintenance may contribute to the development of cancer. These declines may be assessed through biomarkers that measure biological age and through the related concept of "age acceleration". Epigenetic clocks, assessed through DNA methylation levels, are among the most widely used biological age markers in cancer studies. In this review, we discuss the use of DNA methylation ageing measures to predict population cancer incidence, mortality and survival. Blood-based DNA methylation age estimators appear to be promising measures of increased cancer risk and mortality, although their reported effects are generally weak, thus its clinical relevance remains to be validated in large case-cohort and longitudinal studies. Future development of epigenetic and other biological age biomarkers will likely further elucidate the links between ageing and cancer. This article is protected by copyright. All rights reserved.
    Keywords:  Age; Age Acceleration; Biological Age; Cancer; DNA Methylation; Epigenetic
  35. Nat Commun. 2021 01 04. 12(1): 57
      Autophagy catabolizes cellular constituents to promote survival during nutrient deprivation. Yet, a metabolic comprehension of this recycling operation, despite its crucial importance, remains incomplete. Here, we uncover a specific metabolic function of autophagy that exquisitely adjusts cellular metabolism according to nitrogen availability in the budding yeast Saccharomyces cerevisiae. Autophagy enables metabolic plasticity to promote glutamate and aspartate synthesis, which empowers nitrogen-starved cells to replenish their nitrogen currency and sustain macromolecule synthesis. Our findings provide critical insights into the metabolic basis by which autophagy recycles cellular components and may also have important implications in understanding the role of autophagy in diseases such as cancer.
  36. FEBS J. 2021 Jan 06.
      NUPR1 is a stress response protein overexpressed upon cell injury in virtually all organs including the exocrine pancreas. Despite NUPR1's well established role in the response to cell stress, the molecular and structural machineries triggered by NUPR1 activation remain largely debated. In this study, we uncover a new role for NUPR1, participating in the unfolded protein response (UPR) and the integrated stress response (ISR). Biochemical results and ultrastructural morphological observations revealed alterations in the UPR of acinar cells of germline-deleted NUPR1 murine models, consistent with the inability to restore general protein synthesis after stress induction. Bioinformatic analysis of NUPR1-interacting partners showed significant enrichment in translation initiation factors, including eukaryotic initiation factor (eIF) 2α. Co-immunoprecipitation and proximity ligation assays confirmed interaction between NUPR1 and eIF2α and its phosphorylated form (p-eIF2α). Furthermore, our data suggests loss of NUPR1 in cells results in maintained eIF2α phosphorylation and evaluation of nascent proteins by click chemistry revealed that NUPR1-depleted PANC-1 cells displayed a slower post stress protein synthesis recovery when compared to wild-type. Combined, this data proposes a novel role for NUPR1 in the integrated stress response pathway, at least partially through promoting efficient PERK-branch activity and resolution through a unique interaction with eIF2α.
    Keywords:  ER-stress; NUPR1; Unfolded Protein Response; eIF2α; protein translation
  37. Mol Cell. 2020 Dec 30. pii: S1097-2765(20)30902-3. [Epub ahead of print]
      DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires RECQ1, which resolves reversed forks, and RAD18, which promotes translesion synthesis. Loss of CARM1 reduces fork reversal and increases single-stranded DNA (ssDNA) gaps but allows cells to tolerate higher replication stress. Mechanistically, CARM1 interacts with PARP1 and promotes PARylation at replication forks. In vitro, CARM1 stimulates PARP1 activity by enhancing its DNA binding and acts jointly with HPF1 to activate PARP1. Thus, by stimulating PARP1, CARM1 slows replication forks and promotes the use of fork reversal in the stress response, revealing that CARM1 and PARP1 function as a regulatory module at forks to control fork speed and the choice of stress response mechanisms.
    Keywords:  CARM1; PARP1; PARylation; PrimPol; RECQ1; fork reversal; fork speed; replication fork; replication stress; translesion synthesis
  38. Nat Immunol. 2021 Jan 04.
      Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.
  39. Nat Methods. 2021 Jan 04.
      Subclonal reconstruction from bulk tumor DNA sequencing has become a pillar of cancer evolution studies, providing insight into the clonality and relative ordering of mutations and mutational processes. We provide an outline of the complex computational approaches used for subclonal reconstruction from single and multiple tumor samples. We identify the underlying assumptions and uncertainties in each step and suggest best practices for analysis and quality assessment. This guide provides a pragmatic resource for the growing user community of subclonal reconstruction methods.
  40. J Clin Invest. 2021 Jan 04. pii: 133081. [Epub ahead of print]131(1):
      Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.
    Keywords:  Bioenergetics; Metabolism; Oncology
  41. Biology (Basel). 2021 Jan 06. pii: E31. [Epub ahead of print]10(1):
      Sarcopenia is defined by the age-related loss of skeletal muscle quality, which relies on mitochondrial homeostasis. During aging, several mitochondrial features such as bioenergetics, dynamics, biogenesis, and selective autophagy (mitophagy) are altered and impinge on protein homeostasis, resulting in loss of muscle mass and function. Thus, mitochondrial dysfunction contributes significantly to the complex pathogenesis of sarcopenia, and mitochondria are indicated as potential targets to prevent and treat this age-related condition. After a concise presentation of the age-related modifications in skeletal muscle quality and mitochondrial homeostasis, the present review summarizes the most relevant findings related to mitochondrial alterations in sarcopenia.
    Keywords:  aging skeletal muscle; mitochondrial dysfunction; protein homeostasis
  42. Ann Surg Oncol. 2021 Jan 07.
      BACKGROUND: This study investigated the safety and feasibility of intraoperative portal vein blood (PVB) collection at the time of pancreatic ductal adenocarcinoma (PDAC) resection. Relationships of circulating tumor cells (CTCs) in PVB and peripheral blood (PB) with overall survival (OS) and recurrence-free survival were studied.METHODS: Patients undergoing PDAC resection were offered enrollment in a prospective liquid biopsy protocol. The patients had PB drawn before incision and PVB drawn before tumor mobilization, then again immediately after resection. Using standard CellSearch protocols, CTCs were identified and compared with OS.
    RESULTS: Of the 34 patients enrolled in this study, 23 (68%) underwent pancreaticoduodenectomy, 8 (23%) underwent distal pancreatectomy, and 3 (9%) underwent total pancreatectomy. Peripheral blood was available for 22 (65%) and PVB for 31 (91%) of the patients. No bleeding or thrombotic complications occurred with the PVB draws. The CTC counts per 7.5 mL of PVB collected before and after resection were highly correlated (R2 = 0.89). The study found CTCs in 11 (50%) of 22 PB samples and 22 (71%) of 31 PVB samples. The OS rate at 18 months was 92% for the patients with < 3 CTCs, 71% for the patients with ≥ 3 CTCs per 7.5 mL of PB (p = 0.30), 100% for the patients without PVB CTCs, and 70% for the patients with PVB CTCs (p < 0.01).
    CONCLUSIONS: Collection of PVB during PDAC resection is safe. In this pilot study, PVB CTC counts but not PB CTC counts were significantly correlated with OS. This opens the door for future studies on selective omission of adjuvant chemotherapy for patients treated preoperatively and tailored surveillance intensity for patients without PVB CTCs at PDAC resection.
  43. J Immunol. 2021 Jan 15. 206(2): 264-272
      Lymphatic vessels provide an anatomical framework for immune surveillance and adaptive immune responses. Although appreciated as the route for Ag and dendritic cell transport, peripheral lymphatic vessels are often not considered active players in immune surveillance. Lymphatic vessels, however, integrate contextual cues that directly regulate transport, including changes in intrinsic pumping and capillary remodeling, and express a dynamic repertoire of inflammatory chemokines and adhesion molecules that facilitates leukocyte egress out of inflamed tissue. These mechanisms together contribute to the course of peripheral tissue immunity. In this review, we focus on context-dependent mechanisms that regulate fluid and cellular transport out of peripheral nonlymphoid tissues to provide a framework for understanding the effects of afferent lymphatic transport on immune surveillance, peripheral tissue inflammation, and adaptive immunity.
  44. Nature. 2021 Jan 06.
      The mitochondrial outer membrane contains so-called β-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of β-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the β-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the β-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed β-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a β-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of β-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for β-barrel assembly.
  45. Nat Commun. 2021 01 04. 12(1): 61
      Coat protein complex I (COP-I) mediates the retrograde transport from the Golgi apparatus to the endoplasmic reticulum (ER). Mutation of the COPA gene, encoding one of the COP-I subunits (α-COP), causes an immune dysregulatory disease known as COPA syndrome. The molecular mechanism by which the impaired retrograde transport results in autoinflammation remains poorly understood. Here we report that STING, an innate immunity protein, is a cargo of the retrograde membrane transport. In the presence of the disease-causative α-COP variants, STING cannot be retrieved back to the ER from the Golgi. The forced Golgi residency of STING results in the cGAS-independent and palmitoylation-dependent activation of the STING downstream signaling pathway. Surf4, a protein that circulates between the ER/ ER-Golgi intermediate compartment/ Golgi, binds STING and α-COP, and mediates the retrograde transport of STING to the ER. The STING/Surf4/α-COP complex is disrupted in the presence of the disease-causative α-COP variant. We also find that the STING ligand cGAMP impairs the formation of the STING/Surf4/α-COP complex. Our results suggest a homeostatic regulation of STING at the resting state by retrograde membrane traffic and provide insights into the pathogenesis of COPA syndrome.
  46. Front Cell Dev Biol. 2020 ;8 618733
      Membrane-bound and membraneless organelles/biomolecular condensates ensure compartmentalization into functionally distinct units enabling proper organization of cellular processes. Membrane-bound organelles form dynamic contacts with each other to enable the exchange of molecules and to regulate organelle division and positioning in coordination with the cytoskeleton. Crosstalk between the cytoskeleton and dynamic membrane-bound organelles has more recently also been found to regulate cytoskeletal organization. Interestingly, recent work has revealed that, in addition, the cytoskeleton and membrane-bound organelles interact with cytoplasmic biomolecular condensates. The extent and relevance of these complex interactions are just beginning to emerge but may be important for cytoskeletal organization and organelle transport and remodeling. In this review, we highlight these emerging functions and emphasize the complex interplay of the cytoskeleton with these organelles. The crosstalk between membrane-bound organelles, biomolecular condensates and the cytoskeleton in highly polarized cells such as neurons could play essential roles in neuronal development, function and maintenance.
    Keywords:  ER; biomolecular condensates; cytoskeleton; membrane-bound organelles; membraneless organelles; neurons; organelle contacts; organelle dynamics
  47. Am J Cancer Res. 2020 ;10(12): 4112-4122
      Lipid droplets (LDs) are a kind of organelle that is commonly found in eukaryotic cells to store lipids, which encompass a hydrophobic core composed of a single layer of phospholipids and neutral lipids (mainly including triacylglycerol (TAG) and cholesterol ester (CE)) as well as a small amount of proteins. LD accumulation is gradually recognized as a prominent characteristic in a variety of cancers and attracts increasing attention on this field. In this article, we not only summarize the composition, synthesis and decomposition of LD, but also highlight its role in carcinogenesis and malignant development of cancers.
    Keywords:  Lipid droplet; cancer; chemotherapy resistance; lipid metabolism; metastasis
  48. Cancer Metastasis Rev. 2021 Jan 04.
      Smooth muscle is found around organs in the digestive, respiratory, and reproductive tracts. Cancers arising in the bladder, prostate, stomach, colon, and other sites progress from low-risk disease to high-risk, lethal metastatic disease characterized by tumor invasion into, within, and through the biophysical barrier of smooth muscle. We consider here the unique biophysical properties of smooth muscle and how cohesive clusters of tumor use mechanosensing cell-cell and cell-ECM (extracellular matrix) adhesion receptors to move through a structured muscle and withstand the biophysical forces to reach distant sites. Understanding integrated mechanosensing features within tumor cluster and smooth muscle and potential triggers within adjacent adipose tissue, such as the unique damage-associated molecular pattern protein (DAMP), eNAMPT (extracellular nicotinamide phosphoribosyltransferase), or visfatin, offers an opportunity to prevent the first steps of invasion and metastasis through the structured muscle.
    Keywords:  Bladder; Cohesive clusters; Mechanosensing; Prostate; Smooth muscle
  49. Rev Physiol Biochem Pharmacol. 2021 Jan 05.
      Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
    Keywords:  Cancer; Cathepsins; Cationic amphiphilic drugs; Cell death; Lysosome; SMPD1; pH
  50. J Exp Clin Cancer Res. 2021 Jan 05. 40(1): 8
      Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal malignancy, with an average 5-year survival rate of 9% (Siegel RL, Miller KD, Jemal A. Ca Cancer J Clin. 2019;69(1):7-34). The steady increase in mortality rate indicates limited efficacy of the conventional regimen. The heterogeneity of PDAC calls for personalized treatment in clinical practice, which requires the construction of a preclinical system for generating patient-derived models. Currently, the lack of high-quality preclinical models results in ineffective translation of novel targeted therapeutics. This review summarizes applications of commonly used models, discusses major difficulties in PDAC model construction and provides recommendations for integrating workflows for precision medicine.
    Keywords:  Pancreatic cancer; Precision medicine; Preclinical model
  51. Cancer Res. 2021 Jan 08. pii: canres.3459.2020. [Epub ahead of print]
      Tumor mutational burden (TMB) is an emerging biomarker of response to immunotherapy in solid tumors. However, the extent to which variation in TMB between patients is attributable to germline genetic variation remains elusive. Here, using 7,004 unrelated patients of European descent across 33 cancer types from The Cancer Genome Atlas, we show that pan-cancer TMB is polygenic with ~13% of its variation explained by ~1.1 million common variants altogether. We identify germline variants that affect TMB in stomach adenocarcinoma through altering the expression levels of BAG5 and KLC1. Further analyses provide evidence that TMB is genetically associated with complex traits and diseases such as smoking, rheumatoid arthritis, height and cancers, and some of the associations are likely causal. Overall, these results provide new insights into the genetic basis of somatic mutations in tumors and may inform future efforts to use genetic variants to stratify patients for immunotherapy.
  52. Oncogenesis. 2021 Jan 08. 10(1): 1
      Cachexia is a severe complication of cancer that adversely affects the course of the disease, with currently no effective treatments. It is characterized by a progressive atrophy of skeletal muscle and adipose tissue, resulting in weight loss, a reduced quality of life, and a shortened life expectancy. Although the cachectic condition primarily affects the skeletal muscle, a tissue that accounts for ~40% of total body weight, cachexia is considered a multi-organ disease that involves different tissues and organs, among which the cardiac muscle stands out for its relevance. Patients with cancer often experience severe cardiac abnormalities and manifest symptoms that are indicative of chronic heart failure, including fatigue, shortness of breath, and impaired exercise tolerance. Furthermore, cardiovascular complications are among the major causes of death in cancer patients who experienced cachexia. The lack of effective treatments for cancer cachexia underscores the need to improve our understanding of the underlying mechanisms. Increasing evidence links the wasting of the cardiac and skeletal muscles to metabolic alterations, primarily increased energy expenditure, and to increased proteolysis, ensuing from activation of the major proteolytic machineries of the cell, including ubiquitin-dependent proteolysis and autophagy. This review aims at providing an overview of the key mechanisms of cancer cachexia, with a major focus on those that are shared by the skeletal and cardiac muscles.
  53. Trends Cell Biol. 2021 Jan 05. pii: S0962-8924(20)30254-3. [Epub ahead of print]
      Mitoribosomes catalyze essential protein synthesis within mitochondria. Mitoribosome biogenesis is assisted by an increasing number of assembly factors, among which guanosine triphosphate hydrolases (GTPases) are the most abundant class. Here, we review recent progress in our understanding of mitoribosome assembly GTPases. We describe their shared and specific features and mechanisms of action, compare them with their bacterial counterparts, and discuss their possible roles in the assembly of small or large mitoribosomal subunits and the formation of the monosome by establishing quality-control checkpoints during these processes. Furthermore, following the recent unification of the nomenclature for the mitoribosomal proteins, we also propose a unified nomenclature for mitoribosome assembly GTPases.
    Keywords:  GTPBP; OXPHOS deficiency; mitochondrial diseases; mitochondrial ribosome; mitoribosome assembly GTPase; quality control of mitoribosome maturation
  54. Nat Methods. 2021 Jan;18(1): 84-91
      Numerous drugs and endogenous ligands bind to cell surface receptors leading to modulation of downstream signaling cascades and frequently to adaptation of the plasma membrane proteome. In-depth analysis of dynamic processes at the cell surface is challenging due to biochemical properties and low abundances of plasma membrane proteins. Here we introduce cell surface thermal proteome profiling for the comprehensive characterization of ligand-induced changes in protein abundances and thermal stabilities at the plasma membrane. We demonstrate drug binding to extracellular receptors and transporters, discover stimulation-dependent remodeling of T cell receptor complexes and describe a competition-based approach to measure target engagement of G-protein-coupled receptor antagonists. Remodeling of the plasma membrane proteome in response to treatment with the TGFB receptor inhibitor SB431542 leads to partial internalization of the monocarboxylate transporters MCT1/3 explaining the antimetastatic effects of the drug.
  55. Nat Commun. 2021 01 04. 12(1): 92
      Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.
  56. Mol Cell. 2021 Jan 07. pii: S1097-2765(20)30908-4. [Epub ahead of print]81(1): 10-12
      Lamper et al. (2020) reported that eIF3d-mediated cap-dependent translation is subject to regulation by phosphorylation during chronic glucose deprivation, providing a mechanism underlying selective translation of stress genes essential for cell survival.
  57. Nat Rev Mol Cell Biol. 2021 Jan 04.
      Metabolic homeostasis in mammals is tightly regulated by the complementary actions of insulin and glucagon. The secretion of these hormones from pancreatic β-cells and α-cells, respectively, is controlled by metabolic, endocrine, and paracrine regulatory mechanisms and is essential for the control of blood levels of glucose. The deregulation of these mechanisms leads to various pathologies, most notably type 2 diabetes, which is driven by the combined lesions of impaired insulin action and a loss of the normal insulin secretion response to glucose. Glucose stimulates insulin secretion from β-cells in a bi-modal fashion, and new insights about the underlying mechanisms, particularly relating to the second or amplifying phase of this secretory response, have been recently gained. Other recent work highlights the importance of α-cell-produced proglucagon-derived peptides, incretin hormones from the gastrointestinal tract and other dietary components, including certain amino acids and fatty acids, in priming and potentiation of the β-cell glucose response. These advances provide a new perspective for the understanding of the β-cell failure that triggers type 2 diabetes.
  58. J Biol Chem. 2020 Dec 02. pii: S0021-9258(20)00036-8. [Epub ahead of print]296 100050
      Large cytosolic protein aggregates are removed by two main cellular processes, autophagy and the ubiquitin-proteasome system, and defective clearance of these protein aggregates results in proteotoxicity and cell death. Recently, we found that the eIF2α kinase heme-regulated inhibitory (HRI) induced a cytosolic unfolded protein response to prevent aggregation of innate immune signalosomes, but whether HRI acts as a general sensor of proteotoxicity in the cytosol remains unclear. Here we show that HRI controls autophagy to clear cytosolic protein aggregates when the ubiquitin-proteasome system is inhibited. We further report that silencing the expression of HRI resulted in decreased levels of BAG3 and HSPB8, two proteins involved in chaperone-assisted selective autophagy, suggesting that HRI may control proteostasis in the cytosol at least in part through chaperone-assisted selective autophagy. Moreover, knocking down the expression of HRI resulted in cytotoxic accumulation of overexpressed α-synuclein, a protein known to aggregate in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In agreement with these data, protein aggregate accumulation and microglia activation were observed in the spinal cord white matter of 7-month-old Hri-/- mice as compared with Hri+/+ littermates. Moreover, aged Hri-/- mice showed accumulation of misfolded α-synuclein in the lateral collateral pathway, a region of the sacral spinal cord horn that receives visceral sensory afferents from the bladder and distal colon, a pathological feature common to α-synucleinopathies in humans. Together, these results suggest that HRI contributes to a general cytosolic unfolded protein response that could be leveraged to bolster the clearance of cytotoxic protein aggregates.
    Keywords:  BAG3–HSPB8 complex; CASA; HRI; Parkinson’s disease; alpha-synuclein; autophagy; integrated stress response; proteasome; protein aggregation; protein misfolding
  59. Metabolites. 2021 Jan 02. pii: E28. [Epub ahead of print]11(1):
      Cancer cells face various metabolic challenges during tumor progression, including growth in the nutrient-altered and oxygen-deficient microenvironment of the primary site, intravasation into vessels where anchorage-independent growth is required, and colonization of distant organs where the environment is distinct from that of the primary site. Thus, cancer cells must reprogram their metabolic state in every step of cancer progression. Metabolic reprogramming is now recognized as a hallmark of cancer cells and supports cancer growth. Elucidating the underlying mechanisms of metabolic reprogramming in cancer cells may help identifying cancer targets and treatment strategies. This review summarizes our current understanding of metabolic reprogramming during cancer progression and metastasis, including cancer cell adaptation to the tumor microenvironment, defense against oxidative stress during anchorage-independent growth in vessels, and metabolic reprogramming during metastasis.
    Keywords:  anchorage-independent growth; cancer metabolism; cancer metastasis; metabolic reprograming; therapeutic strategy; tumor microenvironments
  60. J Clin Invest. 2021 Jan 04. pii: 140065. [Epub ahead of print]131(1):
      Dietary modification is central to obesity treatment. Weight loss diets are available that include various permutations of energy restriction, macronutrients, foods, and dietary intake patterns. Caloric restriction is the common pathway for weight reduction, but different diets may induce weight loss by varied additional mechanisms, including by facilitating dietary adherence. This narrative Review of meta-analyses and select clinical trials found that lower-calorie diets, compared with higher-calorie regimens, reliably induced larger short-term (<6 months) weight losses, with deterioration of this benefit over the long term (>12 months). Few significant long-term differences in weight loss were observed for diets of varying macronutrient composition, although some regimens were found to have short-term advantages (e.g., low carbohydrate versus low fat). Progress in improving dietary adherence, which is critical to both short- and long-term weight loss, could result from greater efforts to identify behavioral and metabolic phenotypes among dieters.
  61. Front Oncol. 2020 ;10 537930
      Most human tumors possess a high heterogeneity resulting from both clonal evolution and cell differentiation program. The process of cell differentiation is initiated from a population of cancer stem cells (CSCs), which are enriched in tumor-regenerating and tumor-propagating activities and responsible for tumor maintenance and regrowth after treatment. Intrinsic resistance to conventional therapies, as well as a high degree of phenotypic plasticity, makes CSCs hard-to-target tumor cell population. Reprogramming of CSC metabolic pathways plays an essential role in tumor progression and metastatic spread. Many of these pathways confer cell adaptation to the microenvironmental stresses, including a shortage of nutrients and anti-cancer therapies. A better understanding of CSC metabolic dependences as well as metabolic communication between CSCs and the tumor microenvironment are of utmost importance for efficient cancer treatment. In this mini-review, we discuss the general characteristics of CSC metabolism and potential metabolic targeting of CSC populations as a potent strategy to enhance the efficacy of conventional treatment approaches.
    Keywords:  OXPHOS; cancer stem cells; fatty acid metabolism; glutamine metabolism; glycolysis; metabolic targeting; therapy resistance; tumor microenvironment
  62. Elife. 2021 Jan 05. pii: e63589. [Epub ahead of print]10
      Checkpoints maintain the order of cell cycle events during DNA damage or incomplete replication. How the checkpoint response is tailored to different phases of the cell cycle remains poorly understood. The S-phase checkpoint for example results in the slowing of replication, which in budding yeast occurs by Rad53-dependent inhibition of the initiation factors Sld3 and Dbf4. Despite this, we show here that Rad53 phosphorylates both of these substrates throughout the cell cycle at the same sites as in S-phase, suggesting roles for this pathway beyond S-phase. Indeed, we show that Rad53-dependent inhibition of Sld3 and Dbf4 limits re-replication in G2/M, preventing gene amplification. In addition, we show that inhibition of Sld3 and Dbf4 in G1 prevents premature initiation at all origins at the G1/S transition. This study redefines the scope of the 'S-phase checkpoint' with implications for understanding checkpoint function in cancers that lack cell cycle controls.
    Keywords:  S. cerevisiae; chromosomes; gene expression
  63. Nat Genet. 2021 Jan;53(1): 76-85
      Cellular plasticity describes the ability of cells to transition from one set of phenotypes to another. In melanoma, transient fluctuations in the molecular state of tumor cells mark the formation of rare cells primed to survive BRAF inhibition and reprogram into a stably drug-resistant fate. However, the biological processes governing cellular priming remain unknown. We used CRISPR-Cas9 genetic screens to identify genes that affect cell fate decisions by altering cellular plasticity. We found that many factors can independently affect cellular priming and fate decisions. We discovered a new plasticity-based mode of increasing resistance to BRAF inhibition that pushes cells towards a more differentiated state. Manipulating cellular plasticity through inhibition of DOT1L before the addition of the BRAF inhibitor resulted in more therapy resistance than concurrent administration. Our results indicate that modulating cellular plasticity can alter cell fate decisions and may prove useful for treating drug resistance in other cancers.
  64. Lancet Oncol. 2021 01;pii: S1470-2045(20)30724-5. [Epub ahead of print]22(1): 10-11
  65. Cancer Cell. 2020 Dec 14. pii: S1535-6108(20)30604-8. [Epub ahead of print]38(6): 785-787
      Developing therapies to directly target KRAS is challenging. In The New England Journal of Medicine, Hong et al. report a promising KRAS-targeting therapy phase I trial. However, a deeper understanding of the underlying biology of each histological context might well be required to optimize the potential benefit of this class of agents.
  66. Endocrinol Metab (Seoul). 2020 Dec;35(4): 716-732
      The world is facing the new challenges of an aging population, and understanding the process of aging has therefore become one of the most important global concerns. Sarcopenia is a condition which is defined by the gradual loss of skeletal muscle mass and function with age. In research and clinical practice, sarcopenia is recognized as a component of geriatric disease and is a current target for drug development. In this review we define this condition and provide an overview of current therapeutic approaches. We further highlight recent findings that describe key pathophysiological phenotypes of this condition, including alterations in muscle fiber types, mitochondrial function, nicotinamide adenine dinucleotide (NAD+) metabolism, myokines, and gut microbiota, in aged muscle compared to young muscle or healthy aged muscle. The last part of this review examines new therapeutic avenues for promising treatment targets. There is still no accepted therapy for sarcopenia in humans. Here we provide a brief review of the current state of research derived from various mouse models or human samples that provide novel routes for the development of effective therapeutics to maintain muscle health during aging.
    Keywords:  Aging; Exercise; Gastrointestinal microbiome; Mitochondria; Mitophagy; NAD+; Sarcopenia; Skeletal muscle; Urolithin
  67. J Biol Chem. 2020 Nov 24. pii: S0021-9258(20)00035-6. [Epub ahead of print]296 100049
      Although senescent cells display various morphological changes including vacuole formation, it is still unclear how these processes are regulated. We have recently identified the gene, lymphocyte antigen 6 complex, locus D (LY6D), to be upregulated specifically in senescent cells. LY6D is a glycosylphosphatidylinositol-anchored cell-surface protein whose function remains unknown. Here, we analyzed the functional relationship between LY6D and the senescence processes. We found that overexpression of LY6D induced vacuole formation and knockdown of LY6D suppressed the senescence-associated vacuole formation. The LY6D-induced vacuoles were derived from macropinocytosis, a distinct form of endocytosis. Furthermore, Src family kinases and Ras were found to be recruited to membrane lipid rafts in an LY6D-dependent manner, and inhibition of their activity impaired the LY6D-induced macropinocytosis. Finally, reduction of senescent-cell survival induced by glutamine deprivation was recovered by albumin supplementation to the culture media in an LY6D-dependent manner. Because macropinocytosis acts as an amino acid supply route, these results suggest that LY6D-mediated macropinocytosis contributes to senescent-cell survival through the incorporation of extracellular nutrients.
    Keywords:  LY6D; Ras protein; cellular senescence/endocytosis; lipid raft; macropinocytosis; vacuole
  68. Cancer Cell. 2021 Jan 05. pii: S1535-6108(20)30609-7. [Epub ahead of print]
      Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.
    Keywords:  CDK9; CRISPR; MYC; adaptation to stress; breast cancer; cancer; diapause; drug persistence; prostate cancer; residual tumor
  69. Invest New Drugs. 2021 Jan 06.
      Background Preclinical evidence has suggested that a subset of pancreatic cancers with the G12R mutational isoform of the KRAS oncogene is more sensitive to MAPK pathway blockade than pancreatic tumors with other KRAS isoforms. We conducted a biomarker-driven trial of selumetinib (KOSELUGO™; ARRY-142886), an orally active, allosteric mitogen-activated protein kinase 1 and 2 (MEK1/2) inhibitor, in pancreas cancer patients with somatic KRASG12R mutations. Methods In this two-stage, phase II study (NCT03040986) patients with advanced pancreas cancer harboring somatic KRASG12R variants who had received at least one standard-of-care systemic therapy regimen received 75 mg selumetinib orally twice a day until disease progression or unacceptable toxicity occurred. The primary outcome of the study was best objective response (BOR). Results From August 2017 to February 2018 a total of 8 patients with confirmed somatic KRASG12R mutations and a median age of 61.5 years were treated with selumetinib. Seven out of eight (87.5%) had received two or more lines of prior systemic chemotherapy. After a median follow-up period of 8.5 months (range 2 to 20), three patients had stable disease for more than 6 months while receiving selumetinib. No patients achieved an objective partial response. Median progression-free survival (PFS) was 3.0 months (95% CI, 0.8-8.2) and median overall survival (OS) 9 months (95% CI, 2.5-20.9). Conclusion This study in heavily pre-treated pancreatic adenocarcinoma patients suggests alternative strategies beyond single agent MEK inhibition are required for this unique, molecular subset of pancreatic cancer patients. The trial was registered on February 2nd, 2017 under identifier NCT03040986 with .
    Keywords:  KRAS G12 mutational isoform; MEK inhibitor; Pancreas cancer; Phase II; Selumetinib
  70. Trends Cell Biol. 2021 Jan 02. pii: S0962-8924(20)30248-8. [Epub ahead of print]
      Liquid-liquid phase separation drives the formation of biomolecular condensates (BCs) for the spatiotemporal organization of several cellular processes. Recent evidences indicate that components of plasma-membrane-associated platforms form biomolecular condensates near focal adhesions (FAs), and suggest that phase separation regulates dynamic processes occurring at the front of migrating cells.
    Keywords:  biomolecular condensates; cell migration; focal adhesions; liquid–liquid phase separation; plasma-membrane-associated platforms
  71. Aging Cell. 2021 Jan 03. e13285
      Hutchinson-Gilford progeria syndrome (HGPS) causes premature aging in children, with adipose tissue, skin and bone deterioration, and cardiovascular impairment. In HGPS cells and mouse models, high levels of interleukin-6, an inflammatory cytokine linked to aging processes, have been detected. Here, we show that inhibition of interleukin-6 activity by tocilizumab, a neutralizing antibody raised against interleukin-6 receptors, counteracts progeroid features in both HGPS fibroblasts and LmnaG609G / G609G progeroid mice. Tocilizumab treatment limits the accumulation of progerin, the toxic protein produced in HGPS cells, rescues nuclear envelope and chromatin abnormalities, and attenuates the hyperactivated DNA damage response. In vivo administration of tocilizumab reduces aortic lesions and adipose tissue dystrophy, delays the onset of lipodystrophy and kyphosis, avoids motor impairment, and preserves a good quality of life in progeroid mice. This work identifies tocilizumab as a valuable tool in HGPS therapy and, speculatively, in the treatment of a variety of aging-related disorders.
    Keywords:  accelerated aging; ageing; anti-aging; cellular senescence; cytokines; inflammation; laminopathies; nuclear lamina
  72. JCI Insight. 2021 Jan 05. pii: 143619. [Epub ahead of print]
      The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of the kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal fat diet (NFD) or high fat diet (HFD) to Control and kidney proximal tubule IR knock out (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. In KPTIRKO mice baseline serum glucose, serum creatinine, and urinary albumin to creatinine ratio (ACR) were similar to Controls. On HFD, weight gain and increase in serum cholesterol were similar in Control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male Control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR and kidney injury molecule-1 (KIM-1) to creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD fed male Control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.
    Keywords:  Insulin signaling; Nephrology; Obesity
  73. Cell Death Dis. 2021 Jan 07. 12(1): 11
      Liver cirrhosis is a critical health problem associated with several complications, including skeletal muscle atrophy, which adversely affects the clinical outcome of patients independent of their liver functions. However, the precise mechanism underlying liver cirrhosis-induced muscle atrophy has not been elucidated. Here we show that serum factor induced by liver fibrosis leads to skeletal muscle atrophy. Using bile duct ligation (BDL) model of liver injury, we induced liver fibrosis in mice and observed subsequent muscle atrophy and weakness. We developed culture system of human primary myotubes that enables an evaluation of the effects of soluble factors on muscle atrophy and found that serum from BDL mice contains atrophy-inducing factors. This atrophy-inducing effect of BDL mouse serum was mitigated upon inhibition of TNFα signalling but not inhibition of myostatin/activin signalling. The BDL mice exhibited significantly up-regulated serum levels of TNFα when compared with the control mice. Furthermore, the mRNA expression levels of Tnf were markedly up-regulated in the fibrotic liver but not in the skeletal muscles of BDL mice. The gene expression analysis of isolated nuclei revealed that Tnf is exclusively expressed in the non-fibrogenic diploid cell population of the fibrotic liver. These findings reveal the mechanism through which circulating TNFα produced in the damaged liver mediates skeletal muscle atrophy. Additionally, this study demonstrated the importance of inter-organ communication that underlies the pathogenesis of liver cirrhosis.
  74. Trends Cell Biol. 2021 Jan 04. pii: S0962-8924(20)30246-4. [Epub ahead of print]
      Protein quality control (PQC) machineries play a critical role in selective identification and removal of mistargeted, misfolded, and aberrant proteins. This task is extremely complicated due to the enormous diversity of the proteome. It also requires nuanced and careful differentiation between 'normal' and 'folding intermediates' from 'abnormal' and 'misfolded' protein states. Multiple genetic and proteomic approaches have started to delineate the molecular underpinnings of how these machineries recognize their target and how their activity is regulated. In this review, we summarize our understanding of the various E3 ubiquitin ligases and associated machinery that mediate PQC in the endo-lysosome system in yeast and humans, how they are regulated, and mechanisms of target selection, with the intent of guiding future research in this area.
    Keywords:  E3 ligase adaptors; E3 ubiquitin ligase; HECT; Nedd4; RING; RING-CH; Rsp5; endo-lysosome system; lysosome; membrane protein quality control
  75. Front Cell Dev Biol. 2020 ;8 601738
      Studies have reported the vital role of nerves in tumorigenesis and cancer progression. Nerves infiltrate the tumor microenvironment thereby enhancing cancer growth and metastasis. Perineural invasion, a process by which cancer cells invade the surrounding nerves, provides an alternative route for metastasis and generation of tumor-related pain. Moreover, central and sympathetic nervous system dysfunctions and psychological stress-induced hormone network disorders may influence the malignant progression of cancer through multiple mechanisms. This reciprocal interaction between nerves and cancer cells provides novel insights into the cellular and molecular bases of tumorigenesis. In addition, they point to the potential utility of anti-neurogenic therapies. This review describes the evolving cross-talk between nerves and cancer cells, thus uncovers potential therapeutic targets for cancer.
    Keywords:  cancer; nerve; neurogenesis; neurotrophins; perineural invasion
  76. Mol Cell Biochem. 2021 Jan 03.
      Chaperone-mediated autophagy (CMA), one of the degradation pathways of proteins, is highly selective to substrates that have KFERQ-like motif. In this process, the substrate proteins are first recognized by the chaperone protein, heat shock cognate protein 70 (Hsc70), then delivered to lysosomal membrane surface where the single-span lysosomal receptor, lysosome-associated membrane protein type 2A (LAMP2A) can bind to the substrate proteins to form a 700 kDa protein complex that allows them to translocate into the lysosome lumen to be degraded by the hydrolytic enzymes. This degradation pathway mediated by CMA plays an important role in regulating glucose and lipid metabolism, transcription, DNA reparation, cell cycle, cellular response to stress and consequently, regulating many aging-associated human diseases, such as neurodegeneration, cancer and metabolic disorders. In this review, we provide an overview of current research on the functional roles of CMA primarily from a perspective of understanding and treating human diseases and also discuss its potential applications for diseases.
    Keywords:  Cancer; Chaperone-mediated autophagy; KFERQ-like motif; Metabolic disorder; Neurodegenerative diseases
  77. Cell Metab. 2021 Jan 05. pii: S1550-4131(20)30669-0. [Epub ahead of print]33(1): 1
  78. J Clin Invest. 2021 Jan 04. pii: 142239. [Epub ahead of print]131(1):
      2021 to 2022 marks the one hundredth anniversary of ground-breaking research in Toronto that changed the course of what was, then, a universally fatal disease: type 1 diabetes. Some would argue that insulin's discovery by Banting, Best, Macleod, and Collip was the greatest scientific advance of the 20th century, being one of the first instances in which modern medical science was able to provide lifesaving therapy. As with all scientific discoveries, the work in Toronto built upon important advances of many researchers over the preceding decades. Furthermore, the Toronto work ushered in a century of discovery of the purification, isolation, structural characterization, and genetic sequencing of insulin, all of which influenced ongoing improvements in therapeutic insulin formulations. Here we discuss the body of knowledge prior to 1921 localizing insulin to the pancreas and establishing insulin's role in glucoregulation, and provide our views as to why researchers in Toronto ultimately achieved the purification of pancreatic extracts as a therapy. We discuss the pharmaceutical industry's role in the early days of insulin production and distribution and provide insights into why the discoverers chose not to profit financially from the discovery. This fascinating story of bench-to-beside discovery provides useful considerations for scientists now and in the future.
  79. J Clin Invest. 2021 Jan 04. pii: 143296. [Epub ahead of print]131(1):
      Interferons (IFNs) are pleiotropic cytokines critical for regulation of epithelial cell functions and for immune system regulation. In cancer, IFNs contribute to tumor-intrinsic and -extrinsic mechanisms that determine the quality of antitumor immunity and response to immunotherapy. In this Review, we focus on the different types of tumor IFN sensitivity that determine dynamic tumor-immune interactions and their coevolution during cancer progression and metastasis. We extend the discussion to new evidence supporting immunotherapy-mediated immunoediting and the dual opposing roles of IFNs that lead to immune checkpoint blockade response or resistance. Understanding the intricate dynamic responses to IFN will lead to novel immunotherapeutic strategies to circumvent protumorigenic effects of IFN while exploiting IFN-mediated antitumor immunity.
  80. Cancer Discov. 2021 Jan 08.
      Chromothripsis (chromosome shattering) produced extrachromosomal DNA with amplified oncogenes.
  81. Nat Commun. 2021 Jan 08. 12(1): 139
      Active telomerase is essential for stem cells and most cancers to maintain telomeres. The enzymatic activity of telomerase is related but not equivalent to the expression of TERT, the catalytic subunit of the complex. Here we show that telomerase enzymatic activity can be robustly estimated from the expression of a 13-gene signature. We demonstrate the validity of the expression-based approach, named EXTEND, using cell lines, cancer samples, and non-neoplastic samples. When applied to over 9,000 tumors and single cells, we find a strong correlation between telomerase activity and cancer stemness. This correlation is largely driven by a small population of proliferating cancer cells that exhibits both high telomerase activity and cancer stemness. This study establishes a computational framework for quantifying telomerase enzymatic activity and provides new insights into the relationships among telomerase, cancer proliferation, and stemness.
  82. Front Nutr. 2020 ;7 601329
      Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
    Keywords:  cachexia; cancer; multimodal; multinutrient; multitarget; nutrition; undernutrition
  83. Cell Rep. 2021 Jan 05. pii: S2211-1247(20)31568-0. [Epub ahead of print]34(1): 108579
      O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a unique enzyme introducing O-GlcNAc moiety on target proteins, and it critically regulates various cellular processes in diverse cell types. However, its roles in hematopoietic stem and progenitor cells (HSPCs) remain elusive. Here, using Ogt conditional knockout mice, we show that OGT is essential for HSPCs. Ogt is highly expressed in HSPCs, and its disruption induces rapid loss of HSPCs with increased reactive oxygen species and apoptosis. In particular, Ogt-deficient hematopoietic stem cells (HSCs) lose quiescence, cannot be maintained in vivo, and become vulnerable to regenerative and competitive stress. Interestingly, Ogt-deficient HSCs accumulate defective mitochondria due to impaired mitophagy with decreased key mitophagy regulator, Pink1, through dysregulation of H3K4me3. Furthermore, overexpression of PINK1 restores mitophagy and the number of Ogt-deficient HSCs. Collectively, our results reveal that OGT critically regulates maintenance and stress response of HSCs by ensuring mitochondrial quality through PINK1-dependent mitophagy.
    Keywords:  O-GlcNAcylation; O-linked N-acetylglucosamine transferase; OGT; PINK1; hematopoietic progenitor cell; hematopoietic stem cell; mitochondria; mitophagy
  84. Elife. 2021 Jan 06. pii: e61539. [Epub ahead of print]10
      Cancer extracellular vesicles (EVs) shuttle at distance and fertilize pre-metastatic niches facilitating subsequent seeding by tumor cells. However, the link between EV secretion mechanisms and their capacity to form pre-metastatic niches remains obscure. Using mouse models, we show that GTPases of the Ral family control, through the phospholipase D1, multi-vesicular bodies homeostasis and tune the biogenesis and secretion of pro-metastatic EVs. Importantly, EVs from RalA or RalB depleted cells have limited organotropic capacities in vivo and are less efficient in promoting metastasis. RalA and RalB reduce the EV levels of the adhesion molecule MCAM/CD146, which favors EV-mediated metastasis by allowing EVs targeting to the lungs. Finally, RalA, RalB and MCAM/CD146, are factors of poor prognosis in breast cancer patients. Altogether, our study identifies RalGTPases as central molecules linking the mechanisms of EVs secretion and cargo loading to their capacity to disseminate and induce pre-metastatic niches in a CD146 dependent manner.
    Keywords:  cancer biology; cell biology; human; mouse; zebrafish
  85. Methods Mol Biol. 2021 ;2261 457-479
      Western blotting continues to be a workhorse assay in laboratories throughout the world. The utility, low cost and accessibility of western blotting have allowed the technique to remain in practice, despite being developed over 40 years ago. Advances in antibody specificity, chemiluminescent formulations, properties of fluorescent molecules and imaging techniques provide gains in sensitivity, dynamic range, and ease of use. Here we discuss such aspects for the users' consideration when planning and executing western blots, to take full advantage of contemporary practices.
    Keywords:  Binning; Bit depth; CCD; Chemiluminescence; Digital imaging; Dynamic range; Enhanced chemiluminescence; Fluorescence; Housekeeping normalization; Immunoblotting; Immunodetection; Multiplex; Quantitation; Resolution; Total protein normalization; Western blot
  86. Nat Cell Biol. 2021 Jan;23(1): 75-86
      Nutrient availability is central for T-cell functions and immune responses. Here we report that CD8+ T-cell activation and anti-tumour responses are strongly potentiated by the non-essential amino acid Asn. Increased Asn levels enhance CD8+ T-cell activation and effector functions against tumour cells in vitro and in vivo. Conversely, restriction of dietary Asn, ASNase administration or inhibition of the Asn transporter SLC1A5 impairs the activity and responses of CD8+ T cells. Mechanistically, Asn does not directly alter cellular metabolic fluxes; it instead binds the SRC-family protein tyrosine kinase LCK and orchestrates LCK phosphorylation at Tyr 394 and 505, thereby leading to enhanced LCK activity and T-cell-receptor signalling. Thus, our findings reveal a critical and metabolism-independent role for Asn in the direct modulation of the adaptive immune response by controlling T-cell activation and efficacy, and further uncover that LCK is a natural Asn sensor signalling Asn sufficiency to T-cell functions.
  87. Curr Opin Chem Biol. 2021 Jan 05. pii: S1367-5931(20)30159-9. [Epub ahead of print]62 1-12
      The nonreceptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) integrates growth and differentiation signals from receptor tyrosine kinases (RTKs) into the RAS/mitogen-activated protein kinase (MAPK) cascade. Considered 'undruggable' over three decades, SHP2 is now a potentially druggable target with the advent of allosteric SHP2 inhibitors. These agents hold promise for improving patient outcomes, showing efficacy in preclinical cancer models, where SHP2 is critical for either oncogenic signaling or resistance to current targeted agents. SHP2 inhibition may also produce immunomodulatory effects in certain tumor microenvironment cells to help cultivate antitumor immune responses. The first generation of allosteric SHP2 inhibitors is under clinical evaluation to determine safety, appropriate tolerability management, and antitumor efficacy, investigations that will dictate future clinical applications.
    Keywords:  Allosteric inhibitors; Drug resistance; Immunotherapy; KRAS G12C; SHP2; SHP2 inhibitors; SHP2 review
  88. Genome Biol. 2021 Jan 07. 22(1): 21
      In any 'omics study, the scale of analysis can dramatically affect the outcome. For instance, when clustering single-cell transcriptomes, is the analysis tuned to discover broad or specific cell types? Likewise, protein communities revealed from protein networks can vary widely in sizes depending on the method. Here, we use the concept of persistent homology, drawn from mathematical topology, to identify robust structures in data at all scales simultaneously. Application to mouse single-cell transcriptomes significantly expands the catalog of identified cell types, while analysis of SARS-COV-2 protein interactions suggests hijacking of WNT. The method, HiDeF, is available via Python and Cytoscape.
    Keywords:  Community detection; Multiscale; Persistent homology; Protein-protein interaction network; Resolution; Single-cell clustering; Systems biology
  89. EMBO Rep. 2021 Jan 04. e50854
      Nrf2 signaling is vital for protecting cells against oxidative stress. However, its hyperactivation is frequently found in liver cancer through excessive build-up of p62/SQSTM1 bodies that sequester Keap1, an adaptor of the E3-ubiquitin ligase complex for Nrf2. Here, we report that the Bax-binding protein MOAP-1 regulates p62-Keap1-Nrf2 signaling through disruption of p62 bodies. Upon induction of cellular stresses that stimulate formation of p62 bodies, MOAP-1 is recruited to p62 bodies and reduces their levels independent of the autophagy pathway. MOAP-1 interacts with the PB1-ZZ domains of p62 and interferes with its self-oligomerization and liquid-liquid phase separation, thereby disassembling the p62 bodies. Loss of MOAP-1 can lead to marked upregulation of p62 bodies, enhanced sequestration of Keap1 by p62 and hyperactivation of Nrf2 antioxidant target genes. MOAP-1-deficient mice exhibit an elevated tumor burden with excessive levels of p62 bodies and Nrf2 signaling in a diethylnitrosamine (DEN)-induced hepatocarcinogenesis model. Together, our data define MOAP-1 as a negative regulator of Nrf2 signaling via dissociation of p62 bodies.
    Keywords:  MOAP-1; Nrf2; antioxidant signaling; liver cancer; p62/SQSTM1
  90. Elife. 2021 Jan 08. pii: e57347. [Epub ahead of print]10
      Extant protein-coding sequences span a huge range of ages, from those that emerged only recently, to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be 'phylostratigraphy' trends in any properties that evolve slowly with age. A long-term reduction in hydrophobicity and hydrophobic clustering was found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced species, using sensitive HMM methods to detect protein domain homology. We find that the reduction in hydrophobic clustering is universal across lineages. However, only young animal domains have a tendency to have higher structural disorder. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that the composition of the contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life, when these sequences first emerged.
    Keywords:  evolutionary biology; genetics; genomics
  91. Mol Clin Oncol. 2021 Feb;14(2): 26
      Neoadjuvant chemotherapy (NAC) has become a standard treatment for borderline resectable pancreatic ductal adenocarcinoma (PDAC). The present study examined the maximum tolerated dose of NAC with gemcitabine plus nab-paclitaxel (GnP) in patients with resectable PDAC. Between 2015 and 2019, 39 patients with resectable PDAC were enrolled in the present study. GnP was administered for two 28-day cycles on days 1, 8 and 15. The planned doses for levels 1, 2 and 3 were 75, 100 and 125 mg/m2, respectively, for nab-paclitaxel and 600, 800 and 1,000 mg/m2, respectively, for gemcitabine. Dose-limiting toxicity (neutropenia, anemia, thrombocytopenia and/or liver injury) was observed in 44.4% of patients treated at dose level 1 (21 patients) and 60.0% of those treated at dose level 2 (18 patients). Therefore, the maximum tolerated dose was set as level 1. Six patients withdrew from protocol treatment because of non-hematologic adverse events (skin rash, pancreatitis and biliary tract infection). Among the 31 patients with pathologically confirmed PDAC, partial response, stable disease and disease progression were recorded in 4 (12.9%), 24 (77.4%) and 3 (9.7%) patients, respectively. NAC significantly reduced tumor size according to computed tomography, and CA19-9 levels and the 18F-fluorodeoxyglucose maximum standardized uptake value were decreased in positron emission tomography. No postoperative complications attributable to NAC were recognized. Among the 27 patients with PDAC who underwent resection, the pathological treatment effect was judged as grades Ia, Ib and II in 21 (77.8%), 4 (14.8%) and 2 (7.4%) patients, respectively. R0 resection was performed in 24 out of 27 patients (88.9%). Adjuvant chemotherapy with oral S-1 was administered to 21 out of 27 patients (77.8%). In conclusion, NAC with GnP was safe and feasible for resectable PDAC at dose level 1. In the future, verification of the long-term results of the present study will be necessary, and a phase II clinical trial is anticipated.
    Keywords:  NAC; gemcitabine; nab-paclitaxel; pancreatic cancer; phase I
  92. Mol Imaging Biol. 2021 Jan 07.
      PURPOSE: Imaging is central to the diagnosis and management of Pancreatic Ductal Adenocarcinoma (PDAC). This study evaluated if positron emission tomography (PET)/magnetic resonance imaging (MRI) elicited treatment modifications in PDAC when compared to standard of care imaging (SCI).PROCEDURES: This retrospective study included consecutive patients with PDAC who underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) PET/MRI and SCI from May 2017 to January 2019. SCI included abdominal computed tomography (CT), MRI, and/or PET/CT. For patients who had more than one pair of PET/MRI and SCI, each management decision was independently evaluated. Treatment strategies based on each modality were extracted from electronic medical records. Follow-up was evaluated until January 2020.
    RESULTS: Twenty-five patients underwent 37 PET/MRI's, mean age was 65 ± 9 years and 13 (13/25, 52 %) were men. 49 % (18/37, 95 % CI 33-64 %) of the PET/MRI scans changed clinical management. Whether the SCI included a PET/CT or not did not significantly modify the probability of management change (OR = 0.9, 95 % CI 0.2-4, p = 1). One hundred percent (33/33) of the available follow-up data confirmed PET/MRI findings.
    CONCLUSIONS: PET/MRI significantly changed PDAC management, consistently across the different SCI modalities it was compared to. These findings suggest a role for PET/MRI in the management of PDAC.
    Keywords:  FDG; MRI; Management changes; PET; PET/MRI; Pancreatic cancer
  93. Nat Commun. 2021 01 04. 12(1): 101
      Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.
  94. Ann Surg Oncol. 2021 Jan 03.
      BACKGROUND: Microscopically positive margins (R1) negatively impact survival in pancreatic ductal adenocarcinoma (PDAC). For patients with close/positive margins, intraoperative radiotherapy (IORT) can improve local control. The prognostic impact of an R1 resection in patients who receive total neoadjuvant therapy (TNT; FOLFIRINOX with chemoradiation) and IORT is unknown.METHODS: Clinicopathologic data were retrospectively collected for borderline/locally advanced (BR/LA) PDAC patients who received TNT and underwent resection between 2011 and 2019. Disease-free (DFS) and overall survival (OS) measured from time of diagnosis were compared between groups.
    RESULTS: Two hundred one patients received TNT and were resected, with a median DFS and OS of 24 months and 47 months, respectively. Eighty-eight patients (44%) received IORT; of these, 69 (78%) underwent an R0 and 19 (22%) an R1 resection. There was no significant difference in clinicopathologic factors between the IORT and no-IORT groups, except for resectability status (LA: IORT 69%, no-IORT 53%, p = 0.021) and surgeons' concern for a positive/close margin. R1 resection was associated with worse DFS and OS in the no-IORT population. However, among patients who received IORT, there was no difference in DFS (R0: 29 months, IQR 14-47 vs R1: 20 months, IQR 15-28; p = 0.114) or OS (R0: 48 months, IQR 25-not reached vs R1: 37 months, IQR 30-47; p = 0.307) between patients who underwent R0 vs R1 resection. In multivariate analysis, within the IORT group, R1 resection was not associated with DFS or OS.
    CONCLUSION: IORT may mitigate the adverse effect of an R1 resection on DFS and OS in BR/LA PDAC patients receiving TNT.
  95. Genome Res. 2021 Jan 07.
      Transcriptional enhancers enable exquisite spatiotemporal control of gene expression in metazoans. Enrichment of monomethylation of histone H3 lysine 4 (H3K4me1) is a major chromatin signature of transcriptional enhancers. Lysine (K)-specific demethylase 1A (KDM1A, also known as LSD1), an H3K4me2/me1 demethylase, inactivates stem-cell enhancers during the differentiation of mouse embryonic stem cells (mESCs). However, its role in undifferentiated mESCs remains obscure. Here, we show that KDM1A actively maintains the optimal enhancer status in both undifferentiated and lineage-committed cells. KDM1A occupies a majority of enhancers in undifferentiated mESCs. KDM1A levels at enhancers exhibit clear positive correlations with its substrate H3K4me2, H3K27ac, and transcription at enhancers. In Kdm1a-deficient mESCs, a large fraction of these enhancers gains additional H3K4 methylation, which is accompanied by increases in H3K27 acetylation and increased expression of both enhancer RNAs (eRNAs) and target genes. In postmitotic neurons, loss of KDM1A leads to premature activation of neuronal activity-dependent enhancers and genes. Taken together, these results suggest that KDM1A is a versatile regulator of enhancers and acts as a rheostat to maintain optimal enhancer activity by counterbalancing H3K4 methylation at enhancers.
  96. Endocrinol Metab (Seoul). 2020 Dec;35(4): 733-749
      Like other substrates, plasma glucose is in a dynamic state of constant turnover (i.e., rates of glucose appearance [Ra glucose] into and disappearance [Rd glucose] from the plasma) while staying within a narrow range of normal concentrations, a physiological priority. Persistent imbalance of glucose turnover leads to elevations (i.e., hyperglycemia, Ra>Rd) or falls (i.e., hypoglycemia, Ra<Rd) in the pool size, leading to clinical conditions such as diabetes. Endogenous Ra glucose is divided into hepatic glucose production via glycogenolysis and gluconeogenesis (GNG) and renal GNG. On the other hand, Rd glucose, the summed rate of glucose uptake by tissues/organs, involves various intracellular metabolic pathways including glycolysis, the tricarboxylic acid (TCA) cycle, and oxidation at varying rates depending on the metabolic status. Despite the dynamic nature of glucose metabolism, metabolic studies typically rely on measurements of static, snapshot information such as the abundance of mRNAs and proteins and (in)activation of implicated signaling networks without determining actual flux rates. In this review, we will discuss the importance of obtaining kinetic information, basic principles of stable isotope tracer methodology, calculations of in vivo glucose kinetics, and assessments of metabolic flux in experimental models in vivo and in vitro.
    Keywords:  Diabetes mellitus; Insulin resistance; Metabolic fluxomics; Stable isotope tracers
  97. Cell. 2021 Jan 07. pii: S0092-8674(20)31624-X. [Epub ahead of print]184(1): 18-32
      Building tissues from scratch to explore entirely new cell configurations could revolutionize fundamental understanding in biology. Bioprinting is an emerging technology to do this. Although typically applied to engineer tissues for therapeutic tissue repair or drug screening, there are many opportunities for bioprinting within biology, such as for exploring cellular crosstalk or cellular morphogenesis. The overall goals of this Primer are to provide an overview of bioprinting with the biologist in mind, outline the steps in extrusion bioprinting (the most widely used and accessible technology), and discuss alternative bioprinting technologies and future opportunities for bioprinting in biology.
  98. Sci Transl Med. 2021 Jan 06. pii: eaba6110. [Epub ahead of print]13(575):
      Although chemotherapeutic agents have been used for decades, the mechanisms of action, mechanisms of resistance, and the best treatment schedule remain elusive. Mitomycin C (MMC) is the gold standard treatment for non-muscle-invasive bladder cancer (NMIBC). However, it is effective only in a subset of patients, suggesting that, aside from cytotoxicity, other mechanisms could be involved in mediating the success of the treatment. Here, we showed that MMC promotes immunogenic cell death (ICD) and in vivo tumor protection. MMC-induced ICD relied on metabolic reprogramming of tumor cells toward increased oxidative phosphorylation. This favored increased mitochondrial permeability leading to the cytoplasmic release of mitochondrial DNA, which activated the inflammasome for efficient IL-1β (interleukin-1β) secretion that promoted dendritic cell maturation. Resistance to ICD was associated with mitochondrial dysfunction related to low abundance of complex I of the respiratory chain. Analysis of complex I in patient tumors indicated that low abundance of this mitochondrial complex was associated with recurrence incidence after chemotherapy in patients with NMIBC. The identification of mitochondria-mediated ICD as a mechanism of action of MMC offers opportunities to optimize bladder cancer management and provides potential markers of treatment efficacy that could be used for patient stratification.
  99. Development. 2021 Jan 06. pii: dev195669. [Epub ahead of print]148(1):
      Understanding the cellular organization of tissues is key to developmental biology. In order to deal with this complex problem, researchers have taken advantage of reductionist approaches to reveal fundamental morphogenetic mechanisms and quantitative laws. For epithelia, their two-dimensional representation as polygonal tessellations has proved successful for understanding tissue organization. Yet, epithelial tissues bend and fold to shape organs in three dimensions. In this context, epithelial cells are too often simplified as prismatic blocks with a limited plasticity. However, there is increasing evidence that a realistic approach, even from a reductionist perspective, must include apico-basal intercalations (i.e. scutoidal cell shapes) for explaining epithelial organization convincingly. Here, we present an historical perspective about the tissue organization problem. Specifically, we analyze past and recent breakthroughs, and discuss how and why simplified, but realistic, in silico models require scutoidal features to address key morphogenetic events.
    Keywords:  Apico-basal cell intercalation; Biophysical modeling; Cell shape; Mathematical modeling; Scutoid; Three-dimensional cell packing
  100. Autophagy. 2021 Jan 06.
      It has been well established that Atg11 plays a critical role in selective macroautophagy/autophagy, but not in non-selective autophagy in the budding yeast Saccharomyces cerevisiae. However, its mammalian ortholog RB1CC1/FIP200 is indispensable for both types of autophagy, and the molecular mechanism behind its function is a mystery. Recently, Pan et al. showed that in the fission yeast Schizosaccharomyces pombe, Atg11 could also promote non-selective autophagy via activation of Atg1 kinase. These results prompt an interesting idea that Atg11 might have gained an additional ability to mediate non-selective autophagy through evolution.
    Keywords:  Lysosome; macroautophagy; stress; vacuole; yeast
  101. Histochem Cell Biol. 2021 Jan 06.
      Preservation of ultrastructural features in biological samples for electron microscopy (EM) is a challenging task that is routinely accomplished through chemical fixation or high-pressure freezing coupled to automated freeze substitution (AFS) using specialized devices. However, samples from clinical (e.g. "biobanking" of bulk biopsies) and preclinical (e.g. whole mouse tissues) specimens are often not specifically prepared for ultrastructural analyses but simply immersed in liquid nitrogen before long-term cryo-storage. We demonstrate that ultrastructural features of such samples are insufficiently conserved using AFS and developed a simple, rapid, and effective method for thawing that does not require specific instrumentation. This procedure consists of dry ice-cooled pre-trimming of frozen tissue and aldehyde fixation for 3 h at 37 °C followed by standard embedding steps. Herein investigated tissues comprised human term placentae, clinical lung samples, as well as mouse tissues of different composition (brown adipose tissue, white adipose tissue, cardiac muscle, skeletal muscle, liver). For all these tissues, we compared electron micrographs prepared from cryo-stored material with our method to images derived from directly prepared fresh tissues with standard chemical fixation. Our protocol yielded highly conserved ultrastructural features and tissue-specific details, largely matching the quality of fresh tissue samples. Furthermore, morphometric analysis of lipid droplets and mitochondria in livers of fasted mice demonstrated that statistically valid quantifications can be derived from samples prepared with our method. Overall, we provide a simple and effective protocol for accurate ultrastructural and morphometric analyses of cryo-stored bulk tissue samples.
    Keywords:  Biobanking; Cryo-storage; Cryoprotectant-free; Sample preparation; TEM; Ultrastructural features
  102. Oncogene. 2021 Jan 08.
      Pancreatic cancer is lethal in over 90% of cases since it is resistant to current therapeutic strategies. The key role of STAT3 in promoting pancreatic cancer progression has been proven, but effective interventions that suppress STAT3 activities are limited. The development of novel anticancer agents that directly target STAT3 may have potential clinical benefits for pancreatic cancer treatment. Here, we report a new small-molecule inhibitor (N4) with potent antitumor bioactivity, which inhibits multiple oncogenic processes in pancreatic cancer. N4 blocked STAT3 and phospho-tyrosine (pTyr) peptide interactions in fluorescence polarization (FP) assay, specifically abolished phosphor-STAT3 (Tyr705), and suppressed expression of STAT3 downstream genes. The mechanism involved the direct binding of N4 to the STAT3 SH2 domain, thereby, the STAT3 dimerization, STAT3-EGFR, and STAT3-NF-κB cross-talk were efficiently inhibited. In animal models of pancreatic cancer, N4 was well tolerated, suppressed tumor growth and metastasis, and significantly prolonged survival of tumor-bearing mice. Our results offer a preclinical proof of concept for N4 as a candidate therapeutic compound for pancreatic cancer.
  103. Biochim Biophys Acta Bioenerg. 2021 Jan 05. pii: S0005-2728(20)30215-2. [Epub ahead of print] 148365
      Mitochondria are highly dynamic and stress-responsive organelles that are renewed, maintained and removed by a number of different mechanisms. Recent findings bring more evidence for the focused, defined, and regulatory function of the intramitochondrial proteases extending far beyond the traditional concepts of damage control and stress responses. Until recently, the macrodegradation processes, such as mitophagy, were promoted as the major regulator of OXPHOS remodelling and turnover. However, the spatiotemporal dynamics of the OXPHOS system can be greatly modulated by the intrinsic mitochondrial mechanisms acting apart from changes in the global mitochondrial dynamics. This, in turn, may substantially contribute to the shaping of the metabolic status of the cell.
    Keywords:  Mitochondrial respiratory chain; OXPHOS maintanance; OXPHOS turnover; mitochondrial proteases
  104. Elife. 2021 Jan 04. pii: e61907. [Epub ahead of print]10
      The question of whether single cells can learn led to much debate in the early 20th century. The view prevailed that they were capable of non-associative learning but not of associative learning, such as Pavlovian conditioning. Experiments indicating the contrary were considered either non-reproducible or subject to more acceptable interpretations. Recent developments suggest that the time is right to reconsider this consensus. We exhume the experiments of Beatrice Gelber on Pavlovian conditioning in the ciliate Paramecium aurelia, and suggest that criticisms of her findings can now be reinterpreted. Gelber was a remarkable scientist whose absence from the historical record testifies to the prevailing orthodoxy that single cells cannot learn. Her work, and more recent studies, suggest that such learning may be evolutionarily more widespread and fundamental to life than previously thought and we discuss the implications for different aspects of biology.
    Keywords:  Paramecium; Pavlovian conditioning; computational biology; learning; neuroscience; single cell; systems biology
  105. Clin Exp Metastasis. 2021 Jan 07.
      Circulating tumor cells (CTCs) present an opportunity to detect/monitor metastasis throughout disease progression. The CellSearch® is currently the only FDA-approved technology for CTC detection in patients. The main limitation of this system is its reliance on epithelial markers for CTC isolation/enumeration, which reduces its ability to detect more aggressive mesenchymal CTCs that are generated during metastasis via epithelial-to-mesenchymal transition (EMT). This Technical Note describes and validates two EMT-independent CTC analysis protocols; one for human samples using Parsortix® and one for mouse samples using VyCap. Parsortix® identifies significantly more mesenchymal human CTCs compared to the clinical CellSearch® test, and VyCap identifies significantly more CTCs compared to our mouse CellSearch® protocol regardless of EMT status. Recovery and downstream molecular characterization of CTCs is highly feasible using both Parsortix® and VyCap. The described CTC protocols can be used by investigators to study CTC generation, EMT and metastasis in both pre-clinical models and clinical samples.
    Keywords:  CellSearch®; Circulating tumor cells; Epithelial-to-mesenchymal transition; Metastasis; Parsortix®; VyCap
  106. Cell Rep. 2021 Jan 05. pii: S2211-1247(20)31575-8. [Epub ahead of print]34(1): 108586
      The cyclic GMP-AMP (cGAMP) synthase (cGAS) is a key DNA sensor that initiates STING-dependent signaling to produce type I interferons through synthesizing the secondary messenger 2'3'-cGAMP. In this study, we confirm previous studies showing that cGAS is located both in the cytoplasm and in the nucleus. Nuclear accumulation is observed when leptomycin B is used to block the exportin, CRM1 protein. As a result, leptomycin B impairs the production of interferons in response to DNA stimulation. We further identify a functional nuclear export signal (NES) in cGAS, 169LEKLKL174. Mutating this NES leads to the sequestration of cGAS within the nucleus and the loss of interferon response to cytosolic DNA treatment, and it further determines the key amino acid to L172. Collectively, our data demonstrate that the cytosolic DNA-sensing function of cGAS depends on its presence within the cytoplasm, which is warranted by a functional NES.
    Keywords:  DNA sensor; cGAS; innate immune system; nuclear export signal
  107. Aging (Albany NY). 2021 Jan 06. 12
      Although several evidence has suggested the impact of exercise on the prevention of aging phenotypes, few studies have been conducted on the mechanism by which exercise alters the immune-cell profile, thereby improving metabolism in senile obesity. In this study, we confirmed that 4-week treadmill exercise sufficiently improved metabolic function, including increased lean mass and decreased fat mass, in 88-week-old mice. The expression level of the senescence marker p16 in the white adipose tissue (WAT) was decreased after 4-weeks of exercise. Exercise induced changes in the profiles of immune-cell subsets, including natural killer (NK) cells, central memory CD8+ T cells, eosinophils, and neutrophils, in the stromal vascular fraction of WAT. In addition, it has been shown through transcriptome analysis of WAT that exercise can activate pathways involved in the interaction between WAT and immune cells, in particular NK cells, in aged mice. These results suggest that exercise has a profound effect on changes in immune-cell distribution and senescent-cell scavenging in WAT of aged mice, eventually affecting overall energy metabolism toward a more youthful state.
    Keywords:  NK cell; aging; exercise; immunosenescence; metabolism
  108. Ann Surg Oncol. 2021 Jan 07.
      BACKGROUND: Borderline resectable pancreatic cancer (BRPC) is frequently encountered in high-volume centers. It has various definitions among different societies or institutions.PATIENTS AND METHODS: In this landmark series review, we summarize the critical randomized controlled studies that have defined the neoadjuvant and surgical management of BRPC.
    RESULTS: Surgical resection after neoadjuvant treatment is the mainstay of treatment and should involve margin-negative resection with regional lymphadenectomy. Several recently completed randomized controlled clinical trials have defined the role of neoadjuvant chemotherapy for patients with BRPC. The utilization of chemoradiation remains controversial.
    CONCLUSIONS: The definition of BRPC goes beyond the anatomic relationship between the tumor and vessels. We need to include biological and conditional dimensions. Neoadjuvant chemotherapy and surgery are associated with improved outcomes of BRPC. Understanding the molecular features of pancreatic cancer should lead to the discovery of novel biomarkers as well as a more personalized approach to guide individualized therapy.