bims-cagime Biomed News
on Cancer, aging and metabolism
Issue of 2020‒09‒13
fifty-two papers selected by
Kıvanç Görgülü
Technical University of Munich

  1. Proc Natl Acad Sci U S A. 2020 Sep 08. pii: 202011243. [Epub ahead of print]
      DICER is a key enzyme in microRNA (miRNA) biogenesis. Here we show that aerobic exercise training up-regulates DICER in adipose tissue of mice and humans. This can be mimicked by infusion of serum from exercised mice into sedentary mice and depends on AMPK-mediated signaling in both muscle and adipocytes. Adipocyte DICER is required for whole-body metabolic adaptations to aerobic exercise training, in part, by allowing controlled substrate utilization in adipose tissue, which, in turn, supports skeletal muscle function. Exercise training increases overall miRNA expression in adipose tissue, and up-regulation of miR-203-3p limits glycolysis in adipose under conditions of metabolic stress. We propose that exercise training-induced DICER-miR-203-3p up-regulation in adipocytes is a key adaptive response that coordinates signals from working muscle to promote whole-body metabolic adaptations.
    Keywords:  adipose tissue; cross-talk; exercise; metabolic flexibility; microRNA
  2. J Cell Biol. 2020 Oct 05. pii: e202006111. [Epub ahead of print]219(10):
      The endoplasmic reticulum is a cellular hub of lipid metabolism, coordinating lipid synthesis with continuous changes in metabolic flux. Maintaining ER lipid homeostasis despite these fluctuations is crucial to cell function and viability. Here, we identify a novel mechanism that is crucial for normal ER lipid metabolism and protects the ER from dysfunction. We identify the molecular function of the evolutionarily conserved ER protein FIT2 as a fatty acyl-coenzyme A (CoA) diphosphatase that hydrolyzes fatty acyl-CoA to yield acyl 4'-phosphopantetheine. This activity of FIT2, which is predicted to be active in the ER lumen, is required in yeast and mammalian cells for maintaining ER structure, protecting against ER stress, and enabling normal lipid storage in lipid droplets. Our findings thus solve the long-standing mystery of the molecular function of FIT2 and highlight the maintenance of optimal fatty acyl-CoA levels as key to ER homeostasis.
  3. Dev Cell. 2020 Aug 31. pii: S1534-5807(20)30666-3. [Epub ahead of print]
      Lysosome function is essential for cellular homeostasis, but quality-control mechanisms that maintain healthy lysosomes remain poorly characterized. Here, we developed a method to measure lysosome turnover and use this to identify a selective mechanism of membrane degradation that involves lipidation of the autophagy protein LC3 onto lysosomal membranes and the formation of intraluminal vesicles through microautophagy. This mechanism is induced in response to metabolic stress resulting from glucose starvation or by treatment with pharmacological agents that induce osmotic stress on lysosomes. Cells lacking ATG5, an essential component of the LC3 lipidation machinery, show reduced ability to regulate lysosome size and degradative capacity in response to activation of this mechanism. These findings identify a selective mechanism of lysosome membrane turnover that is induced by stress and uncover a function for LC3 lipidation in regulating lysosome size and activity through microautophagy.
    Keywords:  ATG5; LAP; LC3; ammonium; autophagy; glucose; glutamine; lysosome; metabolism; microautophagy
  4. Nat Commun. 2020 Sep 10. 11(1): 4527
      Evasion of programmed cell death represents a critical form of oncogene addiction in cancer cells. Understanding the molecular mechanisms underpinning cancer cell survival despite the oncogenic stress could provide a molecular basis for potential therapeutic interventions. Here we explore the role of pro-survival genes in cancer cell integrity during clonal evolution in non-small cell lung cancer (NSCLC). We identify gains of MCL-1 at high frequency in multiple independent NSCLC cohorts, occurring both clonally and subclonally. Clonal loss of functional TP53 is significantly associated with subclonal gains of MCL-1. In mice, tumour progression is delayed upon pharmacologic or genetic inhibition of MCL-1. These findings reveal that MCL-1 gains occur with high frequency in lung adenocarcinoma and can be targeted therapeutically.
  5. Genes Dev. 2020 Sep 10.
      The uptake of macromolecules and cellular debris through macropinocytosis has emerged as an important nutrient acquisition strategy of cancer cells. Genetic alterations commonly found in human cancers (e.g. mutations in KRAS or loss of PTEN) have been shown to increase macropinocytosis. To identify additional effectors that enable cell growth dependent on the uptake of extracellular proteins, pancreatic ductal adenocarcinoma (PDA) cells were selected for growth in medium where extracellular albumin was the obligate source of the essential amino acid leucine. Analysis of global changes in chromatin availability and gene expression revealed that PDA cells selected under these conditions exhibited elevated activity of the transcriptional activators Yap/Taz. Knockout of Yap/Taz prevented growth of PDA cells in leucine-deficient medium, but not in complete medium. Furthermore, constitutively active forms of Yap or Taz were sufficient to stimulate macropinocytosis of extracellular protein. In addition to promoting the uptake of plasma proteins, Yap/Taz also promoted the scavenging of apoptotic cell bodies and necrotic debris by PDA cells. The Yap/Taz transcriptional target Axl was found to be essential for cell growth dependent on the uptake of dead cells and cell debris. Together, these studies suggest that the Hippo pathway effectors Yap and Taz are important transcriptional regulators of endocytic nutrient uptake.
    Keywords:  Yap; cancer metabolism; macropinocytosis
  6. J Cell Sci. 2020 Sep 09. pii: jcs246322. [Epub ahead of print]133(17):
      Autophagy is fundamental for cell and organismal health. Two types of autophagy are conserved in eukaryotes: macroautophagy and microautophagy. During macroautophagy, autophagosomes deliver cytoplasmic constituents to endosomes or lysosomes, whereas during microautophagy lytic organelles take up cytoplasm directly. While macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become clear that microautophagy has a broad range of functions in biosynthetic transport, metabolic adaptation, organelle remodeling and quality control. This Review discusses the selective and non-selective microautophagic processes known in yeast, plants and animals. Based on the molecular mechanisms for the uptake of microautophagic cargo into lytic organelles, I propose to distinguish between fission-type microautophagy, which depends on ESCRT proteins, and fusion-type microautophagy, which requires the core autophagy machinery and SNARE proteins. Many questions remain to be explored, but the functional versatility and mechanistic diversity of microautophagy are beginning to emerge.
    Keywords:  Core autophagy machinery; ESCRT machinery; Membrane fission; Membrane fusion; Microautophagy; SNAREs
  7. Curr Biol. 2020 Sep 03. pii: S0960-9822(20)31252-5. [Epub ahead of print]
      Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.
    Keywords:  Myo2; Vac17; Vac8; Vps41; Yck3; cargo adaptor; myosin V; organelle transport; protein degradation; vacuole inheritance
  8. Nature. 2020 Sep 09.
      Mitochondria require nicotinamide adenine dinucleotide (NAD+) in order to carry out the fundamental processes that fuel respiration and mediate cellular energy transduction. Mitochondrial NAD+ transporters have been identified in yeast and plants1,2 but their very existence is controversial in mammals3-5. Here we demonstrate that mammalian mitochondria are capable of taking up intact NAD+ and identify SLC25A51 (an essential6,7 mitochondrial protein of previously unknown function, also known as MCART1) as a mammalian mitochondrial NAD+ transporter. Loss of SLC25A51 decreases mitochondrial but not whole-cell NAD+ content, impairs mitochondrial respiration, and blocks the uptake of NAD+ into isolated mitochondria. Conversely, overexpression of SLC25A51 or a nearly identical paralog, SLC25A52, increases mitochondrial NAD+ levels and restores NAD+ uptake into yeast mitochondria lacking endogenous NAD+ transporters. Together, these findings identify SLC25A51 as the first transporter capable of importing NAD+ into mammalian mitochondria.
  9. Cancer Res. 2020 Sep 09. pii: canres.0672.2020. [Epub ahead of print]
      Recent studies have thoroughly described genome-wide expression patterns defining molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) with different prognostic and predictive implications. Although the reversible nature of key regulatory transcription circuits defining the two extreme PDAC subtype lineages "classical" and "basal-like" suggests that subtype states are not permanently encoded but underlie a certain degree of plasticity, pharmacologically actionable drivers of PDAC subtype identity remain elusive. Here we characterized the mechanistic and functional implications of the histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2) in controlling PDAC plasticity, dedifferentiation, and molecular subtype identity. Utilization of transgenic PDAC models and human PDAC samples linked EZH2 activity to PDAC dedifferentiation and tumor progression. Combined RNA- and ChIP-seq studies identified EZH2 as a pivotal suppressor of differentiation programs in PDAC and revealed EZH2-dependent transcriptional repression of the classical subtype defining transcription factor Gata6 as a mechanistic basis for EZH2-dependent PDAC progression. Importantly, genetic or pharmacological depletion of EZH2 sufficiently increased GATA6 expression, thus inducing a gene signature shift in favor of a less aggressive and more therapy-susceptible, classical PDAC subtype state. Consistently, abrogation of GATA6 expression in EZH2-deficient PDAC cells counteracted the acquisition of classical gene signatures and rescued their invasive capacities, suggesting that GATA6 derepression is critical to overcome PDAC progression in the context of EZH2 inhibition. Together our findings link the EZH2-GATA6 axis to PDAC subtype identity and uncover EZH2 inhibition as an appealing strategy to induce subtype-switching in favor of a less aggressive PDAC phenotype.
  10. EMBO Rep. 2020 Sep 07. e50845
      When glucose is available, many organisms repress mitochondrial respiration in favour of aerobic glycolysis, or fermentation in yeast, that suffices for ATP production. Fission yeast cells, however, rely partially on respiration for rapid proliferation under fermentative conditions. Here, we determined the limiting factors that require respiratory function during fermentation. When inhibiting the electron transport chain, supplementation with arginine was necessary and sufficient to restore rapid proliferation. Accordingly, a systematic screen for mutants growing poorly without arginine identified mutants defective in mitochondrial oxidative metabolism. Genetic or pharmacological inhibition of respiration triggered a drop in intracellular levels of arginine and amino acids derived from the Krebs cycle metabolite alpha-ketoglutarate: glutamine, lysine and glutamic acid. Conversion of arginine into these amino acids was required for rapid proliferation when blocking the respiratory chain. The respiratory block triggered an immediate gene expression response diagnostic of TOR inhibition, which was muted by arginine supplementation or without the AMPK-activating kinase Ssp1. The TOR-controlled proteins featured biased composition of amino acids reflecting their shortage after respiratory inhibition. We conclude that respiration supports rapid proliferation in fermenting fission yeast cells by boosting the supply of Krebs cycle-derived amino acids.
    Keywords:   S. pombe ; arginine; cellular metabolism; fermentation; respiration
  11. Nat Rev Cancer. 2020 Sep 07.
      Circadian rhythms govern a large array of physiological and metabolic functions. Perturbations of the daily cycle have been linked to elevated risk of developing cancer as well as poor prognosis in patients with cancer. Also, expression of core clock genes or proteins is remarkably attenuated particularly in tumours of a higher stage or that are more aggressive, possibly linking the circadian clock to cellular differentiation. Emerging evidence indicates that metabolic control by the circadian clock underpins specific hallmarks of cancer metabolism. Indeed, to support cell proliferation and biomass production, the clock may direct metabolic processes of cancer cells in concert with non-clock transcription factors to control how nutrients and metabolites are utilized in a time-specific manner. We hypothesize that the metabolic switch between differentiation or stemness of cancer may be coupled to the molecular clockwork. Moreover, circadian rhythms of host organisms appear to dictate tumour growth and proliferation. This Review outlines recent discoveries of the interplay between circadian rhythms, proliferative metabolism and cancer, highlighting potential opportunities in the development of future therapeutic strategies.
  12. Cells. 2020 Sep 05. pii: E2035. [Epub ahead of print]9(9):
      The metastatic cascade is a highly plastic and dynamic process dominated by cellular heterogeneity and varying metabolic requirements. During this cascade, the three major metabolic pillars, namely biosynthesis, RedOx balance, and bioenergetics, have variable importance. Biosynthesis has superior significance during the proliferation-dominated steps of primary tumour growth and secondary macrometastasis formation and only minor relevance during the growth-independent processes of invasion and dissemination. Consequently, RedOx homeostasis and bioenergetics emerge as conceivable metabolic key determinants in cancer cells that disseminate from the primary tumour. Within this review, we summarise our current understanding on how cancer cells adjust their metabolism in the context of different microenvironments along the metastatic cascade. With the example of one-carbon metabolism, we establish a conceptual view on how the same metabolic pathway can be exploited in different ways depending on the current cellular needs during metastatic progression.
    Keywords:  ROS; RedOx balance; bioenergetics; biosynthesis; cancer metabolism; hypoxia; metabolic plasticity; metastasis; one-carbon metabolism; tumour microenvironment
  13. Lab Chip. 2020 Sep 10.
      Pancreatic ductal adenocarcinoma (PDAC) is a complex disease with significant intra-tumoral heterogeneity (ITH). Currently, no reliable PDAC tumor model is available that can present ITH profiles in a controlled manner. We develop an in vitro microfluidic tumor model mimicking the heterogeneous accumulation of key driver mutations of human PDAC using cancer cells derived from genetically engineered mouse models. These murine pancreatic cancer cell lines have KPC (Kras and Trp53 mutations) and KIC genotypes (Kras mutation and Cdkn2a deletion). Also, the KIC genotypes have two distinct phenotypes - mesenchymal or epithelial. The tumor model mimics the ITH of human PDAC to study the effects of ITH on the gemcitabine response. The results show gemcitabine resistance induced by ITH. Remarkably, it shows that cancer cell-cell interactions induce the gemcitabine resistance potentially through epithelial-mesenchymal-transition. The tumor model can provide a useful testbed to study interaction mechanisms between heterogeneous cancer cell subpopulations.
  14. Science. 2020 Sep 11. pii: eaaz8528. [Epub ahead of print]369(6509):
      The Genotype-Tissue Expression (GTEx) project has identified expression and splicing quantitative trait loci in cis (QTLs) for the majority of genes across a wide range of human tissues. However, the functional characterization of these QTLs has been limited by the heterogeneous cellular composition of GTEx tissue samples. We mapped interactions between computational estimates of cell type abundance and genotype to identify cell type-interaction QTLs for seven cell types and show that cell type-interaction expression QTLs (eQTLs) provide finer resolution to tissue specificity than bulk tissue cis-eQTLs. Analyses of genetic associations with 87 complex traits show a contribution from cell type-interaction QTLs and enables the discovery of hundreds of previously unidentified colocalized loci that are masked in bulk tissue.
  15. Rev Physiol Biochem Pharmacol. 2020 Sep 08.
      Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
    Keywords:  Bioelectrical signaling; Cancer; Ion channels; Mechanobiology; Membrane potential; Metastasis; Tumor heterogeneity; Tumor initiation; Tumor microenvironment; Tumor progression
  16. Science. 2020 Sep 11. pii: eaaz6876. [Epub ahead of print]369(6509):
      Telomere shortening is a hallmark of aging. Telomere length (TL) in blood cells has been studied extensively as a biomarker of human aging and disease; however, little is known regarding variability in TL in nonblood, disease-relevant tissue types. Here, we characterize variability in TLs from 6391 tissue samples, representing >20 tissue types and 952 individuals from the Genotype-Tissue Expression (GTEx) project. We describe differences across tissue types, positive correlation among tissue types, and associations with age and ancestry. We show that genetic variation affects TL in multiple tissue types and that TL may mediate the effect of age on gene expression. Our results provide the foundational knowledge regarding TL in healthy tissues that is needed to interpret epidemiological studies of TL and human health.
  17. Elife. 2020 Sep 11. pii: e59686. [Epub ahead of print]9
      Despite the established role of mitochondria in cancer, the mechanisms by which mitochondrial Ca2+ (mtCa2+) regulates tumorigenesis remain incompletely understood. The crucial role of mtCa2+ in tumorigenesis is highlighted by altered expression of proteins mediating mtCa2+ uptake and extrusion in cancer. Here, we demonstrate decreased expression of the mitochondrial Na+/Ca2+/Li+ exchanger NCLX (SLC8B1) in human colorectal tumors and its association with advanced-stage disease in patients. Downregulation of NCLX causes mtCa2+ overload, mitochondrial depolarization, decreased expression of cell-cycle genes and reduced tumor size in xenograft and spontaneous colorectal cancer mouse models. Concomitantly, NCLX downregulation drives metastatic spread, chemoresistance, and expression of epithelial-to-mesenchymal, hypoxia, and stem cell pathways. Mechanistically, mtCa2+ overload leads to increased mitochondrial reactive oxygen species, which activate HIF1α signaling supporting metastasis of NCLX-null tumor cells. Thus, loss of NCLX is a novel driver of metastasis, indicating that regulation of mtCa2+ is a novel therapeutic approach in metastatic colorectal cancer.
    Keywords:  human; molecular biophysics; mouse; structural biology
  18. Cancer Immunol Res. 2020 Sep 11. pii: canimm.0111.2020. [Epub ahead of print]
      The mechanisms responsible for radioresistance in pancreatic cancer have yet to be elucidated and the suppressive tumor immune microenvironment must be considered. We investigated if the radiotherapy-augmented Warburg effect helped myeloid cells acquire an immunosuppressive phenotype, resulting in limited treatment efficacy of pancreatic ductal adenocarcinoma (PDAC). Radiotherapy enhanced the tumor-promoting activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Sustained increase in lactate secretion, resulting from the radiation-augmented Warburg effect, was responsible for the enhanced immunosuppressive phenotype of MDSCs after radiotherapy. Hypoxia-inducible factor-1α (HIF-1α) was essential for tumor cell metabolism and lactate-regulated activation of MDSCs via the G protein-coupled receptor 81 (GPR81)/ mammalian target of rapamycin (mTOR)/HIF-1α/STAT3 pathway. Blocking lactate production in tumor cells or deleting Hif-1α in MDSCs reverted antitumor T cell responses and effectively inhibited tumor progression after radiotherapy in pancreatic cancer. Our investigation highlighted the importance of radiation-induced lactate in regulating the inhibitory immune microenvironment of PDAC. Targeting lactate derived from tumor cells and the HIF-1α signaling in MDSCs may hold distinct promise for clinical therapies to alleviate radioresistance in PDAC.
  19. Nat Commun. 2020 09 08. 11(1): 4471
      A human cell contains hundreds to thousands of mitochondrial DNA (mtDNA) packaged into nucleoids. Currently, the segregation and allocation of nucleoids are thought to be passively determined by mitochondrial fusion and division. Here we provide evidence, using live-cell super-resolution imaging, that nucleoids can be actively transported via KIF5B-driven mitochondrial dynamic tubulation (MDT) activities that predominantly occur at the ER-mitochondria contact sites (EMCS). We further demonstrate that a mitochondrial inner membrane protein complex MICOS links nucleoids to Miro1, a KIF5B receptor on mitochondria, at the EMCS. We show that such active transportation is a mechanism essential for the proper distribution of nucleoids in the peripheral zone of the cell. Together, our work identifies an active transportation mechanism of nucleoids, with EMCS serving as a key platform for the interplay of nucleoids, MICOS, Miro1, and KIF5B to coordinate nucleoids segregation and transportation.
  20. Aging Cell. 2020 Sep 11. e13188
      Chronic inflammation is a common feature of many age-related conditions including neurodegenerative diseases such as Alzheimer's disease. Cellular senescence is a state of irreversible cell-cycle arrest, thought to contribute to neurodegenerative diseases partially via induction of a chronic pro-inflammatory phenotype. In this study, we used a mouse model of genetically enhanced NF-κB activity (nfκb1-/- ), characterized by low-grade chronic inflammation and premature aging, to investigate the impact of inflammaging on cognitive decline. We found that during aging, nfkb1-/- mice show an early onset of memory loss, combined with enhanced neuroinflammation and increased frequency of senescent cells in the hippocampus and cerebellum. Electrophysiological measurements in the hippocampus of nfkb1-/- mice in vitro revealed deficits in gamma frequency oscillations, which could explain the decline in memory capacity. Importantly, treatment with the nonsteroidal anti-inflammatory drug (NASID) ibuprofen reduced neuroinflammation and senescent cell burden resulting in significant improvements in cognitive function and gamma frequency oscillations. These data support the hypothesis that chronic inflammation is a causal factor in the cognitive decline observed during aging.
    Keywords:  aging; cognitive decline; hippocampus; memory; neuroinflammation; senescence
  21. Anal Biochem. 2020 Sep 05. pii: S0003-2697(20)30467-X. [Epub ahead of print] 113935
      White adipose tissue (WAT) represents a major site of triacylglycerol energy storage and is directly associated with metabolic disorders. Mitochondria regulate cellular energy expenditure and are active in WAT. Although isolated mitochondria have been classically used to assess their functions, several artifacts can be introduced by this approach. Furthermore, important limitations exist in the available methods to determine mitochondrial physiology in permeabilized WAT. Here, we established and validated a method for functional evaluation of mice mesenteric WAT (mWAT) mitochondria by using MEchanical Permeabilization and LIpid DEpletion (MEPLIDE) coupled to high-resolution respirometry. We observed that mild stirring of mWAT for 20 minutes at room temperature with 4 % fatty acid-free albumin (FAF-BSA) followed by 50 min without FAF-BSA selectively permeabilized white adipocytes plasma membrane. In these conditions, mWAT mitochondria were intact, exhibiting succinate-induced respiratory rates that were sensitive to classical oxidative phosphorylation modulators. Finally, the respiratory capacity of mWAT in female mice was significantly higher than in males, an observation that agrees with reported data. Therefore, the functional assessment of mWAT mitochondria through MEPLIDE coupled to high resolution respirometry proposed here will contribute to a better understanding of WAT biology in several pathophysiological contexts.
    Keywords:  Metabolism; adipose; bioenergetics; method; mitochondria; obesity; respiration
  22. Cell Syst. 2020 Sep 05. pii: S2405-4712(20)30329-X. [Epub ahead of print]
      Transcriptional profiling of tumors has revealed a stress-like state among the cancer cells with the concerted expression of genes such as fos, jun, and heat-shock proteins, though this has been controversial given possible dissociation-effects associated with single-cell RNA sequencing. Here, we validate the existence of this state using a combination of zebrafish melanoma modeling, spatial transcriptomics, and human samples. We found that the stress-like subpopulation of cancer cells is present from the early stages of tumorigenesis. Comparing with previously reported single-cell RNA sequencing datasets from diverse cancer types, including triple-negative breast cancer, oligodendroglioma, and pancreatic adenocarcinoma, indicated the conservation of this state during tumorigenesis. We also provide evidence that this state has higher tumor-seeding capabilities and that its induction leads to increased growth under both MEK and BRAF inhibitors. Collectively, our study supports the stress-like cells as a cancer cell state expressing a coherent set of genes and exhibiting drug-resistance properties.
    Keywords:  cancer cell states; drug-resistant states; melanoma; single-cell RNA-seq; spatial transcriptomics; stress-like
  23. J Exp Clin Cancer Res. 2020 Sep 07. 39(1): 181
      BACKGROUND: Nicotine, an active ingredient in tobacco, can promote epithelial-to-mesenchymal transition (EMT) processes that enhance the aggressiveness of a number of human cancers. In the present study, we investigated whether cigarette smoke/nicotine drives EMT in pancreatic ductal adenocarcinoma (PDAC).METHODS: Quantitative real-time PCR, western blot, immunohistochemistry, and immunofluorescence assays were used to evaluate Yes-associated protein 1 (YAP1) expression associated with cigarette smoking in human PDAC tissue samples and with nicotine exposure in PDAC cell lines. Bioinformatics, loss- and gain- of- function experiments, luciferase reporter assays, chromatin immunoprecipitation (ChIP), and murine tumor xenograft models were performed to examine the function of YAP1 in PDAC and to identify potential mechanisms of action.
    RESULTS: Exposure to smoking or nicotine promoted EMT and tumor growth in PDAC cells and in xenograft tumors. Functional studies revealed that YAP1 might drive nicotine-stimulated EMT and oncogenic activity in vitro and in vivo. In human PDAC tissues, upregulation of YAP1 was associated with "ever smoking" status and poor overall survival. In term of mechanism, hypoxia inducible factor (HIF)1A promoted YAP1 nuclear localization and YAP1 transactivation by directly binding to the hypoxia responsive elements of the YAP1 promoter upon nicotine treatment. Nicotine stimulated HIF1A and YAP1 expression by activating cholinergic receptor nicotinic alpha7 (CHRNA7). In addition, YAP1 increased and sustained the protein stability of HIF1A.
    CONCLUSIONS: These data demonstrate that YAP1 enhances nicotine-stimulated EMT and tumor progression of PDAC through a HIF1A/YAP1 positive feedback loop. Developing inhibitors that specifically target YAP1 may provide a novel therapeutic approach to suppress PDAC growth, especially in PDAC patients who have a history of smoking.
    Keywords:  Epithelial-to-mesenchymal transition; HIF1A; Nicotine; Pancreatic ductal adenocarcinoma; YAP1
  24. Autophagy. 2020 Sep 10.
      Mesenchymal stem cell transplantation (MSCT) has been applied to treat a variety of autoimmune and inflammatory diseases. Psychosocial stress can aggravate disease progression in chronic inflammatory patients. Whether psychological stress affects MSCT is largely unknown. In this study we show that psychological stress attenuates therapeutic effects of MSCT in a DSS-induced colitis mouse model by elevating the levels of exosomal Mir7k/mmu-let-7k (microRNA 7k) in circulation. Mechanistically, Mir7k inhibits STAT3 pathway in donor MSCs, leading to upregulated expression of BECN1 (beclin 1, autophagy related) and, thus, activation of macroautophagy/autophagy. Inhibition of autophagy by blocking Mir7k or activating STAT3 signaling can restore MSCT-mediated therapy in psychologically stressed colitis mice. Our study identifies a previously unknown role of autophagy in regulating MSCT therapy via exosomal miRNA Mir7k.
    Keywords:   Mir7k miRNA; Autophagy; colitis; exosomes; mesenchymal stem cell; psychological stress
  25. Nature. 2020 Sep 09.
      Centrosomes catalyse the formation of microtubules needed to assemble the mitotic spindle apparatus1. Centrosomes themselves duplicate once per cell cycle, in a process that is controlled by the serine/threonine protein kinase PLK4 (refs. 2,3). When PLK4 is chemically inhibited, cell division proceeds without centrosome duplication, generating centrosome-less cells that exhibit delayed, acentrosomal spindle assembly4. Whether PLK4 inhibitors can be leveraged as a treatment for cancer is not yet clear. Here we show that acentrosomal spindle assembly following PLK4 inhibition depends on levels of the centrosomal ubiquitin ligase TRIM37. Low TRIM37 levels accelerate acentrosomal spindle assembly and improve proliferation following PLK4 inhibition, whereas high TRIM37 levels inhibit acentrosomal spindle assembly, leading to mitotic failure and cessation of proliferation. The Chr17q region containing the TRIM37 gene is frequently amplified in neuroblastoma and in breast cancer5-8, rendering these cancer types highly sensitive to PLK4 inhibition. We find that inactivating TRIM37 improves acentrosomal mitosis because TRIM37 prevents PLK4 from self-assembling into centrosome-independent condensates that serve as ectopic microtubule-organizing centres. By contrast, elevated TRIM37 expression inhibits acentrosomal spindle assembly through a distinct mechanism that involves degradation of the centrosomal component CEP192. Thus, TRIM37 is an essential determinant of mitotic vulnerability to PLK4 inhibition. Linkage of TRIM37 to prevalent cancer-associated genomic changes-including 17q gain in neuroblastoma and 17q23 amplification in breast cancer-may offer an opportunity to use PLK4 inhibition to trigger selective mitotic failure and provide new avenues to treatments for these cancers.
  26. Proc Natl Acad Sci U S A. 2020 Sep 10. pii: 202002520. [Epub ahead of print]
      KRAS mutant lung adenocarcinomas remain intractable for targeted therapies. Genetic interrogation of KRAS downstream effectors, including the MAPK pathway and the interphase CDKs, identified CDK4 and RAF1 as the only targets whose genetic inactivation induces therapeutic responses without causing unacceptable toxicities. Concomitant CDK4 inactivation and RAF1 ablation prevented tumor progression and induced complete regression in 25% of KRAS/p53-driven advanced lung tumors, yet a significant percentage of those tumors that underwent partial regression retained a population of CDK4/RAF1-resistant cells. Characterization of these cells revealed two independent resistance mechanisms implicating hypermethylation of several tumor suppressors and increased PI3K activity. Importantly, these CDK4/RAF1-resistant cells can be pharmacologically controlled. These studies open the door to new therapeutic strategies to treat KRAS mutant lung cancer, including resistant tumors.
    Keywords:  CDK4/RAF1 inhibition; KRAS; Lung Cancer; Resistance Mechanisms; Tumor Regression
  27. Cell Rep. 2020 Sep 08. pii: S2211-1247(20)31114-1. [Epub ahead of print]32(10): 108125
      Individually, dysfunction of both the endoplasmic reticulum (ER) and mitochondria has been linked to aging, but how communication between these organelles might be targeted to promote longevity is unclear. Here, we provide evidence that, in Caenorhabditis elegans, inhibition of the conserved unfolded protein response (UPRER) mediator, activating transcription factor (atf)-6, increases lifespan by modulating calcium homeostasis and signaling to mitochondria. Atf-6 loss confers longevity via downregulation of the ER calcium buffer, calreticulin. ER calcium release via the inositol triphosphate receptor (IP3R/itr-1) is required for longevity, while IP3R/itr-1 gain of function is sufficient to extend lifespan. Highlighting coordination between organelles, the mitochondrial calcium import channel mcu-1 is also required for atf-6 longevity. IP3R inhibition leads to impaired mitochondrial bioenergetics and hyperfusion, which is sufficient to suppress long life in atf-6 mutants. This study reveals the importance of organellar calcium handling as a critical output for the UPRER in determining the quality of aging.
    Keywords:  InsP3R; UPR; aging; calreticulin; interorganelle communication; longevity
  28. Proc Natl Acad Sci U S A. 2020 Sep 08. pii: 202008474. [Epub ahead of print]
      Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene that encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 chromatin immunoprecipitation (ChIP) sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes, which included Mdm2 but not p21 Global p53 activation caused a metaplastic phenotype in the pancreas that was missing in mice with acinar-specific p53 activation, suggesting non-cell-autonomous effects. The p53 cellular response at single-cell resolution in the intestine altered transcriptional cell state, leading to a proximal enterocyte population enriched for genes within oxidative phosphorylation pathways. In addition, a population of active CD8+ T cells was recruited. Combined, this study provides a comprehensive profile of the p53 transcriptional response in vivo, revealing both tissue-specific transcriptomes and a unique signature, which were integrated to induce both cell-autonomous and non-cell-autonomous responses and transcriptional plasticity.
    Keywords:  Mdm2; p53; signature; single-cell sequencing; transcriptome
  29. Nat Chem Biol. 2020 Sep 07.
      Dynamic regulation is a promising strategy for fine-tuning metabolic fluxes in microbial cell factories. However, few of these synthetic regulatory systems have been developed for central carbon metabolites. Here we created a set of programmable and bifunctional pyruvate-responsive genetic circuits for dynamic dual control (activation and inhibition) of central metabolism in Bacillus subtilis. We used these genetic circuits to design a feedback loop control system that relies on the intracellular concentration of pyruvate to fine-tune the target metabolic modules, leading to the glucaric acid titer increasing from 207 to 527 mg l-1. The designed logic gate-based circuits were enabled by the characterization of a new antisense transcription mechanism in B. subtilis. In addition, a further increase to 802 mg l-1 was achieved by blocking the formation of by-products. Here, the constructed pyruvate-responsive genetic circuits are presented as effective tools for the dynamic control of central metabolism of microbial cell factories.
  30. Cell Stress. 2020 Aug 10. 4(9): 218-226
      Exocytosis is a universal process of eukaryotic cells, consisting of fusion between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel through which vesicle cargo exits into the extracellular space. In 1986, Rand and Parsegian proposed several stages to explain the nature of membrane fusion. Following stimulation, it starts with focused stress destabilization of membranes in contact, followed by the coalescence of two membrane surfaces. In the next fraction of a millisecond, restabilization of fused membranes is considered to occur to maintain the cell's integrity. This view predicted that once a fusion pore is formed, it must widen abruptly, irreversibly and fully, whereby the vesicle membrane completely integrates with and collapses into the plasma membrane (full fusion exocytosis). However, recent experimental evidence has revealed that once the fusion pore opens, it may also reversibly close (transient or kiss-and-run exocytosis). Here, we present a historical perspective on understanding the mechanisms that initiate the membrane merger and fusion pore formation. Next, post-fusion mechanisms that regulate fusion pore stability are considered, reflecting the state in which the forces of widening and constriction of fusion pores are balanced. Although the mechanisms generating these forces are unclear, they may involve lipids and proteins, including SNAREs, which play a role not only in the pre-fusion but also post-fusion stages of exocytosis. How molecules stabilize the fusion pore in the open state is key for a better understanding of fusion pore physiology in health and disease.
    Keywords:  SNARE proteins; exocytosis; fusion pore; fusion pore stability; secretory vesicle
  31. Nature. 2020 Sep 09.
      Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration1,2. This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)3 in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) 'resets' these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens4,5. In three-dimensional matrices-which do not have the constraints of bioprinted scaffolds-the 'reset' vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call 'Organ-On-VascularNet'. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting.
  32. Nat Rev Genet. 2020 Sep 09.
      Molecular inputs to chromatin via cellular metabolism are modifiers of the epigenome. These inputs - which include both nutrient availability as a result of diet and growth factor signalling - are implicated in linking the environment to the maintenance of cellular homeostasis and cell identity. Recent studies have demonstrated that these inputs are much broader than had previously been known, encompassing metabolism from a wide variety of sources, including alcohol and microbiotal metabolism. These factors modify DNA and histones and exert specific effects on cell biology, systemic physiology and pathology. In this Review, we discuss the nature of these molecular networks, highlight their role in mediating cellular responses and explore their modifiability through dietary and pharmacological interventions.
  33. Cell Death Dis. 2020 Sep 10. 11(9): 736
      Colon tumors grow in an adipose tissue-enriched microenvironment. Locally advanced colon cancers often invade into surrounding adipose tissue with a direct contact with adipocytes. We have previously shown that adipocytes promote tumor growth by modulating cellular metabolism. Here we demonstrate that carnitine palmitoyltransferase I (CPT1A), a key enzyme controlling fatty acid oxidation (FAO), was upregulated in colon cancer cells upon exposure to adipocytes or fatty acids. In addition, CPT1A expression was increased in invasive tumor cells within the adipose tissue compared to tumors without direct contact with adipocytes. Silencing CPT1A abolished the protective effect provided by fatty acids against nutrient deprivation and reduced tumor organoid formation in 3D culture and the expression of genes associated with cancer stem cells downstream of Wnt/β-catenin. Mechanistically, CPT1A-dependent FAO promoted the acetylation and nuclear translocation of β-catenin. Furthermore, knockdown of CPT1A blocked the tumor-promoting effect of adipocytes in vivo and inhibited xenograft tumor initiation. Taken together, our findings identify CPT1A-depedent FAO as an essential metabolic pathway that enables the interaction between adipocytes and colon cancer cells.
  34. Sci Adv. 2020 Sep;pii: eabc2590. [Epub ahead of print]6(37):
      The neural substrates of insomnia/hyperarousal induced by stress remain unknown. Here, we show that restraint stress leads to hyperarousal associated with strong activation of corticotropin-releasing hormone neurons in the paraventricular nucleus of hypothalamus (CRHPVN) and hypocretin neurons in the lateral hypothalamus (HcrtLH). CRHPVN neurons directly innervate HcrtLH neurons, and optogenetic stimulation of LH-projecting CRHPVN neurons elicits hyperarousal. CRISPR-Cas9-mediated knockdown of the crh gene in CRHPVN neurons abolishes hyperarousal induced by stimulating LH-projecting CRHPVN neurons. Genetic ablation of Hcrt neurons or crh gene knockdown significantly counteracts restraint stress-induced hyperarousal. Single-cell mass cytometry by time of flight (CyTOF) revealed extensive changes to immune cell distribution and functional responses in peripheral blood during hyperarousal upon optogenetic stimulation of CRHPVN neurons simulating stress-induced insomnia. Our findings suggest both central and peripheral systems are synergistically engaged in the response to stress via CRHPVN circuitry.
  35. Sci Adv. 2020 Sep;pii: eabb2630. [Epub ahead of print]6(37):
      DNA double-strand breaks (DSBs) are highly toxic lesions that can drive genetic instability. These lesions also contribute to the efficacy of radiotherapy and many cancer chemotherapeutics. DNA repair efficiency is regulated by both intracellular and extracellular chemical signals. However, it is largely unknown whether this process is regulated by physical stimuli such as extracellular mechanical signals. Here, we report that DSB repair is regulated by extracellular mechanical signals. Low extracellular matrix (ECM) stiffness impairs DSB repair and renders cells sensitive to genotoxic agents. Mechanistically, we found that the MAP4K4/6/7 kinases are activated and phosphorylate ubiquitin in cells at low stiffness. Phosphorylated ubiquitin impairs RNF8-mediated ubiquitin signaling at DSB sites, leading to DSB repair deficiency. Our results thus demonstrate that ECM stiffness regulates DSB repair efficiency and genotoxic sensitivity through MAP4K4/6/7 kinase-mediated ubiquitin phosphorylation, providing a previously unidentified regulation in DSB-induced ubiquitin signaling.
  36. Science. 2020 Sep 11. pii: eaba3066. [Epub ahead of print]369(6509):
      Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release). We demonstrate that sex influences gene expression levels and cellular composition of tissue samples across the human body. A total of 37% of all genes exhibit sex-biased expression in at least one tissue. We identify cis expression quantitative trait loci (eQTLs) with sex-differentiated effects and characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study data, we identify 58 gene-trait associations that are driven by genetic regulation of gene expression in a single sex. These findings provide an extensive characterization of sex differences in the human transcriptome and its genetic regulation.
  37. J Exp Bot. 2020 Sep 09. pii: eraa410. [Epub ahead of print]
      The Arabidopsis thaliana T2 family endoribonuclease RNS2 localizes to the vacuole and functions in rRNA degradation. Loss of RNS2 activity impairs rRNA turnover and leads to constitutive autophagy, a process for degradation of cellular components. Autophagy is normally activated during environmental stress and is important for stress tolerance and homeostasis. Here we show that restoration of cytosolic purine nucleotide levels rescues the constitutive autophagy phenotype of rns2-2 seedlings, whereas inhibition of purine synthesis induces autophagy in wild-type seedlings. rns2-2 seedlings have reduced activity of the target of rapamycin (TOR) kinase complex, a negative regulator of autophagy, and this phenotype is rescued by addition of inosine to increase purine levels. Activation of TOR in rns2-2 by exogenous auxin blocks the enhanced autophagy, indicating a possible involvement of the TOR signaling pathway in the activation of autophagy in the rns2-2 mutant. Our data suggest a model in which loss of rRNA degradation in rns2-2 leads to a reduction in cytoplasmic nucleotide concentrations, which in turn inhibits TOR activity, leading to activation of autophagy to restore homeostasis.
    Keywords:  Arabidopsis; RNS2; TOR; autophagy; inosine; nucleotides; rRNA; ribonuclease
  38. Nat Commun. 2020 Sep 09. 11(1): 4516
      Acinar metaplasia is an initial step in a series of events that can lead to pancreatic cancer. Here we perform single-cell RNA-sequencing of mouse pancreas during the progression from preinvasive stages to tumor formation. Using a reporter gene, we identify metaplastic cells that originated from acinar cells and express two transcription factors, Onecut2 and Foxq1. Further analyses of metaplastic acinar cell heterogeneity define six acinar metaplastic cell types and states, including stomach-specific cell types. Localization of metaplastic cell types and mixture of different metaplastic cell types in the same pre-malignant lesion is shown. Finally, single-cell transcriptome analyses of tumor-associated stromal, immune, endothelial and fibroblast cells identify signals that may support tumor development, as well as the recruitment and education of immune cells. Our findings are consistent with the early, premalignant formation of an immunosuppressive environment mediated by interactions between acinar metaplastic cells and other cells in the microenvironment.
  39. Cell. 2020 Aug 30. pii: S0092-8674(20)30947-8. [Epub ahead of print]
      Metabolic reprogramming is a key feature of many cancers, but how and when it contributes to tumorigenesis remains unclear. Here we demonstrate that metabolic reprogramming induced by mitochondrial fusion can be rate-limiting for immortalization of tumor-initiating cells (TICs) and trigger their irreversible dedication to tumorigenesis. Using single-cell transcriptomics, we find that Drosophila brain tumors contain a rapidly dividing stem cell population defined by upregulation of oxidative phosphorylation (OxPhos). We combine targeted metabolomics and in vivo genetic screening to demonstrate that OxPhos is required for tumor cell immortalization but dispensable in neural stem cells (NSCs) giving rise to tumors. Employing an in vivo NADH/NAD+ sensor, we show that NSCs precisely increase OxPhos during immortalization. Blocking OxPhos or mitochondrial fusion stalls TICs in quiescence and prevents tumorigenesis through impaired NAD+ regeneration. Our work establishes a unique connection between cellular metabolism and immortalization of tumor-initiating cells.
    Keywords:  bioenergetics; cell immortalization; mitochondrial dynamics; neural stem cells; tumor heterogeneity; tumorigenesis
  40. Nat Metab. 2020 Sep 07.
      Not all individuals age at the same rate. Methods such as the 'methylation clock' are invasive, rely on expensive assays of tissue samples and infer the ageing rate by training on chronological age, which is used as a reference for prediction errors. Here, we develop models based on convoluted neural networks through training on non-invasive three-dimensional (3D) facial images of approximately 5,000 Han Chinese individuals that achieve an average difference between chronological or perceived age and predicted age of ±2.8 and 2.9 yr, respectively. We further profile blood transcriptomes from 280 individuals and infer the molecular regulators mediating the impact of lifestyle on the facial-ageing rate through a causal-inference model. These relationships have been deposited and visualized in the Human Blood Gene Expression-3D Facial Image (HuB-Fi) database. Overall, we find that humans age at different rates both in the blood and in the face, but do so coherently and with heterogeneity peaking at middle age. Our study provides an example of how artificial intelligence can be leveraged to determine the perceived age of humans as a marker of biological age, while no longer relying on prediction errors of chronological age, and to estimate the heterogeneity of ageing rates within a population.
  41. Mol Cell Biol. 2020 Sep 08. pii: MCB.00368-20. [Epub ahead of print]
      The ribosomal RNA gene, which consists of tandem repetitive arrays (rDNA repeat), is one of the most unstable regions in the genome. The rDNA repeat in the budding yeast is known to become unstable as the cell ages. However, it is unclear how the rDNA repeat changes in ageing mammalian cells. Using quantitative single cell analyses, we identified age-dependent alterations in rDNA copy number and levels of methylation in mice. The degree of methylation and copy number of rDNA from bone marrow cells of 2-year-old mice were increased by comparison to 4-week-old mice in two mouse strains, BALB/cA and C57BL/6. Moreover, the level of pre-rRNA transcripts was reduced in older BALB/cA mice. We also identified many sequence variations in the rDNA. Among them, three mutations were unique to old mice and two of them were found in the conserved region in budding yeast. We established yeast strains with the old mouse-specific mutations and found they shortened the lifespan of the cells. Our findings suggest that rDNA is also fragile in mammalian cells and alterations within this region have a profound effect on cellular function.
  42. Sci Signal. 2020 Sep 08. pii: eaay8690. [Epub ahead of print]13(648):
      The Hanahan and Weinberg "hallmarks of cancer" papers provide a useful structure for considering the various mechanisms driving cancer progression, and the same might be useful for wound healing. In this Review, we highlight how tissue repair and cancer share cellular and molecular processes that are regulated in a wound but misregulated in cancer. From sustained proliferative signaling and the activation of invasion and angiogenesis to the promoting role of inflammation, there are many obvious parallels through which one process can inform the other. For some hallmarks, the parallels are more obscure. We propose some new prospective hallmarks that might apply to both cancer and wound healing and discuss how wounding, as in biopsy and surgery, might positively or negatively influence cancer in the clinic.
  43. Sci Signal. 2020 Sep 08. pii: eabb2490. [Epub ahead of print]13(648):
      Calorie restriction (CR) enhances health span (the length of time that an organism remains healthy) and increases longevity across species. In mice, these beneficial effects are partly mediated by the lowering of core body temperature that occurs during CR. Conversely, the favorable effects of CR on health span are mitigated by elevating ambient temperature to thermoneutrality (30°C), a condition in which hypothermia is blunted. In this study, we compared the global metabolic response to CR of mice housed at 22°C (the standard housing temperature) or at 30°C and found that thermoneutrality reverted 39 and 78% of total systemic or hypothalamic metabolic variations caused by CR, respectively. Systemic changes included pathways that control fuel use and energy expenditure during CR. Cognitive computing-assisted analysis of these metabolomics results helped to prioritize potential active metabolites that modulated the hypothermic response to CR. Last, we demonstrated with pharmacological approaches that nitric oxide (NO) produced through the citrulline-NO pathway promotes CR-triggered hypothermia and that leucine enkephalin directly controls core body temperature when exogenously injected into the hypothalamus. Because thermoneutrality counteracts CR-enhanced health span, the multiple metabolites and pathways altered by thermoneutrality may represent targets for mimicking CR-associated effects.
  44. Diabetologia. 2020 Oct;63(10): 1974-1980
      Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best 'model' for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes. Graphical abstract.
    Keywords:  Development; Human; Islets of Langerhans; Mouse; NEUROG3; Neonatal diabetes; Neurogenin 3; PDX1; Pancreas and duodenal homeobox 1; RFX6; Regulatory factor X6; Review; Transcription factors
  45. Nat Rev Cancer. 2020 Sep 09.
      Elevated circulating insulin levels are frequently observed in the setting of obesity and early type 2 diabetes, as a result of insensitivity of metabolic tissues to the effects of insulin. Higher levels of circulating insulin have been associated with increased cancer risk and progression in epidemiology studies. Elevated circulating insulin is believed to be a major factor linking obesity, diabetes and cancer. With the development of targeted cancer therapies, insulin signalling has emerged as a mechanism of therapeutic resistance. Although metabolic tissues become insensitive to insulin in the setting of obesity, a number of mechanisms allow cancer cells to maintain their ability to respond to insulin. Significant progress has been made in the past decade in understanding the insulin receptor and its signalling pathways in cancer, and a number of lessons have been learnt from therapeutic failures. These discoveries have led to numerous clinical trials that have aimed to reduce the levels of circulating insulin and to abrogate insulin signalling in cancer cells. With the rising prevalence of obesity and diabetes worldwide, and the realization that hyperinsulinaemia may contribute to therapeutic failures, it is essential to understand how insulin and insulin receptor signalling promote cancer progression.
  46. Nat Phys. 2020 Jan;16(1): 101-108
      Sculpting of structure and function of three-dimensional multicellular tissues depend critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events, and their disruption in disease, remain poorly understood. Using a multicellular mammary cancer organoid model, here we map in three dimensions the spatial and temporal evolution of positions, motions, and physical characteristics of individual cells. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, suppression of which delays transition to an invasive phenotype. Together, these findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.
  47. Genes Dev. 2020 Sep 10.
      Despite being the frontline therapy for type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB, but several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new Raptor AA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for both the translational and transcriptional response to metformin. Transcriptionally, AMPK and mTORC1 were both important for regulation of anabolic metabolism and inflammatory programs triggered by metformin treatment. The hepatic transcriptional response in mice on high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo.
    Keywords:  AMPK; RAPTOR; STAT3; TSC2; mTOR; metformin
  48. Trends Endocrinol Metab. 2020 Sep 05. pii: S1043-2760(20)30140-5. [Epub ahead of print]
      In hormone-dependent organs, sex hormones and dysregulated hormone signaling have well-documented roles in cancers of the breast and female reproductive organs including endometrium and ovary, as well as in prostate and testicular cancers in males. Strikingly, epidemiological data highlight significant differences between the sexes in the incidence of various cancers in nonreproductive organs, where the role of sex hormones has been less well studied. In an era when personalized medicine is gaining recognition, understanding the molecular, cellular, and biological differences between men and women is timely for developing more appropriate therapeutic interventions according to gender. We review evidence that sex hormones also shape many of the dysregulated cellular and molecular pathways that lead to cell proliferation and cancer in nonreproductive organs.
    Keywords:  bladder cancer; gastrointestinal cancer; glioblastoma; sex hormone; thyroid cancer
  49. Adv Exp Med Biol. 2020 ;1274 137-176
      Lysophosphatidic acid (LPA) has major roles as a bioactive signaling molecule, with multiple physiological and pathological roles being described in almost every major organ system. In this review we discuss LPA signaling pathways as emerging drug targets for multiple conditions relevant to human health and disease. LPA signals through the six G protein-coupled receptors LPA1-6, and several of these receptors along with the LPA-producing enzyme including autotaxin (ATX) are now established as therapeutic targets with potential to treat various human diseases as exemplified by several LPA signaling targeting compounds now in clinical trials for idiopathic pulmonary fibrosis and systemic sclerosis. Several crystal structures of LPA receptors and ATX have been solved, which will accelerate development of highly selective and effective LPA signaling targeting compounds. We also review additional bioactive lysophospholipid (LPL) signaling molecules including lysophosphatidylserine and lysophosphatidylinositol, which represent the next wave of LPL druggable targets. An emerging theme in bioactive LPL signaling is that where the ligand is produced and how it is delivered to the cognate receptor are critical determinants of the biological responses. We will also discuss how connecting the production and function of bioactive LPLs will identify new therapeutic strategies to effectively target LPL signaling pathways.
    Keywords:  GPCR; GPR174; GPR34; GPR55; LPI; LysoPS; Lysophosphatidylcholine; Lysophosphatidylglucoside; P2Y10
  50. Nat Commun. 2020 Sep 11. 11(1): 4589
      Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.
  51. PLoS One. 2020 ;15(9): e0237981
      Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.
  52. J Cachexia Sarcopenia Muscle. 2020 Sep 12.
      BACKGROUND: Cancer is associated with muscle atrophy (cancer cachexia) that is linked to up to 40% of cancer-related deaths. Oxidative stress is a critical player in the induction and progression of age-related loss of muscle mass and weakness (sarcopenia); however, the role of oxidative stress in cancer cachexia has not been defined. The purpose of this study was to examine if elevated oxidative stress exacerbates cancer cachexia.METHODS: Cu/Zn superoxide dismutase knockout (Sod1KO) mice were used as an established mouse model of elevated oxidative stress. Cancer cachexia was induced by injection of one million Lewis lung carcinoma (LLC) cells or phosphate-buffered saline (saline) into the hind flank of female wild-type mice or Sod1KO mice at approximately 4 months of age. The tumour developed for 3 weeks. Muscle mass, contractile function, neuromuscular junction (NMJ) fragmentation, metabolic proteins, mitochondrial function, and motor neuron function were measured in wild-type and Sod1KO saline and tumour-bearing mice. Data were analysed by two-way ANOVA with Tukey-Kramer post hoc test when significant F ratios were determined and α was set at 0.05. Unless otherwise noted, results in abstract are mean ±SEM.
    RESULTS: Muscle mass and cross-sectional area were significantly reduced, in tumour-bearing mice. Metabolic enzymes were dysregulated in Sod1KO mice and cancer exacerbated this phenotype. NMJ fragmentation was exacerbated in tumour-bearing Sod1KO mice. Myofibrillar protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.00847 ± 0.00205; wildtype LLC, 0.0211 ± 0.00184) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0180 ± 0.00118; Sod1KO LLC, 0.0490 ± 0.00132). Muscle mitochondrial oxygen consumption was reduced in tumour-bearing mice compared with saline-injected wild-type mice. Mitochondrial protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.0204 ± 0.00159; wild-type LLC, 0.167 ± 0.00157) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0231 ± 0.00108; Sod1 KO LLC, 0.0645 ± 0.000631). Sciatic nerve conduction velocity was decreased in tumour-bearing wild-type mice (wild-type saline, 38.2 ± 0.861; wild-type LLC, 28.8 ± 0.772). Three out of eleven of the tumour-bearing Sod1KO mice did not survive the 3-week period following tumour implantation.
    CONCLUSIONS: Oxidative stress does not exacerbate cancer-induced muscle loss; however, cancer cachexia may accelerate NMJ disruption.
    Keywords:  CuZn superoxide dismutase knockout mice (Sod1KO); Lewis lung carcinoma cells (LLC); Lung cancer; Oxidative stress; Reactive oxygen species (ROS)