bims-cadres Biomed News
on Cancer drug resistance
Issue of 2022‒12‒04
nine papers selected by
Rana Gbyli
Yale University


  1. Cell Rep. 2022 Nov 29. pii: S2211-1247(22)01606-0. [Epub ahead of print]41(9): 111728
      The presence of BRAFV600E in colorectal cancer (CRC) is associated with a higher chance of distant metastasis. Oxidative stress in disseminated tumor cells limits metastatic capacity. To study the relationship between BRAFV600E, sensitivity to oxidative stress, and metastatic capacity in CRC, we use patient-derived organoids (PDOs) and tissue samples. BRAFV600E tumors and PDOs express high levels of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in glutathione synthesis. Deletion of GCL in BRAFV600E PDOs strongly reduces their capacity to form distant liver and lung metastases but does not affect peritoneal metastasis outgrowth. Vice versa, the glutathione precursor N-acetyl-cysteine promotes organ-site-specific metastasis in the liver and the lungs but not in the peritoneum. BRAFV600E confers resistance to pharmacologically induced oxidative stress in vitro, which is partially overcome by treatment with the BRAF-inhibitor vemurafenib. We conclude that GCL-driven glutathione synthesis protects BRAFV600E-expressing tumors from oxidative stress during distant metastasis to the liver and the lungs.
    Keywords:  BRAF(V600E); CP: Cancer; colorectal; glutathione; metastasis; metastatic organotropsim; oxidative stress
    DOI:  https://doi.org/10.1016/j.celrep.2022.111728
  2. Leukemia. 2022 Nov 30.
      DLBCL is the most common lymphoma with high tumor heterogeneity. Treatment refractoriness and relapse from R-CHOP therapy in patients remain a clinical problem. Activation of the non-canonical NF-κB pathway is associated with R-CHOP resistance. However, downstream targets of non-canonical NF-κB mediating R-CHOP-induced resistance remains uncharacterized. Here, we identify the common mechanisms underlying both intrinsic and acquired resistance that are induced by doxorubicin, the main cytotoxic component of R-CHOP. We performed global transcriptomic analysis of (1) a panel of resistant versus sensitive and (2) isogenic acquired doxorubicin-resistant DLBCL cell lines following short and chronic exposure to doxorubicin respectively. Doxorubicin-induced stress in resistant cells activates a distinct transcriptional signature that is enriched in metabolic reprogramming and oncogenic signalling. Selective and sustained activation of non-canonical NF-κB signalling in these resistant cells exacerbated their survival by augmenting glycolysis. In response to doxorubicin, p52-RelB complexes transcriptionally activated multiple glycolytic regulators with prognostic significance through increased recruitment at their gene promoters. Targeting p52-RelB and their targets in resistant cells increased doxorubicin sensitivity in vitro and in vivo. Collectively, our study uncovered novel molecular drivers of doxorubicin-induced resistance that are regulated by non-canonical NF-κB pathway. We reveal new avenues of therapeutic targeting for R-CHOP-treated refractory/relapsed DLBCL patients.
    DOI:  https://doi.org/10.1038/s41375-022-01769-w
  3. FEBS J. 2022 Dec 01.
      Cancer cells, when exposed to the hypoxic tumor microenvironment, respond by activating hypoxia-inducible factors (HIFs). HIF-1 mediates extensive metabolic re-programming, and expression of HIF-1α, its oxygen-regulated subunit, is associated with poor prognosis in cancer. Here we analyze the role of pyruvate dehydrogenase phosphatase 1 (PDP1) in the regulation of HIF-1 activity. PDP1 is a key hormone-regulated metabolic enzyme that dephosphorylates and activates pyruvate dehydrogenase (PDH), thereby stimulating conversion of pyruvate into acetyl-CoA. Silencing of PDP1 down-regulated HIF transcriptional activity and the expression of HIF-dependent genes, including that of PDK1, the kinase that phosphorylates and inactivates PDH, opposing the effects of PDP1. Inversely, PDP1 stimulation enhanced HIF activity under hypoxia. Alteration of PDP1 levels or activity did not have an effect on HIF-1α protein levels, nuclear accumulation or interaction with its partners ARNT and NPM1. However, depletion of PDP-1 decreased histone H3 acetylation of HIF-1 target gene promoters and inhibited binding of HIF-1 to the respective hypoxia-response elements (HREs) under hypoxia. Furthermore, the decrease of HIF transcriptional activity upon PDP1 depletion could be reversed by treating the cells with acetate, as an exogenous source of acetyl-CoA, or the histone deacetylase (HDAC) inhibitor trichostatin A. These data suggest that the PDP1/PDH/HIF-1/PDK1 axis is part of a homeostatic loop which, under hypoxia, preserves cellular acetyl-CoA production to a level sufficient to sustain chromatin acetylation and transcription of hypoxia-inducible genes.
    Keywords:  HIF-1α; PDP1; acetyl-CoA; histone acetylation; hypoxia; pyruvate dehydrogenase phosphatase 1
    DOI:  https://doi.org/10.1111/febs.16694
  4. Cell Death Differ. 2022 Nov 29.
      Oncogenic KRAS is the key driver oncogene for several of the most aggressive human cancers. One key feature of oncogenic KRAS expression is an early increase in cellular reactive oxygen species (ROS) which promotes cellular transformation if cells manage to escape cell death, mechanisms of which remain incompletely understood. Here, we identify that expression of oncogenic as compared to WT KRAS in isogenic cellular systems renders cells more resistant to ferroptosis, a recently described type of regulated necrosis. Mechanistically, we find that cells with mutant KRAS show a specific lack of ferroptosis-induced lipid peroxidation. Interestingly, KRAS-mutant cells upregulate expression of ferroptosis suppressor protein 1 (FSP1). Indeed, elevated levels of FSP1 in KRAS-mutant cells are responsible for mediating ferroptosis resistance and FSP1 is upregulated as a consequence of MAPK and NRF2 pathway activation downstream of KRAS. Strikingly, FSP1 activity promotes cellular transformation in soft agar and its overexpression is sufficient to promote spheroid growth in 3D in KRAS WT cells. Moreover, FSP1 expression and its activity in ferroptosis inhibition accelerates tumor onset of KRAS WT cells in the absence of oncogenic KRAS in vivo. Consequently, we find that pharmacological induction of ferroptosis in pancreatic organoids derived from the LsL-KRASG12D expressing mouse model is only effective in combination with FSP1 inhibition. Lastly, FSP1 is upregulated in non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) as compared to the respective normal tissue of origin and correlates with NRF2 expression in PDAC patient datasets. Based on these data, we propose that KRAS-mutant cells must navigate a ferroptosis checkpoint by upregulating FSP1 during tumor establishment. Consequently, ferroptosis-inducing therapy should be combined with FSP1 inhibitors for efficient therapy of KRAS-mutant cancers.
    DOI:  https://doi.org/10.1038/s41418-022-01096-8
  5. Cancer Cell. 2022 Nov 16. pii: S1535-6108(22)00551-7. [Epub ahead of print]
      Mutations in epigenetic regulators are prevalent in cancer, but their functional impact is poorly delineated aside from disrupting differentiation. In this issue of Cancer Cell, Loukas, Simeoni, et al. zoom in on the late occurring, subclonal subset of such mutations and define the molecular mechanism behind their enrichment in cancer.
    DOI:  https://doi.org/10.1016/j.ccell.2022.11.004
  6. Nat Commun. 2022 Nov 28. 13(1): 7199
      Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.
    DOI:  https://doi.org/10.1038/s41467-022-34863-9
  7. Front Immunol. 2022 ;13 906127
      ATP-citrate lyase (ACLY) is a key enzyme provoking metabolic and epigenetic gene regulation. Molecularly, these functions are exerted by the provision of acetyl-coenzyme A, which is then used as a substrate for de novo lipogenesis or as an acetyl-group donor in acetylation reactions. It has been demonstrated that ACLY activity can be positively regulated via phosphorylation at serine 455 by Akt and protein kinase A. Nonetheless, the impact of phosphorylation on ACLY function in human myeloid cells is poorly understood. In this study we reconstituted ACLY knockout human monocytic THP-1 cells with a wild type ACLY as well as catalytically inactive H760A, and phosphorylation-deficient S455A mutants. Using these cell lines, we determined the impact of ACLY activity and phosphorylation on histone acetylation and pro-inflammatory gene expression in response to lipopolysaccharide (LPS). Our results show that ACLY serine 455 phosphorylation does not influence the proper enzymatic function of ACLY, since both, wild type ACLY and phosphorylation-deficient mutant, exhibited increased cell growth and histone acetylation as compared to cells with a loss of ACLY activity. Transcriptome analysis revealed enhanced expression of pro-inflammatory and interferon response genes in ACLY knockout and H760A THP-1 cells under unstimulated or LPS-treated conditions. At the same time, S455A ACLY-expressing cells showed a phenotype very similar to wild type cells. Contrary to ACLY knockout, pharmacological inhibition of ACLY in THP-1 cells or in primary human macrophages does not enhance LPS-triggered pro-inflammatory gene expression. Our data thus suggest that ACLY retains functionality in the absence of Akt/PKA-mediated phosphorylation in human myeloid cells. Furthermore, loss of ACLY activity may elicit long-term adaptive mechanisms, increasing inflammatory responses.
    Keywords:  ATP-citrate lyase; histone acetylation; inflammation; macrophages; metabolism
    DOI:  https://doi.org/10.3389/fimmu.2022.906127
  8. Nat Commun. 2022 Dec 01. 13(1): 7400
      The p53 transcription factor is a master regulator of cellular stress responses inhibited by repressors such as MDM2 and the phosphatase PPM1D. Activation of p53 with pharmacological inhibitors of its repressors is being tested in clinical trials for cancer therapy, but efficacy has been limited by poor induction of tumor cell death. We demonstrate that dual inhibition of MDM2 and PPM1D induces apoptosis in multiple cancer cell types via amplification of the p53 transcriptional program through the eIF2α-ATF4 pathway. PPM1D inhibition induces phosphorylation of eIF2α, ATF4 accumulation, and ATF4-dependent enhancement of p53-dependent transactivation upon MDM2 inhibition. Dual inhibition of p53 repressors depletes heme and induces HRI-dependent eIF2α phosphorylation. Pharmacological induction of eIF2α phosphorylation synergizes with MDM2 inhibition to induce cell death and halt tumor growth in mice. These results demonstrate that PPM1D inhibits both the p53 network and the integrated stress response controlled by eIF2α-ATF4, with clear therapeutic implications.
    DOI:  https://doi.org/10.1038/s41467-022-35089-5
  9. Nat Commun. 2022 Nov 28. 13(1): 7198
      Basal-like breast cancers, an aggressive breast cancer subtype that has poor treatment options, are thought to arise from luminal mammary epithelial cells that undergo basal plasticity through poorly understood mechanisms. Using genetic mouse models and ex vivo primary organoid cultures, we show that conditional co-deletion of the LATS1 and LATS2 kinases, key effectors of Hippo pathway signaling, in mature mammary luminal epithelial cells promotes the development of Krt14 and Sox9-expressing basal-like carcinomas that metastasize over time. Genetic co-deletion experiments revealed that phenotypes resulting from the loss of LATS1/2 activity are dependent on the transcriptional regulators YAP/TAZ. Gene expression analyses of LATS1/2-deleted mammary epithelial cells notably revealed a transcriptional program that associates with human basal-like breast cancers. Our study demonstrates in vivo roles for the LATS1/2 kinases in mammary epithelial homeostasis and luminal-basal fate control and implicates signaling networks induced upon the loss of LATS1/2 activity in the development of basal-like breast cancer.
    DOI:  https://doi.org/10.1038/s41467-022-34864-8