bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2023‒02‒26
sixty-five papers selected by
Viktor Korolchuk, Newcastle University



  1. Autophagy. 2023 Feb 20.
      Mitochondrial DNA (mtDNA) is prone to the accumulation of mutations. To prevent harmful mtDNA mutations from being passed on to the next generation, the female germline, through which mtDNA is exclusively inherited, has evolved extensive mtDNA quality control. To dissect the molecular underpinnings of this process, we recently performed a large RNAi screen in Drosophila and uncovered a programmed germline mitophagy (PGM) that is essential for mtDNA quality control. We found that PGM begins as germ cells enter meiosis, induced, at least in part, by the inhibition of the mTor (mechanistic Target of rapamycin) complex 1 (mTorC1). Interestingly, PGM requires the general macroautophagy/autophagy machinery and the mitophagy adaptor BNIP3, but not the canonical mitophagy genes Pink1 and park (parkin), even though they are critical for germline mtDNA quality control. We also identified the RNA-binding protein Atx2 as a major regulator of PGM. This work is the first to identify and implicate a programmed mitophagy event in germline mtDNA quality control, and it highlights the utility of the Drosophila ovary for studying developmentally regulated mitophagy and autophagy in vivo.
    Keywords:  Drosophila; autophagy; germline; mitochondria; mitochondrial DNA; mitophagy; mtDNA; purifying selection
    DOI:  https://doi.org/10.1080/15548627.2023.2182595
  2. Cancers (Basel). 2023 Feb 09. pii: 1112. [Epub ahead of print]15(4):
      Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition. The regulation of mitophagy and autophagy depend upon tumor type and stage. In tumors, mitophagy has dual roles: it removes damaged mitochondria to maintain healthy mitochondria and energy production, which are necessary for tumor growth. In contrast, mitophagy has been shown to inhibit tumor growth by mitigating excessive ROS production, thus preventing mutation and chromosomal instability. Ubiquitination and deubiquitination are important modifications that regulate autophagy. Multiple E3 ubiquitin ligases and DUBs modulate the activity of the autophagy and mitophagy machinery, thereby influencing cancer progression. In this review, we summarize the mechanistic association between cancer development and autophagy/mitophagy activities regulated by the ubiquitin modification of autophagic proteins. In addition, we discuss the function of multiple proteins involved in autophagy/mitophagy in tumors that may represent potential therapeutic targets.
    Keywords:  autophagy; cancer; deubiquitination; mitophagy; ubiquitination
    DOI:  https://doi.org/10.3390/cancers15041112
  3. Autophagy. 2023 Feb 20.
      Macroautophagy/autophagy is a key catabolic pathway in which double-membrane autophagosomes sequester various substrates destined for degradation, enabling cells to maintain homeostasis and survive under stressful conditions. Several autophagy-related (Atg) proteins are recruited to the phagophore assembly site (PAS) and cooperatively function to generate autophagosomes. Vps34 is a class III phosphatidylinositol 3-kinase, and Atg14-containing Vps34 complex I plays essential roles in autophagosome formation. However, the regulatory mechanisms of yeast Vps34 complex I are still poorly understood. Here, we demonstrate that Atg1-dependent phosphorylation of Vps34 is required for robust autophagy activity in Saccharomyces cerevisiae. Following nitrogen starvation, Vps34 in complex I is selectively phosphorylated on multiple serine/threonine residues in its helical domain. This phosphorylation is important for full autophagy activation and cell survival. The absence of Atg1 or its kinase activity leads to complete loss of Vps34 phosphorylation in vivo, and Atg1 directly phosphorylates Vps34 in vitro, regardless of its complex association type. We also demonstrate that the localization of Vps34 complex I to the PAS provides a molecular basis for the complex I-specific phosphorylation of Vps34. This phosphorylation is required for the normal dynamics of Atg18 and Atg8 at the PAS. Together, our results reveal a novel regulatory mechanism of yeast Vps34 complex I and provide new insights into the Atg1-dependent dynamic regulation of the PAS.
    Keywords:  Atg1; Atg18; Atg8; Saccharomyces cerevisiae; Vps34; autophagy; nitrogen starvation
    DOI:  https://doi.org/10.1080/15548627.2023.2182478
  4. Cells. 2023 Feb 20. pii: 668. [Epub ahead of print]12(4):
      Autophagy-the lysosomal degradation of cytoplasm-plays a central role in cellular homeostasis and protects cells from potentially harmful agents that may accumulate in the cytoplasm, including pathogens, protein aggregates, and dysfunctional organelles. This process is initiated by the formation of a phagophore membrane, which wraps around a portion of cytoplasm or cargo and closes to form a double-membrane autophagosome. Upon the fusion of the autophagosome with a lysosome, the sequestered material is degraded by lysosomal hydrolases in the resulting autolysosome. Several alternative membrane sources of autophagosomes have been proposed, including the plasma membrane, endosomes, mitochondria, endoplasmic reticulum, lipid droplets, hybrid organelles, and de novo synthesis. Here, we review recent progress in our understanding of how the autophagosome is formed and highlight the proposed role of vesicles that contain the lipid scramblase ATG9 as potential seeds for phagophore biogenesis. We also discuss how the phagophore is sealed by the action of the endosomal sorting complex required for transport (ESCRT) proteins.
    Keywords:  ESCRT; autophagosome; autophagy; endosome; lipid transport; lysosome
    DOI:  https://doi.org/10.3390/cells12040668
  5. Cell Biosci. 2023 Feb 21. 13(1): 37
      BACKGROUND: Macro-autophagy/Autophagy is an evolutionarily well-conserved recycling process to maintain the balance through precise spatiotemporal regulation. However, the regulatory mechanisms of biomolecular condensates by the key adaptor protein p62 via liquid-liquid phase separation (LLPS) remain obscure.RESULTS: In this study, we showed that E3 ligase Smurf1 enhanced Nrf2 activation and promoted autophagy by increasing p62 phase separation capability. Specifically, the Smurf1/p62 interaction improved the formation and material exchange of liquid droplets compared with p62 single puncta. Additionally, Smurf1 promoted the competitive binding of p62 with Keap1 to increase Nrf2 nuclear translocation in p62 Ser349 phosphorylation-dependent manner. Mechanistically, overexpressed Smurf1 increased the activation of mTORC1 (mechanistic target of rapamycin complex 1), in turn leading to p62 Ser349 phosphorylation. Nrf2 activation increased the mRNA levels of Smurf1, p62, and NBR1, further promoting the droplet liquidity to enhance oxidative stress response. Importantly, we showed that Smurf1 maintained cellular homeostasis by promoting cargo degradation through the p62/LC3 autophagic pathway.
    CONCLUSIONS: These findings revealed the complex interconnected role among Smurf1, p62/Nrf2/NBR1, and p62/LC3 axis in determining Nrf2 activation and subsequent clearance of condensates through LLPS mechanism.
    Keywords:  Protein homeostasis; Smurf1; p62-liquid droplets
    DOI:  https://doi.org/10.1186/s13578-023-00978-9
  6. Life Sci Alliance. 2023 May;pii: e202201825. [Epub ahead of print]6(5):
      Peroxisomes are organelles with key roles in metabolism including long-chain fatty acid production. Their metabolic functions overlap and interconnect with those of mitochondria, with which they share an overlapping but distinct proteome. Both organelles are degraded by selective autophagy processes termed pexophagy and mitophagy. Although mitophagy has received intense attention, the pathways linked to pexophagy and associated tools are less well developed. We have identified the neddylation inhibitor MLN4924 as a potent activator of pexophagy and show that this is mediated by the HIF1α-dependent up-regulation of BNIP3L/NIX, a known adaptor for mitophagy. We show that this pathway is distinct from pexophagy induced by the USP30 deubiquitylase inhibitor CMPD-39, for which we identify the adaptor NBR1 as a central player. Our work suggests a level of complexity to the regulation of peroxisome turnover that includes the capacity to coordinate with mitophagy, via NIX, which acts as a rheostat for both processes.
    DOI:  https://doi.org/10.26508/lsa.202201825
  7. mBio. 2023 Feb 21. e0304922
      Many filamentous fungi develop a conidiation process as an essential mechanism for their dispersal and survival in natural ecosystems. However, the mechanisms underlying conidial persistence in environments are still not fully understood. Here, we report that autophagy is crucial for conidial lifespans (i.e., viability) and vitality (e.g., stress responses and virulence) in the filamentous mycopathogen Beauveria bassiana. Specifically, Atg11-mediated selective autophagy played an important, but not dominant, role in the total autophagic flux. Furthermore, the aspartyl aminopeptidase Ape4 was found to be involved in conidial vitality during dormancy. Notably, the vacuolar translocation of Ape4 was dependent on its physical interaction with autophagy-related protein 8 (Atg8) and associated with the autophagic role of Atg8, as determined through a truncation assay of a critical carboxyl-tripeptide. These observations revealed that autophagy acted as a subcellular mechanism for conidial recovery during dormancy in environments. In addition, a novel Atg8-dependent targeting route for vacuolar hydrolase was identified, which is essential for conidial exit from a long-term dormancy. These new insights improved our understanding of the roles of autophagy in the physiological ecology of filamentous fungi as well as the molecular mechanisms involved in selective autophagy. IMPORTANCE Conidial environmental persistence is essential for fungal dispersal in ecosystems while also serving as a determinant for the biocontrol efficacy of entomopathogenic fungi during integrated pest management. This study identified autophagy as a mechanism to safeguard conidial lifespans and vitality postmaturation. In this mechanism, the aspartyl aminopeptidase Ape4 translocates into vacuoles via its physical interaction with autophagy-related protein 8 (Atg8) and is involved in conidial vitality during survival. The study revealed that autophagy acted as a subcellular mechanism for maintaining conidial persistence during dormancy, while also documenting an Atg8-dependent targeting route for vacuolar hydrolase during conidial recovery from dormancy. Thus, these observations provided new insight into the roles of autophagy in the physiological ecology of filamentous fungi and documented novel molecular mechanisms involved in selective autophagy.
    Keywords:  Cvt pathway; aspartyl aminopeptidase; autophagy; conidial aging; environmental persistence; filamentous fungus
    DOI:  https://doi.org/10.1128/mbio.03049-22
  8. bioRxiv. 2023 Feb 13. pii: 2023.02.11.528148. [Epub ahead of print]
      Mitochondrial quality control is critical for cardiac homeostasis as these organelles are responsible for generating most of the energy needed to sustain contraction. Dysfunctional mitochondria are normally degraded via intracellular degradation pathways that converge on the lysosome. Here, we identified an alternative mechanism to eliminate mitochondria when lysosomal function is compromised. We show that lysosomal inhibition leads to increased secretion of mitochondria in large extracellular vesicles (EVs). The EVs are produced in multivesicular bodies, and their release is independent of autophagy. Deletion of the small GTPase Rab7 in cells or adult mouse heart leads to increased secretion of EVs containing ubiquitinated cargos, including intact mitochondria. The secreted EVs are captured by macrophages without activating inflammation. Hearts from aged mice or Danon disease patients have increased levels of secreted EVs containing mitochondria indicating activation of vesicular release during cardiac pathophysiology. Overall, these findings establish that mitochondria are eliminated in large EVs through the endosomal pathway when lysosomal degradation is inhibited.
    DOI:  https://doi.org/10.1101/2023.02.11.528148
  9. Cell Mol Life Sci. 2023 Feb 23. 80(3): 69
      Animal models have been utilized to understand the pathogenesis of Zellweger spectrum disorders (ZSDs); however, the link between clinical manifestations and molecular pathways has not yet been clearly established. We generated peroxin 5 homozygous mutant zebrafish (pex5-/-) to gain insight into the molecular pathogenesis of peroxisome dysfunction. pex5-/- display hallmarks of ZSD in humans and die within one month after birth. Fasting rapidly depletes lipids and glycogen in pex5-/- livers and expedites their mortality. Mechanistically, deregulated mitochondria and mechanistic target of rapamycin (mTOR) signaling act together to induce metabolic alterations that deplete hepatic nutrients and accumulate damaged mitochondria. Accordingly, chemical interventions blocking either the mitochondrial function or mTOR complex 1 (mTORC1) or a combination of both improve the metabolic imbalance shown in the fasted pex5-/- livers and extend the survival of animals. In addition, the suppression of oxidative stress by N-acetyl L-cysteine (NAC) treatment rescued the apoptotic cell death and early mortality observed in pex5-/-. Furthermore, an autophagy activator effectively ameliorated the early mortality of fasted pex5-/-. These results suggest that fasting may be detrimental to patients with peroxisome dysfunction, and that modulating the mitochondria, mTORC1, autophagy activities, or oxidative stress may provide a therapeutic option to alleviate the symptoms of peroxisomal diseases associated with metabolic dysfunction.
    Keywords:  Autophagy; Fasting; Mitochondria; Zellweger spectrum disorder; mTOR; pex5
    DOI:  https://doi.org/10.1007/s00018-023-04700-3
  10. Cells. 2023 Feb 04. pii: 519. [Epub ahead of print]12(4):
      Cells survey their environment and need to balance growth and anabolism with stress programmes and catabolism towards maximum cellular bioenergetics economy and survival. Nutrient-responsive pathways, such as the mechanistic target of rapamycin (mTOR) interact and cross-talk, continuously, with stress-responsive hubs such as the AMP-activated protein kinase (AMPK) to regulate fundamental cellular processes such as transcription, protein translation, lipid and carbohydrate homeostasis. Especially in nutrient stresses or deprivations, cells tune their metabolism accordingly and, crucially, recycle materials through autophagy mechanisms. It has now become apparent that autophagy is pivotal in lifespan, health and cell survival as it is a gatekeeper of clearing damaged macromolecules and organelles and serving as quality assurance mechanism within cells. Autophagy is hard-wired with energy and nutrient levels as well as with damage-response, and yeasts have been instrumental in elucidating such connectivities. In this review, we briefly outline cross-talks and feedback loops that link growth and stress, mainly, in the fission yeast Schizosaccharomyces pombe, a favourite model in cell and molecular biology.
    Keywords:  S. pombe; ageing; caloric restriction; fission yeast; lifespan; mTOR; rapamycin
    DOI:  https://doi.org/10.3390/cells12040519
  11. Microbiol Spectr. 2023 Feb 23. e0438622
      Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that has devastated the worldwide swine industry for over 30 years. Autophagy is an evolutionarily conserved intracellular lysosomal degradation pathway, and previous studies have documented that PRRSV infection prompts autophagosome accumulation. However, whether PRRSV induces complete or incomplete autophagy remains controversial. Here, we demonstrated that overexpression of PRRSV nonstructural protein 5 (nsp5) induced the accumulation of autophagosomes, and a similar scenario was observed in PRRSV-infected cells. Moreover, both PRRSV infection and nsp5 overexpression activated incomplete autophagy, as evidenced by the blockage of autophagosome-lysosome fusion. Mechanistically, nsp5 overexpression, as well as PRRSV infection, inhibited the interaction of syntaxin 17 (STX17) with synaptosomal-associated protein 29 (SNAP29), two SNARE proteins that mediate autophagosome fusion with lysosomes, to impair the formation of autolysosomes. We further confirmed that nsp5 interacted with STX17, rather than SANP29, and the interacting domains of STX17 were the N-terminal motif and SNARE motif. Taken together, the findings of our study suggest a mechanism by which PRRSV induces incomplete autophagy by blocking autophagosome degradation and provide insights into the development of new therapeutics to combat PRRSV infection. IMPORTANCE A substantial number of viruses have been demonstrated to utilize or hijack autophagy to benefit their replication. In the case of porcine reproductive and respiratory syndrome virus (PRRSV), previous studies have demonstrated the proviral effects of autophagy on PRRSV proliferation. Thus, an investigation of the mechanism by which PRRSV regulates the autophagy processes can provide new insight into viral pathogenesis. Autophagic flux is a dynamic process that consists of autophagosome formation and subsequent lysosomal degradation. However, the exact effect of PRRSV infection on the autophagic flux remains disputed. In this study, we demonstrated that PRRSV infection, as well as PRRSV nsp5 overexpression, inhibited the interaction of STX17 with SNAP29 to impair the fusion of autophagosomes with lysosomes, thereby blocking autophagic flux. This information will help us to understand PRRSV-host interactions and unravel new targets for PRRS prevention and control.
    Keywords:  autophagy; nonstructural protein 5; porcine reproductive and respiratory syndrome virus; synaptosomal-associated protein 29; syntaxin 17
    DOI:  https://doi.org/10.1128/spectrum.04386-22
  12. Antioxidants (Basel). 2023 Feb 09. pii: 428. [Epub ahead of print]12(2):
      Autophagy is a fundamental homeostatic process in which certain cellular components are ingested by double-membrane autophagosomes and then degraded to create energy or to maintain cellular homeostasis and survival. It is typically observed in nutrient-deprived cells as a survival mechanism. However, it has also been identified as a crucial process in maintaining cellular homeostasis and disease progression. Normal cellular metabolism produces reactive oxygen (ROS) and nitrogen species at low levels. However, increased production causes oxidative stress, which can lead to diabetes, cardiovascular diseases, neurological disorders, and cancer. It was recently shown that maintaining redox equilibrium via autophagy is critical for cellular responses to oxidative stress. However, little is understood about the molecular cancer processes that connect to the control of autophagy. In cancer cells, oncogenic mutations, carcinogens, and metabolic reprogramming cause increased ROS generation and oxidative stress. Recent studies have suggested that increased ROS generation activates survival pathways that promote cancer development and metastasis. Moreover, the relationship between metabolic programming and ROS in cancer cells is involved in redox homeostasis and the malignant phenotype. Currently, while the signaling events governing autophagy and how redox homeostasis affects signaling cascades are well understood, very little is known about molecular events related to autophagy. In this review, we focus on current knowledge about autophagy modulation and the role of redox metabolism to further the knowledge of oxidative stress and disease progression in cancer regulation. Therefore, this review focuses on understanding how oxidation/reduction events fine-tune autophagy to help understand how oxidative stress and autophagy govern cancer, either as processes leading to cell death or as survival strategies for maintaining redox homeostasis in cancer.
    Keywords:  autophagosomes; autophagy; cancer; reactive oxygen species; redox homeostasis; redox metabolism
    DOI:  https://doi.org/10.3390/antiox12020428
  13. Biol Cell. 2023 Feb 18.
      BACKGROUND INFORMATION: Autophagy is a conserved process that functions as a cytoprotective mechanism; it may function as a cell death process called programmed cell death type II. There is considerable evidence for the presence of autophagic cell death during oocyte elimination in prepubertal rats. However, the mechanisms involved in this process have not been deciphered.RESULTS: Our observations revealed autophagic cell death in oocytes with increased labeling of the autophagic proteins Beclin 1, light chain 3 A (LC3 A), and lysosomal-associated membrane protein 1 (Lamp1). Furthermore, mTOR and phosphorylated (p)-mTOR (S2448) proteins were significantly decreased in oocytes with increased levels of autophagic proteins, indicating autophagic activation. Moreover, phosphorylated protein kinase B (p-AKT) was not expressed by oocytes, but mitogen-activated protein kinase/extracellular signalregulated kinase (MAPK/ERK) signaling was observed. Additionally, selective and elevated mitochondrial degradation was identified in altered oocytes.
    CONCLUSIONS: All these results suggest that mTOR downregulation, which promotes autophagy, could be mediated by low energy levels and sustained starvation involving the phosphoinositide 3-kinase (PI3K)/AKT/mTOR and MAPK/ERK pathways.
    SIGNIFICANCE: In this work, we analyzed the manner in which autophagy is carried out in oocytes undergoing autophagic cell death by studying the behavior of proteins involved in different steps of the autophagic pathway.
    DOI:  https://doi.org/10.1111/boc.202200108
  14. Autophagy. 2023 Feb 22. 1-21
      Although several mechanisms of macroautophagy/autophagy have been dissected in the last decade, following this pathway in real time remains challenging. Among the early events leading to its activation, the ATG4B protease primes the key autophagy player MAP1LC3B/LC3B. Given the lack of reporters to follow this event in living cells, we developed a Förster's resonance energy transfer (FRET) biosensor responding to the priming of LC3B by ATG4B. The biosensor was generated by flanking LC3B within a pH-resistant donor-acceptor FRET pair, Aquamarine-tdLanYFP. We here showed that the biosensor has a dual readout. First, FRET indicates the priming of LC3B by ATG4B and the resolution of the FRET image makes it possible to characterize the spatial heterogeneity of the priming activity. Second, quantifying the number of Aquamarine-LC3B puncta determines the degree of autophagy activation. We then showed that there are pools of unprimed LC3B upon ATG4B downregulation, and the priming of the biosensor is abolished in ATG4B knockout cells. The lack of priming can be rescued with the wild-type ATG4B or with the partially active W142A mutant, but not with the catalytically dead C74S mutant. Moreover, we screened for commercially-available ATG4B inhibitors, and illustrated their differential mode of action by implementing a spatially-resolved, broad-to-sensitive analysis pipeline combining FRET and the quantification of autophagic puncta. Finally, we uncovered the CDK1-dependent regulation of the ATG4B-LC3B axis at mitosis. Therefore, the LC3B FRET biosensor paves the way for a highly-quantitative monitoring of the ATG4B activity in living cells and in real time, with unprecedented spatiotemporal resolution.Abbreviations: Aqua: aquamarine; ATG: autophagy related; AURKA: aurora kinase A; BafA1: bafilomycin A1; CDK1: cyclin dependent kinase 1; DKO: double knockout; FLIM: fluorescence lifetime imaging microscopy; FP: fluorescence protein; FRET: Förster's resonance energy transfer; GABARAP: GABA type A receptor-associated protein; HBSS: Hanks' balanced salt solution; KO: knockout; LAMP2: lysosomal associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSC: NSC 185058; PE: phosphatidylethanolamine; SKO: single knockout; TKO: triple knockout; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type; ZPCK: Z-L-phe chloromethyl ketone.
    Keywords:  ATG4B; FRET-FLIM; LC3B; autophagy; biosensor
    DOI:  https://doi.org/10.1080/15548627.2023.2179845
  15. Autophagy. 2023 Feb 20.
      Macroautophagy/autophagy is an evolutionarily conserved biological process among eukaryotes that degrades unwanted materials such as protein aggregates, damaged mitochondria and even viruses to maintain cell survival. Our previous studies have demonstrated that MoVast1 acts as an autophagy regulator regulating autophagy, membrane tension, and sterol homeostasis in rice blast fungus. However, the detailed regulatory relationships between autophagy and VASt domain proteins remain unsolved. Here, we identified another VASt domain-containing protein, MoVast2, and further uncovered the regulatory mechanism of MoVast2 in M. oryzae. MoVast2 interacted with MoVast1 and MoAtg8, and colocalized at the PAS and deletion of MoVAST2 results in inappropriate autophagy progress. Through TOR activity analysis, sterols and sphingolipid content detection, we found high sterol accumulation in the ΔMovast2 mutant, whereas this mutant showed low sphingolipids and low activity of both TORC1 and TORC2. In addition, MoVast2 colocalized with MoVast1. The localization of MoVast2 in the MoVAST1 deletion mutant was normal; however, deletion of MoVAST2 leads to mislocalization of MoVast1. Notably, the wide-target lipidomic analyses revealed significant changes in sterols and sphingolipids, the major PM components, in the ΔMovast2 mutant, which was involved in lipid metabolism and autophagic pathways. These findings confirmed that the functions of MoVast1 were regulated by MoVast2, revealing that MoVast2 combined with MoVast1 maintained lipid homeostasis and autophagy balance by regulating TOR activity in M. oryzae.
    Keywords:  Autophagy; Magnaporthe oryzae; TORC2; lipid homeostasis; regulation
    DOI:  https://doi.org/10.1080/15548627.2023.2181739
  16. Cell Metab. 2023 Feb 14. pii: S1550-4131(23)00011-6. [Epub ahead of print]
      How exercise elicits systemic metabolic benefits in both muscles and non-contractile tissues is unclear. Autophagy is a stress-induced lysosomal degradation pathway that mediates protein and organelle turnover and metabolic adaptation. Exercise activates autophagy in not only contracting muscles but also non-contractile tissues including the liver. However, the role and mechanism of exercise-activated autophagy in non-contractile tissues remain mysterious. Here, we show that hepatic autophagy activation is essential for exercise-induced metabolic benefits. Plasma or serum from exercised mice is sufficient to activate autophagy in cells. By proteomic studies, we identify fibronectin (FN1), which was previously considered as an extracellular matrix protein, as an exercise-induced, muscle-secreted, autophagy-inducing circulating factor. Muscle-secreted FN1 mediates exercise-induced hepatic autophagy and systemic insulin sensitization via the hepatic receptor α5β1 integrin and the downstream IKKα/β-JNK1-BECN1 pathway. Thus, we demonstrate that hepatic autophagy activation drives exercise-induced metabolic benefits against diabetes via muscle-secreted soluble FN1 and hepatic α5β1 integrin signaling.
    Keywords:  ATG7; BECN1; autophagy; exercise; fibronectin; insulin sensitivity; integrin; liver; muscle
    DOI:  https://doi.org/10.1016/j.cmet.2023.01.011
  17. Front Med (Lausanne). 2023 ;10 1125692
      Autophagy is a conserved process for self-degradation and provides cells with a rescue mechanism to respond to circumstances such as stress and starvation. The role of autophagy in cancer is extremely complex and often paradoxical. Most of the related published studies on tumors are always focused on cancer cells. However, present studies gradually noticed the significance of autophagy in the tumor microenvironment. These studies demonstrate that autophagy and immunity work synergistically to affect tumor progression, indicating that autophagy could become a potential target for cancer immunotherapy. Therefore, it is crucial to clarify the correlation between autophagy and various tumor-infiltrating immune cells in the tumor microenvironment. The context-dependent role of autophagy is critical in the design of therapeutic strategies for cancer.
    Keywords:  autophagy; dendritic cell; immune cell infiltration; macrophage; tumor immunity
    DOI:  https://doi.org/10.3389/fmed.2023.1125692
  18. Ecotoxicol Environ Saf. 2023 Feb 22. pii: S0147-6513(23)00178-1. [Epub ahead of print]253 114674
      Excessive fluoride exposure can cause liver injury, but the specific mechanisms need further investigation. We aimed to explore the role of impaired lysosomal biogenesis and defective autophagy in fluoride-induced hepatotoxicity and its potential mechanisms, focusing on the role of transcription factor E3 (TFE3) in regulating hepatocyte lysosomal biogenesis. To this end, we established a Sprague-Dawley (SD) rat model exposed to sodium fluoride (NaF) and a rat liver cell line (BRL3A) model exposed to NaF. The results showed that NaF exposure diminished liver function and led to apoptosis as well as autophagosome accumulation and impaired autophagic degradation. In addition, NaF exposure caused compromised lysosome biogenesis and decreased lysosomal degradation, and inhibited TFE3 nuclear translocation. Notably, the mTOR inhibitors rapamycin (RAPA) and Ad-TFE3 promoted lysosomal biogenesis and enhanced lysosomal degradation function. Furthermore, RAPA and Ad-TFE3 reduced NaF-induced apoptosis by alleviating impaired autophagic degradation. In conclusion, NaF impairs lysosomal biogenesis by inhibiting TFE3 nuclear translocation, decreasing lysosomal degradation function, resulting in impaired autophagic degradation, and ultimately inducing apoptosis. Therefore, TFE3 may be a promising therapeutic target for fluoride-induced hepatotoxicity.
    Keywords:  Autophagy; Fluoride; Liver; Lysosomal biogenesis; Lysosomal degradation function; TFE3
    DOI:  https://doi.org/10.1016/j.ecoenv.2023.114674
  19. Autophagy. 2023 Feb 20.
      Mitophagy, which selectively eliminates the dysfunctional and excess mitochondria by autophagy, is crucial for cellular homeostasis under stresses such as hypoxia. Dysregulation of mitophagy has been increasingly linked to many disorders including neurodegenerative disease and cancer. Triple-negative breast cancer (TNBC), a highly aggressive breast cancer subtype, is reported to be characterized by hypoxia. However, the role of mitophagy in hypoxic TNBC as well as the underlying molecular mechanism is largely unexplored. Here, we identified GPCPD1 (glycerophosphocholine phosphodiesterase 1), a key enzyme in choline metabolism, as an essential mediator in hypoxia-induced mitophagy. Under the hypoxic condition, we found that GPCPD1 was depalmitoylated by LYPLA1, which facilitated the relocating of GPCPD1 to the outer mitochondrial membrane (OMM). Mitochondria-localized GPCPD1 could bind to VDAC1, the substrate for PRKN/PARKIN-dependent ubiquitination, thus interfering with the oligomerization of VDAC1. The increased monomer of VDAC1 provided more anchor sites to recruit PRKN-mediated polyubiquitination, which consequently triggered mitophagy. In addition, we found that GPCPD1-mediated mitophagy exerted a promotive effect on tumor growth and metastasis in TNBC both in vitro and in vivo. We further determined that GPCPD1 could serve as an independent prognostic indicator in TNBC. In conclusion, our study provides important insights into a mechanistic understanding of hypoxia-induced mitophagy and elucidates that GPCPD1 could act as a potential target for the future development of novel therapy for TNBC patients.
    Keywords:  GPCPD1; PRKN; VDAC1; hypoxia; mitophagy; ubiquitination
    DOI:  https://doi.org/10.1080/15548627.2023.2182482
  20. Cells. 2023 Feb 15. pii: 621. [Epub ahead of print]12(4):
      The progressive aging of the population and the fact that Parkinson's disease currently does not have any curative treatment turn out to be essential issues in the following years, where research has to play a critical role in developing therapy. Understanding this neurodegenerative disorder keeps advancing, proving the discovery of new pathogenesis-related genes through genome-wide association analysis. Furthermore, the understanding of its close link with the disruption of autophagy mechanisms in the last few years permits the elaboration of new animal models mimicking, through multiple pathways, different aspects of autophagic dysregulation, with the presence of pathological hallmarks, in brain regions affected by Parkinson's disease. The synergic advances in these fields permit the elaboration of multiple therapeutic strategies for restoring autophagy activity. This review discusses the features of Parkinson's disease, the autophagy mechanisms and their involvement in pathogenesis, and the current methods to correct this cellular pathway, from the development of animal models to the potentially curative treatments in the preclinical and clinical phase studies, which are the hope for patients who do not currently have any curative treatment.
    Keywords:  Parkinson’s disease; autophagy; drugs; genetic; lysosome; therapeutics
    DOI:  https://doi.org/10.3390/cells12040621
  21. Arch Toxicol. 2023 Feb 24.
      Bortezomib (BTZ) is a proteasome inhibitor serves as a first-line drug for multiple myeloma treatment. BTZ-induced peripheral neuropathy (BIPN) is the most common adverse effect of BTZ with an incidence as high as 40-60%. However, the pathological mechanisms underlying BIPN remain largely unclear. BTZ leads to dramatic Schwann cell demyelination in sciatic nerves. Previous studies implied that myelin debris was predominantly degraded via autophagy-lysosome pathway in Schwann cells. However, the association of autophagy with BIPN has not been made. Mice were treated with BTZ (2 mg/kg, i.v.) on Day1 and Day4 each week for continuous 4 weeks. BTZ-treated mice showed enhanced mechanical hyperalgesia, decreased tail nerve conduction and sciatic nerve demyelination. Unexpectedly, BTZ led to the accumulation of autophagic vesicles, LC3-II and p62 in the sciatic nerve. Moreover, BTZ blocked autophagic flux in RSC96 Schwann cells as determined by mcherry-GFP-LC3 assay, suggesting BTZ may impair lysosomal function rather than inducing autophagy in Schwann cells. BTZ significantly reduced the lysosomal activity in Schwann cells as determined by reduced LysoTracker Red and DQ-Red-BSA staining and increased the level of immature Cathepsin B (CTSB). Remarkably, lysosomal activators PP242 and Torin1, significantly reversed the blockage of autophagic flux by BTZ. We further verified that Torin1 rescued the demyelination, nerve conduction and reduced the mechanical hyperalgesia in BIPN mice. Additionally, Torin1 did not compromise the efficacy of BTZ in suppressing multiple myeloma RPMI8226 cell. Taken together, we identified that lysosomal dysfunction in Schwann cells caused by BTZ is involved in the BIPN pathology. Improved lysosomal function in Schwann cells can be a promising strategy for BIPN treatment.
    Keywords:  Autophagy; Bortezomib; Bortezomib-induced peripheral neuropathy; Lysosome; Torin1
    DOI:  https://doi.org/10.1007/s00204-023-03468-6
  22. Sci Adv. 2023 Feb 22. 9(8): eade8222
      Myelodysplastic syndrome (MDS) is a clonal malignancy arising in hematopoietic stem cells (HSCs). The mechanisms of MDS initiation in HSCs are still poorly understood. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is frequently activated in acute myeloid leukemia, but in MDS, PI3K/AKT is often down-regulated. To determine whether PI3K down-regulation can perturb HSC function, we generated a triple knockout (TKO) mouse model with Pik3ca, Pik3cb, and Pik3cd deletion in hematopoietic cells. Unexpectedly, PI3K deficiency caused cytopenias, decreased survival, and multilineage dysplasia with chromosomal abnormalities, consistent with MDS initiation. TKO HSCs exhibit impaired autophagy, and pharmacologic autophagy induction improved HSC differentiation. Using intracellular LC3 and P62 flow cytometry and transmission electron microscopy, we also observed abnormal autophagic degradation in patient MDS HSCs. Therefore, we have uncovered an important protective role for PI3K in maintaining autophagic flux in HSCs to preserve the balance between self-renewal and differentiation and to prevent MDS initiation.
    DOI:  https://doi.org/10.1126/sciadv.ade8222
  23. J Diabetes Res. 2023 ;2023 8776878
      Sestrin2 regulates cell homeostasis and is an upstream signaling molecule for several signaling pathways. Sestrin2 leads to AMP-activated protein kinase- (AMPK-) and GTPase-activating protein activity toward Rags (GATOR) 1-mediated inhibition of mammalian target of rapamycin complex 1 (mTORC1), thereby enhancing autophagy. Sestrin2 also improves mitochondrial biogenesis via AMPK/Sirt1/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathway. Blockade of ribosomal protein synthesis and augmentation of autophagy by Sestrin2 can prevent misfolded protein accumulation and attenuate endoplasmic reticulum (ER) stress. In addition, Sestrin2 enhances P62-mediated autophagic degradation of Keap1 to release nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 release by Sestrin2 vigorously potentiates antioxidant defense in diabetic nephropathy. Impaired autophagy and mitochondrial biogenesis, severe oxidative stress, and ER stress are all deeply involved in the development and progression of diabetic nephropathy. It has been shown that Sestrin2 expression is lower in the kidney of animals and patients with diabetic nephropathy. Sestrin2 knockdown aggravated diabetic nephropathy in animal models. In contrast, upregulation of Sestrin2 enhanced autophagy, mitophagy, and mitochondrial biogenesis and suppressed oxidative stress, ER stress, and apoptosis in diabetic nephropathy. Consistently, overexpression of Sestrin2 ameliorated podocyte injury, mesangial proliferation, proteinuria, and renal fibrosis in animal models of diabetic nephropathy. By suppressing transforming growth factor beta (TGF-β)/Smad and Yes-associated protein (YAP)/transcription enhancer factor 1 (TEF1) signaling pathways in experimental models, Sestrin2 hindered epithelial-mesenchymal transition and extracellular matrix accumulation in diabetic kidneys. Moreover, modulation of the downstream molecules of Sestrin2, for instance, augmentation of AMPK or Nrf2 signaling and inhibition of mTORC1, has been protective in diabetic nephropathy. Regarding the beneficial effects of Sestrin2 on diabetic nephropathy and its interaction with several signaling molecules, it is worth targeting Sestrin2 in diabetic nephropathy.
    DOI:  https://doi.org/10.1155/2023/8776878
  24. Front Oncol. 2023 ;13 999738
      Introduction: Current cancer research has led to a renewed interest in exploring lysosomal membrane permeabilization and lysosomal cell death as a targeted therapeutic approach for cancer treatment. Evidence suggests that differences in lysosomal biogenesis between cancer and normal cells might open a therapeutic window. Lysosomal membrane stability may be affected by the so-called 'busy lysosomal behaviour' characterized by higher lysosomal abundance and activity and more intensive fusion or interaction with other vacuole compartments.Methods: We used a panel of multiple myeloid leukemia (ML) cell lines as well as leukemic patient samples and updated methodology to study auto-lysosomal compartment, lysosomal membrane permeabilization and lysosomal cell death.
    Results: Our analyses demonstrated several-fold higher constitutive autolysosomal activity in ML cells as compared to human CD34+ hematopoietic cells. Importantly, we identified mefloquine as a selective activator of ML cells' lysosomal biogenesis, which induced a sizeable increase in ML lysosomal mass, acidity as well as cathepsin B and L activity. Concomitant mTOR inhibition synergistically increased lysosomal activity and autolysosomal fusion and simultaneously decreased the levels of key lysosomal stabilizing proteins, such as LAMP-1 and 2.
    Discussion: In conclusion, mefloquine treatment combined with mTOR inhibition synergistically induced targeted ML cell death without additional toxicity. Taken together, these data provide a molecular mechanism and thus a rationale for a therapeutic approach for specific targeting of ML lysosomes.
    Keywords:  cancer treatment; lysosomal cell death; lysosomal membrane permeabilization; mefloquine and autophagy; myeloid leukemia
    DOI:  https://doi.org/10.3389/fonc.2023.999738
  25. Cell Death Discov. 2023 Feb 21. 9(1): 71
      Hepatotoxins activate the hepatic survival pathway, but it is unclear whether impaired survival pathways contribute to liver injury caused by hepatotoxins. We investigated the role of hepatic autophagy, a cellular survival pathway, in cholestatic liver injury driven by a hepatotoxin. Here we demonstrate that hepatotoxin contained DDC diet impaired autophagic flux, resulting in the accumulation of p62-Ub-intrahyaline bodies (IHBs) but not the Mallory Denk-Bodies (MDBs). An impaired autophagic flux was associated with a deregulated hepatic protein-chaperonin system and significant decline in Rab family proteins. Additionally, p62-Ub-IHB accumulation activated the NRF2 pathway rather than the proteostasis-related ER stress signaling pathway and suppressed the FXR nuclear receptor. Moreover, we demonstrate that heterozygous deletion of Atg7, a key autophagy gene, aggravated the IHB accumulation and cholestatic liver injury. Conclusion: Impaired autophagy exacerbates hepatotoxin-induced cholestatic liver injury. The promotion of autophagy may represent a new therapeutic approach for hepatotoxin-induced liver damage.
    DOI:  https://doi.org/10.1038/s41420-023-01368-3
  26. Curr Opin Struct Biol. 2023 Feb 16. pii: S0959-440X(23)00018-0. [Epub ahead of print]79 102544
      Amino acid pools in the cell are monitored by dedicated sensors, whose structures are now coming into view. The lysosomal Rag GTPases are central to this pathway, and the regulation of their GAP complexes, FLCN-FNIP and GATOR1, have been worked out in detail. For FLCN-FNIP, the entire chain of events from the arginine transporter SLC38A9 to substrate-specific mTORC1 activation has been visualized. The structure GATOR2 has been determined, hinting at an ordering of amino acid signaling across a larger size scale than anticipated. The centerpiece of lysosomal signaling, mTORC1, has been revealed to recognize its substrates by more nuanced and substrate-specific mechanisms than previous appreciated. Beyond the well-studied Rag GTPase and mTORC1 machinery, another lysosomal amino acid sensor/effector system, that of PQLC2 and the C9orf72-containing CSW complex, is coming into structural view. These developments hold promise for further insights into lysosomal physiology and lysosome-centric therapeutics.
    DOI:  https://doi.org/10.1016/j.sbi.2023.102544
  27. Cells. 2023 Feb 17. pii: 651. [Epub ahead of print]12(4):
      Parkinson's disease (PD) is a neurodegenerative disorder that has been associated with mitochondrial dysfunction, oxidative stress, and defects in mitophagy as well as α-synuclein-positive inclusions, termed Lewy bodies (LBs), which are a common pathological hallmark in PD. Mitophagy is a process that maintains cellular health by eliminating dysfunctional mitochondria, and it is triggered by ubiquitination of mitochondrial-associated proteins-e.g., through the PINK1/Parkin pathway-which results in engulfment by the autophagosome and degradation in lysosomes. Deubiquitinating enzymes (DUBs) can regulate this process at several levels by deubiquitinating mitochondrial substrates and other targets in the mitophagic pathway, such as Parkin. Moreover, DUBs can affect α-synuclein aggregation through regulation of degradative pathways, deubiquitination of α-synuclein itself, and/or via co-localization with α-synuclein in inclusions. DUBs with a known association to PD are described in this paper, along with their function. Of interest, DUBs could be useful as novel therapeutic targets against PD through regulation of PD-associated defects.
    Keywords:  Lewy bodies; PARK2; mitochondria; mitophagy; neurodegeneration; parkin; protein degradation; ubiquitin proteasome system; α-synuclein
    DOI:  https://doi.org/10.3390/cells12040651
  28. Exp Biol Med (Maywood). 2023 Feb 18. 15353702231151958
      Autophagy is a self-digestion process by which misfolded proteins and damaged organelles in eukaryotic cells are degraded to maintain cellular homeostasis. This process is involved in the tumorigenesis, metastasis, and chemoresistance of various tumors such as ovarian cancer (OC). Noncoding RNAs (ncRNAs), mainly including microRNAs, long noncoding RNAs, and circular RNAs, have been extensively investigated in cancer research for their roles in the regulation of autophagy. Recent studies have shown that in OC cells, ncRNAs can modulate the formation of autophagosomes, which affect tumor progression and chemoresistance. An understanding of the role of autophagy in OC progression, treatment, and prognosis is important, and the identification of the regulatory roles of ncRNAs in autophagy leads to intervention strategies for OC therapy. This review summarizes the role of autophagy in OC and discusses the role of ncRNA-mediated autophagy in OC, as an understanding of these roles may contribute to the development of potential therapeutic strategies for this disease.
    Keywords:  Ovarian cancer; autophagy; chemoresistance; noncoding RNA; progression; tumorigenesis
    DOI:  https://doi.org/10.1177/15353702231151958
  29. Handb Clin Neurol. 2023 ;pii: B978-0-323-85555-6.00009-6. [Epub ahead of print]193 33-51
      Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.
    Keywords:  Alpha-synuclein; Endosomal trafficking; GBA1; Genetics; Inflammation; LRRK2; Lysosomes; Parkinson's disease; Phagocytosis; VPS35
    DOI:  https://doi.org/10.1016/B978-0-323-85555-6.00009-6
  30. Mar Drugs. 2023 Jan 20. pii: 68. [Epub ahead of print]21(2):
      Autophagy is widely implicated in pathophysiological processes such as tumors and metabolic and neurodegenerative disorders, making it an attractive target for drug discovery. Several chemical screening approaches have been developed to uncover autophagy-modulating compounds. However, the modulation capacity of marine compounds with significant pharmacological activities is largely unknown. We constructed an EGFPKI-LC3B cell line using the CRISPR/Cas9 knock-in strategy in which green fluorescence indicated endogenous autophagy regulation. Using this cell line, we screened a compound library of approximately 500 marine natural products and analogues to investigate molecules that altered the EGFP fluorescence. We identified eight potential candidates that enhanced EGFP fluorescence, and HDYL-GQQ-495 was the leading one. Further validation with immunoblotting demonstrated that cleaved LC3 was increased in dose- and time-dependent manners, and the autophagy adaptor P62 showed oligomerization after HDYL-GQQ-495 treatment. We also demonstrated that HDYL-GQQ-495 treatment caused autophagy substrate aggregation, which indicated that HDYL-GQQ-495 serves as an autophagy inhibitor. Furthermore, HDYL-GQQ-495 induced Gasdermin E (GSDME) cleavage and promoted pyroptosis. Moreover, HDYL-GQQ-495 directly combined with P62 to induce P62 polymerization. In P62 knockout cells, the cleavage of LC3 or GSDME was blocked after HDYL-GQQ-495 treatment. The EGFPKI-LC3B cell line was an effective tool for autophagy modulator screening. Using this tool, we found a novel marine-derived compound, HDYL-GQQ-495, targeting P62 to inhibit autophagy and promote pyroptosis.
    Keywords:  EGFPKI-LC3B; HDYL-GQQ-495; P62; autophagy; marine-derived compound
    DOI:  https://doi.org/10.3390/md21020068
  31. Nat Commun. 2023 Feb 22. 14(1): 978
      Lymphatic malformation (LM) is a vascular anomaly originating from lymphatic endothelial cells (ECs). While it mostly remains a benign disease, a fraction of LM patients progresses to malignant lymphangiosarcoma (LAS). However, very little is known about underlying mechanisms regulating LM malignant transformation to LAS. Here, we investigate the role of autophagy in LAS development by generating EC-specific conditional knockout of an essential autophagy gene Rb1cc1/FIP200 in Tsc1iΔEC mouse model for human LAS. We find that Fip200 deletion blocked LM progression to LAS without affecting LM development. We further show that inhibiting autophagy by genetical ablation of FIP200, Atg5 or Atg7, significantly inhibited LAS tumor cell proliferation in vitro and tumorigenicity in vivo. Transcriptional profiling of autophagy-deficient tumor cells and additional mechanistic analysis determine that autophagy plays a role in regulating Osteopontin expression and its down-stream Jak/Stat3 signaling in tumor cell proliferation and tumorigenicity. Lastly, we show that specifically disrupting FIP200 canonical autophagy function by knocking-in FIP200-4A mutant allele in Tsc1iΔEC mice blocked LM progression to LAS. These results demonstrate a role for autophagy in LAS development, suggesting new strategies for preventing and treating LAS.
    DOI:  https://doi.org/10.1038/s41467-023-36562-5
  32. Poult Sci. 2023 Jan 21. pii: S0032-5791(23)00037-8. [Epub ahead of print]102(4): 102511
      Fumonisin B1 (FB1), a worldwide contaminating mycotoxin produced by Fusarium, poses a great threat to the poultry industry. It was reported that extracellular traps could be induced by FB1 efficiently in chickens. However, the relevance of autophagy and glycolysis in FB1-triggered heterophil extracellular trap (HET) formation is unclear. In this study, immunostaining revealed that FB1-induced HETs structures were composed of DNA coated with histones H3, and elastase, and that heterophils underwent LC3B-related autophagosome formation assembly driven by FB1. Western blotting showed that FB1 downregulated the phosphorylated phosphoinositide 3-kinase3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin complex 1 (mTORC1) axis and raised the AMP-activated kinase α (AMPKα) activation protein. Furthermore, rapamycin- and 3-Methyladenine (3-MA)-treatments modulated FB1-triggered HET formation according to the pharmacological analysis. Further studies on energy metabolism showed that glucose/lactate transport and glycolysis inhibitors abated FB1-induced HETs. These results showed that FB1-induced HET formation might interact with the autophagy process and relied on glucose/monocarboxylic acid transporter 1 (MCT1) and glycolysis, reflecting chicken's early innate immune responses against FB1 intake.
    Keywords:  autophagy; chicken; fumonisin B(1); glycolysis; heterophil extracellular traps
    DOI:  https://doi.org/10.1016/j.psj.2023.102511
  33. iScience. 2023 Feb 17. 26(2): 106045
      Cancer cells coordinate the mTORC1 signals and the related metabolic pathways to robustly and rapidly grow in response to nutrient conditions. Although a CNC-family transcription factor NRF3 promotes cancer development, the biological relevance between NRF3 function and mTORC1 signals in cancer cells remains unknown. Hence, we showed that NRF3 contributes to cancer cell viability through mTORC1 activation in response to amino acids, particularly arginine. NRF3 induced SLC38A9 and RagC expression for the arginine-dependent mTORC1 recruitment onto lysosomes, and it also enhanced RAB5-mediated bulk macropinocytosis and SLC7A1-mediated selective transport for arginine loading into lysosomes. Besides, the inhibition of the NRF3-mTORC1 axis impaired mitochondrial function, leading to cancer cell apoptosis. Consistently, the aberrant upregulation of the axis caused tumor growth and poor prognosis. In conclusion, this study sheds light on the unique function of NRF3 in arginine-dependent mTORC1 activation and the pathophysiological aspects of the NRF3-mTORC1 axis in cancer development.
    Keywords:  Cancer; Cell biology; Cellular physiology
    DOI:  https://doi.org/10.1016/j.isci.2023.106045
  34. Trends Plant Sci. 2023 Feb 18. pii: S1360-1385(23)00031-6. [Epub ahead of print]
      Protein homeostasis is epitomized by an equilibrium between protein biosynthesis and degradation: the 'life and death' of proteins. Approximately one-third of newly synthesized proteins are degraded. As such, protein turnover is required to maintain cellular integrity and survival. Autophagy and the ubiquitin-proteasome system (UPS) are the two principal degradation pathways in eukaryotes. Both pathways orchestrate many cellular processes during development and upon environmental stimuli. Ubiquitination of degradation targets is used as a 'death' signal by both processes. Recent findings revealed a direct functional link between both pathways. Here, we summarize key findings in the field of protein homeostasis, with an emphasis on the newly revealed crosstalk between both degradation machineries and how it is decided which pathway facilitates target degradation.
    Keywords:  autophagy; proteasome; ubiquitination
    DOI:  https://doi.org/10.1016/j.tplants.2023.01.013
  35. Cell Signal. 2023 Feb 17. pii: S0898-6568(23)00045-1. [Epub ahead of print] 110631
      Aging, toxic chemicals and changes to the cellular environment are sources of oxidative damage to mitochondria which contribute to neurodegenerative conditions including Parkinson's disease. To counteract this, cells have developed signalling mechanisms to identify and remove select proteins and unhealthy mitochondria to maintain homeostasis. Two important proteins that work in concert to control mitochondrial damage are the protein kinase PINK1 and the E3 ligase parkin. In response to oxidative stress, PINK1 phosphorylates ubiquitin present on proteins at the mitochondrial surface. This signals the translocation of parkin, accelerates further phosphorylation, and stimulates ubiquitination of outer mitochondrial membrane proteins such as Miro1/2 and Mfn1/2. The ubiquitination of these proteins is the key step needed to target them for degradation via the 26S proteasomal machinery or eliminate the entire organelle through mitophagy. This review highlights the signalling mechanisms used by PINK1 and parkin and presents several outstanding questions yet to be resolved.
    Keywords:  Mitophagy; PINK1; Phosphorylation; Protein structure; Ubiquitination
    DOI:  https://doi.org/10.1016/j.cellsig.2023.110631
  36. Biomolecules. 2023 Jan 30. pii: 255. [Epub ahead of print]13(2):
      A high-fat diet is one of the causative factors of obesity. The dietary profile of fatty acids is also an important variable in developing obesity, as saturated fatty acids are more obesogenic than monounsaturated and polyunsaturated fatty acids. Overweight and obesity are inseparably connected with the excess of adipose tissue in the body, characterized by hypertrophy and hyperplasia of fat cells, which increases the risk of developing metabolic syndrome. Changes observed within hypertrophic adipocytes result in elevated oxidative stress, unfolded protein accumulation, and increased endoplasmic reticulum (ER) stress. One of the processes involved in preservation of cellular homeostasis is autophagy, which is defined as an intracellular lysosome-dependent degradation system that serves to recycle available macromolecules and eliminate damaged organelles. In obesity, activation of autophagy is increased and the process appears to be regulated by different types of dietary fatty acids. This review describes the role of autophagy in adipose tissue and summarizes the current understanding of the effects of saturated and unsaturated fatty acids in autophagy modulation in adipocytes.
    Keywords:  ER stress; WAT; autophagy; fatty acids; obesity
    DOI:  https://doi.org/10.3390/biom13020255
  37. Neuron. 2023 Feb 15. pii: S0896-6273(23)00079-X. [Epub ahead of print]
      Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.
    Keywords:  Ca(2+) influx; Parkinson disease; endophilinA; neuronal activity; synaptic autophagy
    DOI:  https://doi.org/10.1016/j.neuron.2023.02.001
  38. MicroPubl Biol. 2023 ;2023
      Receptor-mediated autophagic turnover of portions of the endoplasmic reticulum (ER) is mediated by macro-ER-phagy. We hypothesized macro-ER-phagy promotes proteotoxic stress resistance. We predicted Saccharomyces cerevisiae lacking macro-ER-phagy receptors would exhibit enhanced sensitivity to hygromycin B, which reduces translational fidelity and is expected to globally disrupt protein homeostasis, including at the ER. We observed that loss of either of two yeast macro-ER-phagy receptors (Atg39p or Atg40p) compromised cellular resistance to hygromycin B to a similar extent as loss of ER-associated degradation (ERAD) ubiquitin ligases Hrd1p and Doa10p. Our data are consistent with a model whereby macro-ER-phagy and ERAD collaborate to mediate ER protein quality control. Disruptions of macro-ER-phagy have been linked to neuropathy, dementia, and cancer. A dampened capacity to mediate protein quality control may contribute to these conditions.
    DOI:  https://doi.org/10.17912/micropub.biology.000738
  39. bioRxiv. 2023 Feb 15. pii: 2023.02.14.528378. [Epub ahead of print]
      PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction and impairs mitophagy, driving accumulation of the PINK1 substrate pS65-Ubiquitin (pUb) in primary neurons and in vivo. We synthesized MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes an active heterocomplex, thereby increasing mitophagy. MTK458 mediates clearance of α-synuclein pathology in PFF seeding models in vitro and in vivo and reduces pUb. We developed an ultrasensitive assay to quantify pUb levels in plasma and observed an increase in pUb in PD subjects that correlates with disease progression, paralleling our observations in PD models. Our combined findings from preclinical PD models and patient biofluids suggest that pharmacological activation of PINK1 is worthy of further study as a therapeutic strategy for disease modification in PD.Highlights: Discovery of a plasma Parkinson's Disease biomarker candidate, pS65-Ubiquitin (pUb)Plasma pUb levels correlate with disease status and progression in PD patients.Identification of a potent, brain penetrant PINK1 activator, MTK458MTK458 selectively activates PINK1 by stimulating dimerization and stabilization of the PINK1/TOM complexMTK458 drives clearance of α-synuclein pathology and normalizes pUb in in vivo Parkinson's models.
    DOI:  https://doi.org/10.1101/2023.02.14.528378
  40. Vet Microbiol. 2023 Feb 16. pii: S0378-1135(23)00051-2. [Epub ahead of print]280 109699
      The ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway (ALP) are two major protein degradation pathways in eukaryotic cells. In the present study, we investigated the role of two systems and their interaction after Brucella.suis (B.suis) infected RAW264.7 murine macrophage. We demonstrated that B.suis activated ALP by upregulating LC3-Ⅱlevels as well as incomplete inhibition of P62 expression in RAW264.7 cells. On the other hand, we used pharmacological agents to confirm that ALP contributed the intracellular proliferation of B.suis. At present, the studies on the relationship between UPS and Brucella remain less understanding. In the study, we demonstrated that UPS machinery was also activated by promoting expression of 20 s proteasome after B.suis infected RAW264.7 cells, and that, the UPS could also promote intracellular proliferation of B.suis. Many recent studies propose the close link and dynamic interconversion between UPS and ALP. Currently, the experiments demonstrated that after RAW264.7 cells infected B.suis, ALP was activated following UPS inhibition, while the UPS was not effectively activated after ALP inhibition. Last, we compared the ability to promote intracellular proliferation of B.suis between UPS and ALP. The results displayed that the ability of UPS to promote intracellular proliferation of B.suis was stronger than that of ALP, and simultaneous inhibition of UPS and ALP led to seriously affection on intracellular proliferation of B.suis. All above, our research provides a better understanding on the interaction between Brucella and both systems.
    Keywords:  Autophagy-lysosome pathway; Brucella; Interaction; Proliferation; Ubiquitin-proteasome system
    DOI:  https://doi.org/10.1016/j.vetmic.2023.109699
  41. Cell Mol Gastroenterol Hepatol. 2023 Feb 17. pii: S2352-345X(23)00025-5. [Epub ahead of print]
      BACKGROUND & AIMS: The matricellular protein periostin plays a critical role in liver inflammation, fibrosis, and even carcinoma. Here, the biological function of periostin in alcohol-related liver disease (ALD) was investigated.METHODS: We used wild-type (WT), Postn-null (Postn-/-) mice and Postn-/- mice with periostin recovery to investigate the biological function of periostin in ALD. Proximity-dependent biotin identification (BioID) analysis identified the protein that interacted with periostin, and coimmunoprecipitation (Co-IP) analysis validated the interaction between protein disulfide isomerase (PDI) and periostin. Pharmacological intervention and genetic knockdown of PDI were used to investigate the functional correlation between periostin and PDI in ALD development.
    RESULTS: Periostin was markedly upregulated in the livers of mice that were fed ethanol. Interestingly, periostin deficiency severely aggravated ALD in mice, whereas the recovery of periostin in the livers of Postn-/- mice significantly ameliorated ALD. Mechanistic studies showed that the upregulation of periostin alleviated ALD by activating autophagy through inhibition of the mTORC1 pathway, which was verified in murine models treated with the mTOR inhibitor rapamycin and the autophagy inhibitor MHY1485. Furthermore, a protein interaction map of periostin was generated by BioID analysis. Interaction profile analysis identified PDI as a key protein that interacted with periostin. Intriguingly, periostin-mediated enhancement of autophagy by inhibiting the mTORC1 pathway in ALD depended on its interaction with PDI. Moreover, alcohol-induced periostin overexpression was regulated by transcription factor EB (TFEB).
    CONCLUSIONS: Collectively, these findings clarify a novel biological function and mechanism of periostin in ALD and the periostin-PDI-mTORC1 axis is a critical determinant of ALD.
    Keywords:  ALD; BioID; Hepatic steatosis; PDI; Periostin
    DOI:  https://doi.org/10.1016/j.jcmgh.2023.02.005
  42. Ecotoxicol Environ Saf. 2023 Feb 22. pii: S0147-6513(23)00176-8. [Epub ahead of print]253 114672
      Ammonia is the primary environmental factor affecting the growth and health of crustaceans. It would induce oxidative stress and metabolic disorders. Extra amount of energy was demanded to maintain the physiological functions under ammonia stress. However, limited information was available on its effects on the main nutrient metabolism, as well as the nutrient sensing signaling pathways. In the present study, shrimp Litopenaeus vannamei were exposed to acute ammonia stress and injected with amino acid solution. The results showed that acute ammonia exposure resulted in lower free amino acid levels in hemolymph, incomplete activation of the mechanistic target of rapamycin (mTOR) signaling and cascaded less protein synthesis in muscle. It induced autophagy and activated the AMP-activated protein kinase (AMPK) pathway. Meanwhile, ammonia exposure enhanced glycolysis and lipogenesis, but inhibited lipolysis. The results characterized the integrated metabolic responses and nutrient signaling to ammonia stress. It provides critical clues to understand the growth performance and physiological responses in shrimp under ammonia stress.
    Keywords:  Autophagy; Energy homeostasis; Free amino acid; MTOR pathway; Secondary metabolism
    DOI:  https://doi.org/10.1016/j.ecoenv.2023.114672
  43. J Neurosci. 2023 Feb 22. pii: JN-RM-1914-22. [Epub ahead of print]
      The mechanisms of many diseases - including central nervous system disorders - are regulated by circadian rhythms. The development of brain disorders such as depression, autism, and stroke is strongly associated with circadian cycles. Previous studies have shown that cerebral infarct volume is smaller at night (active phase) than during the day (inactive phase) in ischemic stroke rodent models. However, the underlying mechanisms remain unclear. Increasing evidence suggests that glutamate systems and autophagy play important roles in the pathogenesis of stroke. Here, we report that GluA1 expression was decreased and autophagic activity was increased in active-phase male mouse models of stroke compared with the inactive-phase models. In the active-phase model, induction of autophagy decreased the infarct volume, whereas inhibition of autophagy increased the infarct volume. Meanwhile, GluA1 expression was decreased following activation of autophagy and increased following inhibition of autophagy. We used Tat-GluA1 to uncouple p62, an autophagic adapter, from GluA1 and found that this blocked the degradation of GluA1, an effect similar to that of inhibition of autophagy in the active-phase model. We also demonstrated that knockout of the circadian rhythm gene Per1 abolished the circadian rhythmicity of the volume of infarction and also abolished GluA1 expression and autophagic activity in wild-type mice. Our results suggest an underlying mechanism by which the circadian rhythm participates in the autophagy-dependent regulation of GluA1 expression, which influences the volume of infarction in stroke.Significance StatementCircadian rhythms affect the pathophysiological mechanisms of disease. Previous studies suggested that circadian rhythms affect the infarct volume in stroke, but the underlying mechanisms remain largely unknown. Here, we demonstrate that the smaller infarct volume after MCAO/R during the active phase is related to lower GluA1 expression and activation of autophagy. The decrease in GluA1 expression during the active phase is mediated by the p62-GluA1 interaction, followed by direct autophagic degradation. In short, GluA1 is the substrate of autophagic degradation, which mainly occurs after MCAO/R during the active phase but not the inactive phase.
    DOI:  https://doi.org/10.1523/JNEUROSCI.1914-22.2023
  44. Nat Commun. 2023 Feb 21. 14(1): 906
      Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.
    DOI:  https://doi.org/10.1038/s41467-023-36484-2
  45. J Orthop Surg Res. 2023 Feb 22. 18(1): 129
      BACKGROUND: While autophagy is essential for stem cells' self-renewal and differentiation, its effect on bone marrow mesenchymal stem cells (BMSCs) remains unclear. This study aimed to investigate the interaction between autophagy and osteogenic differentiation using rapamycin (RAPA), a classical autophagy agonist with osteo-regulatory effects.METHODS: Rat BMSC's autophagy was analyzed after osteoinduction (0, 7, 14, and 21 d) by western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction (RT-qPCR). In addition, we evaluated osteogenic differentiation using alizarin red staining, alkaline phosphatase assays, and RT-qPCR/Western blotting quantification of bone sialoprotein, type 1 collagen, alkaline phosphatase, osteopontin, and Runt-related transcription factor 2 mRNA and protein levels.
    RESULTS: The BMSC's basal autophagy level gradually decreased during osteogenic differentiation with a decrease in BECN1 level and the lipidated (LC3-II) to unlipidated (LC3-I) microtubule-associated protein 1 light chain 3 ratio and an increase in the expression of selective autophagic target p62. In contrast, it increased with increasing RAPA concentration. Furthermore, while 2 nM RAPA promoted BMSC osteogenic differentiation on days 7 and 14, 5 nM RAPA inhibited osteogenesis on days 14 and 21. Inhibition of autophagy by the inhibitor 3-methyladenine could impair RAPA's osteogenesis-enhancing effect on BMSCs.
    CONCLUSIONS: The BMSC's basal autophagy level decreased over time during osteogenic differentiation. However, an appropriate RAPA concentration promoted BMSC osteogenic differentiation via autophagy activation.
    Keywords:  3-Methyladenine; Autophagy; Bone marrow mesenchymal stem cells; Osteogenic differentiation; Rapamycin
    DOI:  https://doi.org/10.1186/s13018-023-03616-9
  46. Biomedicines. 2023 Feb 18. pii: 618. [Epub ahead of print]11(2):
      Patient morbidity and mortality is significantly increased in metastatic breast cancer. The metastasis process of breast cancer is very complicated and is delicately controlled by various factors. Autophagy is one of the important regulatory factors affecting metastasis in breast cancer by engaging in cell mobility, metabolic adaptation, tumor dormancy, and cancer stem cells. Here, we discuss the effects of autophagy on metastasis in breast cancer and assess the potential use of autophagy modulators for metastasis treatment.
    Keywords:  autophagy; autophagy modulators; breast cancer; metastasis
    DOI:  https://doi.org/10.3390/biomedicines11020618
  47. J Gen Virol. 2023 02;104(2):
      Hepatitis E virus (HEV) egresses from infected hepatocytes as quasienveloped particles containing open reading frame 3 (ORF3) protein. HEV ORF3 (small phosphoprotein) interacts with host proteins to establish a favourable environment for virus replication. It is a functional viroporin that plays an important role during virus release. Our study provides evidence that pORF3 plays a pivotal role in inducing Beclin1-mediated autophagy that helps HEV-1 replication as well as its exit from cells. The ORF3 interacts with host proteins involved in regulation of transcriptional activity, immune response, cellular and molecular processes, and modulation of autophagy, by interacting with proteins, DAPK1, ATG2B, ATG16L2 and also several histone deacetylases (HDACs). For autophagy induction, the ORF3 utilizes non-canonical NF-κB2 pathway and sequesters p52NF-κB and HDAC2 to upregulate DAPK1 expression, leading to enhanced Beclin1 phosphorylation. By sequestering several HDACs, HEV may prevent histone deacetylation to maintain overall cellular transcription intact to promote cell survival. Our findings highlight a novel crosstalk between cell survival pathways participating in ORF3-mediated autophagy.
    Keywords:  ATG7; Beclin1; DAPK1; HEV ORF3; autophagy
    DOI:  https://doi.org/10.1099/jgv.0.001824
  48. Autophagy. 2023 Feb 21.
      Although PIKFYVE phosphoinositide kinase inhibitors can selectively eliminate PIKFYVE-dependent human cancer cells in vitro and in vivo, the basis for this selectivity has remained elusive. Here we show that the sensitivity of cells to the PIKFYVE inhibitor WX8 is not linked to PIKFYVE expression, macroautophagic/autophagic flux, the BRAFV600E mutation, or ambiguous inhibitor specificity. PIKYVE dependence results from a deficiency in the PIP5K1C phosphoinositide kinase, an enzyme required for conversion of phosphatidylinositol-4-phosphate (PtdIns4P) into phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2/PIP2), a phosphoinositide associated with lysosome homeostasis, endosome trafficking, and autophagy. PtdIns(4,5)P2 is produced via two independent pathways. One requires PIP5K1C; the other requires PIKFYVE and PIP4K2C to convert PtdIns3P into PtdIns(4,5)P2. In PIKFYVE-dependent cells, low concentrations of WX8 specifically inhibit PIKFYVE in situ, thereby increasing the level of its substrate PtdIns3P while suppressing PtdIns(4,5)P2 synthesis and inhibiting lysosome function and cell proliferation. At higher concentrations, WX8 inhibits both PIKFYVE and PIP4K2C in situ, which amplifies these effects to further disrupt autophagy and induce cell death. WX8 did not alter PtdIns4P levels. Consequently, inhibition of PIP5K1C in WX8-resistant cells transformed them into sensitive cells, and overexpression of PIP5K1C in WX8-sensitive cells increased their resistance to WX8. This discovery suggests that PIKFYVE-dependent cancers could be identified clinically by low levels of PIP5K1C and treated with PIKFYVE inhibitors.
    Keywords:  5)P2; PIKFYVE; PIP2; PIP4K2C; PIP5K1C; PtdIns(4; WX8; autophagy; lysosome
    DOI:  https://doi.org/10.1080/15548627.2023.2182594
  49. Biochem Cell Biol. 2023 Feb 23.
      Studies in the past decade have shown that lipid droplets stored in liver cells under starvation are encapsulated by autophagosomes and fused to lysosomes via the endocytic system. Autophagy responds to a variety of environmental factors inside and outside the cell, so it has a complex signal regulation network. To this end, we first explored the role of HH in autophagy and lipid metabolism. Treatment of normal mouse liver cells with SAG and GDC-0449 revealed elevated phosphorylation of AMPK and increased lipidation of LC3. SAG and GDC-0449 were agonist and antagonist of Smo in canonical Hedgehog pathway respectively, but they played a consistent role in the regulation of autophagy in hepatocytes. We further knocked down the Smo and found that the effects of SAG and GDC-0449 disappeared, indicating that the non-canonical Hedgehog-Smo pathway was involved in the regulation of autophagy in hepatocytes. In addition, SAG and GDC-0449 promoted lipid degradation and inhibited lipid production signals. Knockdown of Smo slowed down the rate of lipid degradation rather than Sufu or Gli1, indicating that Hh signaling regulated the lipid metabolism via Smo. In summary, Hedgehog activates Ampk via Smo to promote autophagy and lipid degradation.
    DOI:  https://doi.org/10.1139/bcb-2022-0345
  50. J Cell Sci. 2023 Feb 24. pii: jcs.246348. [Epub ahead of print]
      Dynamin-related proteins (Drp) mediate a variety of membrane remodelling processes. The fungal Drp, Vps1, is required for endocytosis, endosomal sorting, vacuole fusion and peroxisome fission and breakdown. How Drps, and in particular Vps1, can mediate their function at so many different subcellular locations is of interest to our understanding of cellular organisation. We found that the peroxisomal membrane protein Pex27 is specifically required for Vps1-dependent peroxisome fission in proliferating cells but is not required for Dnm1-dependent peroxisome fission. Pex27 accumulates in constricted regions of peroxisomes and affects peroxisome geometry upon overexpression. Moreover, Pex27 physically interacts with Vps1 in vivo and is required for accumulation of a GTPase defective Vps1 mutant (K42A), on peroxisomes. During nitrogen starvation, a condition that halts cell division and induces peroxisome breakdown, Vps1 associates with the pexophagophore. Pex27 is neither required for Vps1 recruitment to the pexophagophore nor for pexophagy. Our study identifies Pex27 as a Vps1 specific partner for the maintenance of peroxisome number in proliferating yeast cells.
    Keywords:  Autophagy; Drp1; Dynamin-related protein; Peroxisome
    DOI:  https://doi.org/10.1242/jcs.246348
  51. Biomark Res. 2023 Feb 22. 11(1): 22
      Galectins are animal lectins with specific affinity for galactosides via the conserved carbohydrate recognition domains. Increasing studies recently have identified critical roles of galectin family members in tumor progression. Abnormal expression of galectins contributes to the proliferation, metastasis, epithelial-mesenchymal transformation (EMT), immunosuppression, radio-resistance and chemoresistance in various cancers, which has attracted cumulative clinical interest in galectin-based cancer treatment. Galectin family members have been reported to participate in autophagy regulation under physiological conditions and in non-tumoral diseases, and implication of galectins in multiple processes of carcinogenesis also involves regulation of autophagy, however, the relationship between galectins, autophagy and cancer remains largely unclear. In this review, we introduce the structure and function of galectins at the molecular level, summarize their engagements in autophagy and cancer progression, and also highlight the regulation of autophagy by galectins in cancer as well as the therapeutic potentials of galectin and autophagy-based strategies. Elaborating on the mechanism of galectin-regulated autophagy in cancers will accelerate the exploitation of galectins-autophagy targeted therapies in treatment for cancer.
    Keywords:  Autophagy; Cancer therapy; Clinical trials; Galectin
    DOI:  https://doi.org/10.1186/s40364-023-00466-9
  52. Cancers (Basel). 2023 Feb 16. pii: 1272. [Epub ahead of print]15(4):
      While autophagy degrades non-functional or unnecessary cellular components, producing materials for synthesizing cellular components, it can also provide energy for tumor development. Hederacolchiside A1 (HA1) derived from anemone raddeana has anticancer effects on several carcinomas by inducing apoptosis or exhibiting cytotoxicity, but the relationship with autophagy has not been studied. We investigated the association between HA1 and autophagy and evaluated its anticancer effect on colon cancer. HA1 induced accumulation of the autophagy-related markers LC3B and SQSTM1, with distinct vacuolar formation, unlike other autophagy inhibitors; the effects were similar to those of chloroquine. In addition, HA1 decreased the expression and proteolytic activity of lysosomal protein cathepsin C, reduced the growth of colon cancer cells in vitro, and inhibited tumor growth in vivo. It also reduced the expression of Ki-67 and cathepsin C in mouse tissues and reduced the growth of spheroids and organoids composed of cancer cells. Taken together, these results imply that HA1 regulates cell growth and autophagy and has potential as a promising therapeutic agent in colon cancer.
    Keywords:  autophagy; cathepsin C; cell cycle; colon cancer; hederacolchiside A1; patient-derived colon organoid
    DOI:  https://doi.org/10.3390/cancers15041272
  53. Antioxidants (Basel). 2023 Jan 19. pii: 233. [Epub ahead of print]12(2):
      Insulin-like growth factor 1 (IGF-1) is a trophic factor for the nervous system where it exerts pleiotropic effects, including the regulation of metabolic homeostasis. IGF-1 deficiency induces morphological alterations in the cochlea, apoptosis and hearing loss. While multiple studies have addressed the role of IGF-1 in hearing protection, its potential function in the modulation of otic metabolism remains unclear. Here, we report that "House Ear Institute-organ of Corti 1" (HEI-OC1) auditory cells express IGF-system genes that are regulated during their differentiation. Upon binding to its high-affinity receptor IGF1R, IGF-1 activates AKT and mTOR signaling to stimulate anabolism and, concomitantly, to reduce autophagic catabolism in HEI-OC1 progenitor cells. Notably, IGF-1 stimulation during HEI-OC1 differentiation to mature otic cells sustained both constructive metabolism and autophagic flux, possibly to favor cell remodeling. IGF1R engagement and downstream AKT signaling promoted HEI-OC1 cell survival by maintaining redox balance, even when cells were challenged with the ototoxic agent cisplatin. Our findings establish that IGF-1 not only serves an important function in otic metabolic homeostasis but also activates antioxidant defense mechanisms to promote hair cell survival during the stress response to insults.
    Keywords:  IGF1R; NRF2; anabolism; apoptosis; autophagy; cisplatin; otic differentiation; oxidative stress
    DOI:  https://doi.org/10.3390/antiox12020233
  54. J Biol Chem. 2023 Feb 21. pii: S0021-9258(23)00189-8. [Epub ahead of print] 103057
      CLEC16A is an E3 ubiquitin ligase that regulates mitochondrial quality control through mitophagy and is associated with over 20 human diseases. CLEC16A forms a complex with another E3 ligase, RNF41, and a ubiquitin-specific peptidase, USP8; however, regions that regulate CLEC16A activity or the assembly of the tripartite mitophagy regulatory complex are unknown. Here, we report that CLEC16A contains an internal intrinsically disordered protein region (IDPR) that is crucial for CLEC16A function and turnover. IDPRs lack a fixed secondary structure and possess emerging, yet still equivocal roles in protein stability, interactions, and enzymatic activity. We find that the internal IDPR of CLEC16A is crucial for its degradation. CLEC16A turnover was promoted by RNF41, which binds and acts upon the internal IDPR to destabilize CLEC16A. Loss of this internal IDPR also destabilized the ubiquitin-dependent tripartite CLEC16A-RNF41-USP8 complex. Finally, the presence of an internal IDPR within CLEC16A was confirmed using NMR and circular dichroism spectroscopy. Together, our studies reveal that an IDPR is essential to control the reciprocal regulatory balance between CLEC16A and RNF41, which could be targeted to improve mitochondrial health in disease.
    DOI:  https://doi.org/10.1016/j.jbc.2023.103057
  55. Cancer Gene Ther. 2023 Feb 17.
      Hypoxia, one of the key features of solid tumors, induces autophagy, which acts as an important adaptive mechanism for tumor progression under hypoxic environment. Cellular metabolic reprogramming has been correlated with hypoxia, but the molecular connection to the induction of autophagy remains obscure. Here, we show that suppression of fatty acid oxidation (FAO) by hypoxia induces autophagy in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for their growth and survival. Reduced cellular acetyl-CoA levels caused by FAO inhibition decreases LC3 acetylation, resulting in autophagosome formation. Importantly, PDAC cells are significantly dependent on this metabolic reprogramming, as improving FAO leads to a reduction in hypoxia-induced autophagy and an increase in cell death after chemotherapy. Thus, our study supports that suppression of FAO is an important metabolic response to hypoxia and indicates that targeting this pathway in PDAC may be an effective therapeutic approach.
    DOI:  https://doi.org/10.1038/s41417-023-00598-y
  56. SLAS Technol. 2023 Feb 17. pii: S2472-6303(23)00011-0. [Epub ahead of print]
      Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and is characterized by the formation of renal cysts and the eventual development of end-stage kidney disease. One approach to treating ADPKD is through inhibition of the mammalian target of rapamycin (mTOR) pathway, which has been implicated in cell overproliferation, contributing to renal cyst expansion. However, mTOR inhibitors, including rapamycin, everolimus, and RapaLink-1, have off-target side effects including immunosuppression. Thus, we hypothesized that the encapsulation of mTOR inhibitors in drug delivery carriers that target the kidneys would provide a strategy that would enable therapeutic efficacy while minimizing off-target accumulation and associated toxicity. Toward eventual in vivo application, we synthesized cortical collecting duct (CCD) targeted peptide amphiphile micelle (PAM) nanoparticles and show high drug encapsulation efficiency (>92.6 %). In vitro analysis indicated that drug encapsulation into PAMs enhanced the anti-proliferative effect of all three drugs in human CCD cells. Analysis of in vitro biomarkers of the mTOR pathway via western blotting confirmed that PAM encapsulation of mTOR inhibitors did not reduce their efficacy. These results indicate that PAM encapsulation is a promising way to deliver mTOR inhibitors to CCD cells and potentially treat ADPKD. Future studies will evaluate the therapeutic effect of PAM-drug formulations and ability to prevent off-target side effects associated with mTOR inhibitors in mouse models of ADPKD.
    Keywords:  ADPKD; MTOR; Micelles; Rapalogs; Targeted
    DOI:  https://doi.org/10.1016/j.slast.2023.02.001
  57. Mol Med. 2023 Feb 21. 29(1): 25
      BACKGROUND: Dendritic cell (DC) dysfunction plays a central role in sepsis-induced immunosuppression. Recent research has indicated that collective mitochondrial fragmentation contributes to the dysfunction of immune cells observed during sepsis. PTEN-induced putative kinase 1 (PINK1) has been characterized as a guide for impaired mitochondria that can keep mitochondrial homeostasis. However, its role in the function of DCs during sepsis and the related mechanisms remain obscure. In our study, we elucidated the effect of PINK1 on DC function during sepsis and its underlying mechanism of action.METHODS: Cecal ligation and puncture (CLP) surgery and lipopolysaccharide (LPS) treatment were used as in vivo and in vitro sepsis models, respectively.
    RESULTS: We found that changes in mitochondrial PINK1 expression of DCs paralleled changes in DC function during sepsis. The ratio of DCs expressing MHC-II, CD86, and CD80, the mRNAs level of dendritic cells expressing TNF-α and IL-12, and the level of DC-mediated T-cell proliferation were all decreased, both in vivo and in vitro during sepsis, when PINK1 was knocked out. This suggested that PINK1 knockout prevented the function of DCs during sepsis. Furthermore, PINK1 knockout inhibited Parkin RBR E3 ubiquitin protein (Parkin)-dependent mitophagy and enhanced dynamin-related protein 1 (Drp1)-related mitochondrial fission, and the negative effects of PINK1 knockout on DC function following LPS treatment were reversed by Parkin activation and Drp1 inhibitor. Knockout of PINK1 also increased apoptosis of DCs and the mortality of CLP mice.
    CONCLUSION: Our results indicated that PINK1 protected against DC dysfunction during sepsis through the regulation of mitochondrial quality control.
    Keywords:  Dendritic cells; Mitochondrial fission; Mitochondrial quality control; Mitophagy; PINK1; Sepsis
    DOI:  https://doi.org/10.1186/s10020-023-00618-5
  58. Ageing Res Rev. 2023 Feb 17. pii: S1568-1637(23)00046-6. [Epub ahead of print] 101887
      Characterizing the molecular deficiencies underlying human aging has been a formidable challenge as it is clear that a complex myriad of factors including genetic mutations, environmental influences, and lifestyle choices influence the deterioration responsible for human pathologies. In addition, the common denominators of human aging, exemplified by the newly updated hallmarks of aging (López-Otín et al., 2023), suggest multiple avenues and layers of crosstalk between pathways important for genome and cellular homeostasis, both of which are major determinants of both good health and lifespan. In this regard, we postulate that hereditary disorders characterized by chromosomal instability offer a unique window of insight into aging and age-related disease processes. Recently, we discovered a new RECQ helicase disorder, designated RECON syndrome attributed to bi-allelic mutations in the RECQL1 gene (Abu-Libdeh et al., 2022). Cells deficient in RECQL1 exhibit genomic instability and a compromised response to replication stress, providing further evidence for the significance of genome homeostasis to suppress disease phenotypes. Here we provide a perspective on the pathology of RECON syndrome to inform the reader as to how molecular defects in the RECQL1 gene contribute to underlying deficiencies in nucleic acid metabolism often seen in certain aging or age-related diseases.
    Keywords:  RECON syndrome; RECQ; RECQL1; aging; genetic disease; helicase
    DOI:  https://doi.org/10.1016/j.arr.2023.101887
  59. Front Nutr. 2023 ;10 1116051
      Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.
    Keywords:  autophagy; regulators; selenium; selenium nanoparticles; therapeutics
    DOI:  https://doi.org/10.3389/fnut.2023.1116051
  60. Cells. 2023 Feb 07. pii: 535. [Epub ahead of print]12(4):
      Temozolomide is an oral alkylating agent that is used as the first line treatment for glioblastoma multiform, and in recurrent anaplastic astrocytoma, as well as having demonstrable activity in patients with metastatic melanoma. However, as the case with other chemotherapeutic agents, the development of resistance often limits the therapeutic benefit of temozolomide, particularly in the case of glioblastoma. A number of resistance mechanisms have been proposed including the development of cytoprotective autophagy. Cytoprotective autophagy is a survival mechanism that confers upon tumor cells the ability to survive in a nutrient deficient environment as well as under external stresses, such as cancer chemotherapeutic drugs and radiation, in part through the suppression of apoptotic cell death. In this review/commentary, we explore the available literature and provide an overview of the evidence for the promotion of protective autophagy in response to temozolomide, highlighting the possibility of targeting autophagy as an adjuvant therapy to potentially increase the effectiveness of temozolomide and to overcome the development of resistance.
    Keywords:  autophagy; cytoprotective; cytotoxic; glioblastoma; melanoma; temozolomide
    DOI:  https://doi.org/10.3390/cells12040535
  61. J Cell Physiol. 2023 Feb 23.
      Metastasis in breast cancer usually lead to the majority of deaths on clinical patients. Accordingly, diagnosis of metastasis at the early stage in breast cancer is important to improve the prognosis. We observed that Dicer protein levels are significant decrease in highly invasive breast cancer cells and usually correlated with poor clinical outcomes. Following, we aim to clarify the molecular regulatory mechanism of this phenomenon in breast cancer to provide a new therapeutic target. In this study, we obtained that Dicer expression correlated with metastasis and invasion without affect cell stability in breast cancer cells. Importantly, we identified the regulatory mechanism of Dicer protein degradation, the chaperone-mediated autophagy (CMA)-mediated degradation that is major mechanism to decrease Dicer protein expression and lead to cancer metastasis. We discovered that heat shock cognate 71-kDa protein (Hsc70) which as a CMA-related factor interacts with the CMA-targeting motif I333A/K334A on Dicer to promote degradation through CMA. Taken together, our findings hint that Dicer highly correlated with cancer metastasis, we reveal the tumor-promoting effect of CMA-mediated Dicer degradation in breast cancer.
    Keywords:  Dicer; breast cancer; chaperone-mediated autophagy (CMA); metastasis
    DOI:  https://doi.org/10.1002/jcp.30979
  62. Antioxidants (Basel). 2023 Feb 14. pii: 480. [Epub ahead of print]12(2):
      The mitochondrion is also a major site for maintaining redox homeostasis between reactive oxygen species (ROS) generation and scavenging. The quantity, quality, and functional integrity of mitochondria are crucial for regulating intracellular homeostasis and maintaining the normal physiological function of cells. The role of oxidative stress in human disease is well established, particularly in inflammatory bowel disease and gastrointestinal mucosal diseases. Oxidative stress could result from an imbalance between ROS and the antioxidative system. Mitochondria are both the main sites of production and the main target of ROS. It is a vicious cycle in which initial ROS-induced mitochondrial damage enhanced ROS production that, in turn, leads to further mitochondrial damage and eventually massive intestinal cell death. Oxidative damage can be significantly mitigated by mitophagy, which clears damaged mitochondria. In this review, we aimed to review the molecular mechanisms involved in the regulation of mitophagy and oxidative stress and their relationship in some intestinal diseases. We believe the reviews can provide new ideas and a scientific basis for researching antioxidants and preventing diseases related to oxidative damage.
    Keywords:  PINK1-Parkin; ROS; intestinal damage; mitophagy; oxidative stress
    DOI:  https://doi.org/10.3390/antiox12020480
  63. Adv Sci (Weinh). 2023 Feb 19. e2204988
      Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that is suggested to be associated with hypoxia. This study is the first to identify a novel circular RNA (circRNA), circTBC1D14, whose expression is significantly upregulated in TNBC. The authors confirm that high circTBC1D14 expression is associated with a poor prognosis in patients with breast cancer. circTBC1D14-associated mass spectrometry and RNA-binding protein-related bioinformatics strategies indicate that FUS can interact with circTBC1D14, which can bind to the downstream flanking sequence of circTBC1D14 to induce cyclization. FUS is an essential biomarker associated with stress granules (SGs), and the authors find that hypoxic conditions can induce FUS-circTBC1D14-associated SG formation in the cytoplasm after modification by protein PRMT1. Subsequently, circTBC1D14 increases the stability of PRMT1 by inhibiting its K48-regulated polyubiquitination, leading to the upregulation of PRMT1 expression. In addition, FUS-circTBC1D14 SGs can initiate a cascade of SG-linked proteins to recognize and control the elimination of SGs by recruiting LAMP1 and enhancing lysosome-associated autophagy flux, thus contributing to the maintenance of cellular homeostasis and promoting tumor progression in TNBC. Overall, these findings reveal that circTBC1D14 is a potential prognostic indicator that can serve as a therapeutic target for TNBC treatment.
    Keywords:  autophagy; circTBC1D14; fused in sarcoma (FUS); hypoxia; stress granule
    DOI:  https://doi.org/10.1002/advs.202204988
  64. Commun Biol. 2023 Feb 23. 6(1): 211
      CD47 is a macrophage-specific immune checkpoint protein acting by inhibiting phagocytosis. However, the underlying mechanism maintaining CD47 protein stability in cancer is not clear. Here we show that CD47 undergoes degradation via endocytosis/lysosome pathway. The lysosome protein RAGA interacts with and promotes CD47 lysosome localization and degradation. Disruption of RAGA blocks CD47 degradation, leading to CD47 accumulation, high plasma membrane/intracellular CD47 expression ratio and reduced phagocytic clearance of cancer cells. RAGA deficiency promotes tumor growth due to the accumulation of CD47, which sensitizes the tumor to CD47 blockade. Clinical analysis shows that RAGA and CD47 proteins are negatively correlated in lung adenocarcinoma patient samples. High RAGA protein level is related to longer patient survival. In addition, RAGAhighCD47low patients show the longest overall survival. Our study thereby not only reveals a mechanism by which RAGA regulates CD47 lysosome degradation, but also suggests RAGA is a potential diagnostic biomarker of lung adenocarcinoma.
    DOI:  https://doi.org/10.1038/s42003-023-04581-z