bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2022‒12‒04
fifty-five papers selected by
Viktor Korolchuk
Newcastle University

  1. Autophagy. 2022 Nov 30.
      In this issue, we answer a frequently asked question regarding the evolution of the macroautophagy/autophagy pathway.
    Keywords:  Saccharomyces; autophagy; eukaryotes; evolution; question
  2. Autophagy. 2022 Nov 30.
      Miga is an evolutionarily conserved protein that localizes to the outer membrane of mitochondria and mediates endoplasmic reticulum (ER)-mitochondrial contacts through interaction with VAP proteins in the ER. We recently reported that Miga is required for autophagosome-lysosome fusion during macroautophagy/autophagy. Miga binds to Atg14 and Uvrag, two alternative subunits of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex. Miga regulates phosphatidylinositol-3-phosphate (PtdIns3P) levels through its interaction with Uvrag and its ER-mitochondrial contact site (ERMCS) tethering activity. Miga stabilizes Atg14, which maintains steady levels of the SNARE protein, Syx17. We propose that Miga establishes a direct link between mitochondria and autophagy to maintain cellular homeostasis.
    Keywords:  Drosophila; autophagy; endoplasmic reticulum-mitochondrial contacts; mitochondrion; phosphatidylinositol-3 kinase
  3. Cell Death Dis. 2022 Nov 27. 13(11): 1003
      The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive. Studies in Drosophila melanogaster have shown that Translationally controlled tumor protein (Tctp) and 14-3-3 proteins are required for organ growth by supporting the function of the small GTPase Ras homolog enriched in the brain (Rheb) during mTORC1 (mTOR complex 1) signaling. Here we demonstrate that Drosophila GOLPH3 (dGOLPH3) physically interacts with Tctp and 14-3-3ζ. RNAi-mediated knockdown of dGOLPH3 reduces wing and eye size and enhances the phenotypes of Tctp RNAi. This phenotype is partially rescued by overexpression of Tctp, 14-3-3ζ, or Rheb. We also show that the Golgi localization of Rheb in Drosophila cells depends on dGOLPH3. Consistent with dGOLPH3 involvement in Rheb-mediated mTORC1 activation, depletion of dGOLPH3 also reduces levels of phosphorylated ribosomal S6 kinase, a downstream target of mTORC1. Finally, the autophagy flux and the expression of autophagic transcription factors of the TFEB family, which anti correlates with mTOR signaling, are compromised upon reduction of dGOLPH3. Overall, our data provide the first in vivo demonstration that GOLPH3 regulates organ growth by directly associating with mTOR signaling proteins.
  4. Mol Neurobiol. 2022 Nov 30.
      Failed communication between mitochondria and lysosomes causes dysfunctional mitochondria, which may induce mitochondria-related neurodegenerative diseases. Here, we show that RAB7A, a small GTPase of the Rab family, mediates the crosstalk between these two important organelles to maintain homeostasis in N2a cells treated with PrP106-126. Specifically, we demonstrate that mitophagy deficiency in N2a cells caused by PrP106-126 is associated with dysregulated RAB7A localization in mitochondria. Cells lacking RAB7A display decreased mitochondrial colocalization with lysosomes and significantly increased mitochondrial protein expression, resulting in inhibited mitophagy. In contrast, overexpression of GTP-bound RAB7A directly induces lysosome colocalization with mitochondria. Further study revealed that GTP-bound RAB7A protects mitochondrial homeostasis by supporting autophagosome biogenesis. Moreover, we suggest that depletion of RAB7A leads to gross morphological changes in lysosomes, which prevents autophagosome-lysosome fusion and interferes with the breakdown of autophagic cargo within lysosomes. Overexpression of GTP-bound RAB7A can also alleviate PrP106-126-induced morphological damage and dysfunction of mitochondria, reducing neuronal apoptosis. Collectively, our data demonstrate that RAB7A successfully drives mitochondria to the autophagosomal lumen for degradation, suggesting that the communication of proteotoxic stress from mitochondria to lysosomes requires RAB7A, as a signaling molecule, to establish a link between the disturbed mitochondrial network and its remodeling. These findings indicate that small molecules regulating mitophagy have the potential to modulate cellular homeostasis and the clinical course of neurodegenerative diseases. Proposed model of mitophagy regulated by RAB7A. (1) Accumulating PrP106-126 induced mitophagy. (2) RAB7A is recruited to mitochondria. (3) ATG5-12 and ATG9A (5) vesicles are recruited to the autophagosome formation sites in a RAB7A-dependent manner. The ATG5-12 complex recruits and anchors LC3-I to form active LC3-II (4), accelerating mitophagosomal formation. The ATG9A vesicles are thought to be a source of membranes for autophagosome assembly. The recruitment of proteins and lipids induces membrane expansion and subsequent closure to form the mitophagosome. (6) Maintenance of the normal low lysosomal PH depends on active (GTP-bound) RAB7A. (7) RAB7A recruits effector molecules responsible for tight membrane interactions, and directly or indirectly, the subsequent autophagosome merges with the lysosome, and the cargo is completely degraded.
    Keywords:  Mitochondria; Mitophagy; N2a; Neurodegenerative diseases; PrP106–126; RAB7A
  5. Front Cell Dev Biol. 2022 ;10 1046248
      The maintenance of cellular homeostasis in response to extracellular stimuli, i.e., nutrient and hormone signaling, hypoxia, or mechanical forces by autophagy, is vital for the health of various tissues. The primary cilium (PC) is a microtubule-based sensory organelle that regulates the integration of several extracellular stimuli. Over the past decade, an interconnection between autophagy and PC has begun to be revealed. Indeed, the PC regulates autophagy and in turn, a selective form of autophagy called ciliophagy contributes to the regulation of ciliogenesis. Moreover, the PC regulates both mitochondrial biogenesis and lipophagy to produce free fatty acids. These two pathways converge to activate oxidative phosphorylation and produce ATP, which is mandatory for cell metabolism and membrane transport. The autophagy-dependent production of energy is fully efficient when the PC senses shear stress induced by fluid flow. In this review, we discuss the cross-talk between autophagy, the PC and physical forces in the regulation of cell biology and physiology.
    Keywords:  cell signaling; cilium; macroautophagy; mechanical forces; mitochondria
  6. J Invest Dermatol. 2022 Nov 28. pii: S0022-202X(22)02823-8. [Epub ahead of print]
      Human cathelicidin LL-37 is a multifunctional antimicrobial peptide that exhibits antimicrobial and immunomodulatory activities. LL-37 regulates skin barrier function and was recently reported to activate autophagy in macrophages. Because autophagy deficiency is associated with skin diseases characterized by a dysfunctional epidermal barrier, we hypothesized that LL-37 might regulate the skin barrier through autophagy modulation. We demonstrated that LL-37 activated autophagy in human keratinocytes and 3D skin equivalent models as indicated by increases in microtubule-associated protein light chain 3 (LC3) puncta formation, decreases in p62, and autophagosome and autolysosome formation. LL-37-induced autophagy was suppressed by P2X7 receptor, AMP-activated protein kinase (AMPK) and unc-51-like kinase 1 (ULK1) inhibitors, suggesting that the P2X7, AMPK and ULK1 pathways are involved. Moreover, LL-37 enhanced the phosphorylation of AMPK and ULK1. In addition, LL-37-mediated autophagy involves the mechanistic target of rapamycin and MAPK pathways. Interestingly, the LL-37-induced distribution of tight junction proteins and improvement in the tight junction barrier were inhibited in autophagy-deficient keratinocytes and keratinocytes and skin models treated with autophagy inhibitors, indicating that the LL-37-mediated tight junction barrier is associated with autophagy activation. Collectively, these findings suggest that LL-37 is a potential therapeutic target for skin diseases characterized by dysfunctional autophagy and skin barriers.
  7. J Biol Chem. 2022 Oct 27. pii: S0021-9258(22)01092-4. [Epub ahead of print]298(12): 102649
      Lysosomes are one of the major centers for regulating cargo degradation and protein quality control. Transcription factor EB (TFEB)-promoted lysosome biogenesis enhances lysosome-mediated degradation and alleviates neurodegenerative diseases, but the mechanisms underlying TFEB modification and activation are still poorly understood. Here, we report essential roles of TFEB acetylation in TFEB nuclear translocation and lysosome biogenesis, which are independent of TFEB dephosphorylation. By screening small molecules, we find that Trichostatin A (TSA), the pan-inhibitor of histone deacetylases (HDACs), promotes nuclear translocation of TFEB. TSA enhances the staining of cells by LysoTracker Red and increases the expression of lysosomal and autophagic genes. We identify four novel acetylated lysine residues in TFEB, which are important for TFEB nuclear translocation and lysosome biogenesis. We show that TFEB acetylation is regulated by HDACs (HDAC5, HDAC6, and HDAC9) and lysine acetyltransferases (KATs), including ELP3, CREBBP, and HAT1. During TSA-induced cytosol-to-nucleus translocation of TFEB, acetylation is independent of TFEB dephosphorylation, since the mTORC1- or GSK3β-related phosphorylation sites on TFEB are still phosphorylated. Administration of TSA to APP/PS1 mice increases the expression of lysosomal and autophagic genes in mouse brains and also improves memory. Accordingly, the β-amyloid plaque burden is decreased. These results show that the acetylation of TFEB, as a novel mechanism of TFEB activation, promotes lysosome biogenesis and alleviates the pathogenesis of Alzheimer's disease. Our results also suggest that HDAC inhibition can promote lysosome biogenesis, and this may be a potential therapeutic approach for the treatment of neurodegenerative diseases and disorders related to HDAC hyperactivation.
    Keywords:  Alzheimer’s disease; TFEB; acetylation; dephosphorylation; lysosome biogenesis; ubiquitination
  8. Life Sci Alliance. 2023 Feb;pii: e202201712. [Epub ahead of print]6(2):
      Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
  9. J Med Virol. 2022 Dec 02.
      Autophagy is emerging as a critical player in host defense against diverse infections, in addition to its conserved function to maintain cellular homeostasis. Strikingly, some pathogens have evolved strategies to evade, subvert or exploit different steps of the autophagy pathway for their lifecycles. Here, we present a new viral mechanism of manipulating autophagy for its own benefit with severe fever with thrombocytopenia syndrome bunyavirus (SFTSV, an emerging high-pathogenic virus) as a model. SFTSV infection triggers autophagy, leading to complete autophagic flux. Mechanistically, we show that the nonstructural protein of SFTSV (NSs) interacts with mTOR, the pivotal regulator of autophagy, by targeting its kinase domain and captures mTOR into viral inclusion bodies (IBs) induced by NSs itself. Furthermore, NSs impairs mTOR-mediated phosphorylation of unc-51-like kinase 1 (ULK1) at Ser757, disrupting the inhibitory effect of mTOR on ULK1 activity and thus contributing to autophagy induction. Pharmacologic treatment and Beclin-1 knockout experimental results establish that, in turn, autophagy enhances SFTSV infection and propagation. Moreover, minigenome reporter system reveals that SFTSV ribonucleoprotein (the transcription and replication machinery) activity can be bolstered by autophagy. Additionally, we found that the NSs proteins of SFTSV-related bunyaviruses have conserved function of targeting to mTOR. Together, we unravel a viral strategy of inducing pro-viral autophagy by interacting with mTOR, sequestering mTOR into IBs and hence provoking the downstream ULK1 pathway, which presents a new paradigm for viral manipulation of autophagy and may help inform future development of specific antiviral therapies against SFTSV and related pathogens. This article is protected by copyright. All rights reserved.
    Keywords:  NSs; ULK1; autophagy; emerging bandaviruses; inclusion body; mTOR; severe fever with thrombocytopenia syndrome bunyavirus; virus-host interactions
  10. Basic Clin Pharmacol Toxicol. 2022 Dec 02.
      LAT1 and 4F2hc form a heterodimeric membrane protein complex, which functions as one of the best characterized amino acid transporters. Since LAT1 - 4F2hc is required for the efficient uptake of essential amino acids and hormones, it promotes cellular growth, in part, by stimulating mTORC1 (mechanistic target of rapamycin complex 1) signalling and by repressing the integrated stress response (ISR). Gain - or loss of LAT1 - 4F2hc function is associated with cancer, diabetes, immunological - and neurological diseases. Hence, LAT1 - 4F2hc represents an attractive drug target for disease treatment. Specific targeting of LAT1 - 4F2hc will be facilitated by the increasingly detailed understanding of its molecular architecture, which provides important concepts for its function and regulation. Here, we summarize (i) structural insights that help to explain how LAT1 and 4F2hc assemble to transport amino acids across membranes, (ii) the role of LAT1-4F2hc in key metabolic signalling pathways, and (iii) how derailing these processes could contribute to diseases.
    Keywords:  4F2hc; LAT1; disease; integrated stress response; mTORC1
  11. Am J Physiol Cell Physiol. 2022 Nov 28.
      A20 binding inhibitor of nuclear factor kappa B (NF-κB)-1 (ABIN-1), a polyubiquitin-binding protein, is a signal-induced autophagy receptor that attenuates NF-κB-mediated inflammation and cell death. The present study aimed to elucidate the potential role of ABIN-1 in mitophagy, a biological process whose outcome is decisive in diverse physiological and pathological settings. Microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II) was found to be in complex with ectopically expressed hemagglutinin (HA)-tagged-full length (FL)-ABIN-1. Bacterial expression of ABIN-1 and LC3A and LC3B showed direct binding of ABIN-1 to LC3 proteins, while mutations in the LC3-interacting region (LIR) 1 and 2 motifs of ABIN-1 abrogated ABIN-1/LC3B-II complex formation. Importantly, induction of autophagy in HeLa cells resulted in co-localization of ABIN-1 with LC3B-II in autophagosomes and with lysosomal associated membrane protein 1 (LAMP-1) in autophagolysosomes, leading to co-degradation of ABIN-1 with p62. Interestingly, ABIN-1 was found to translocate to damaged mitochondria in HeLa-mCherry-Parkin cells. In line with this observation, CRISPR/Cas9-mediated deletion of ABIN-1 significantly inhibited the degradation of the mitochondrial outer membrane proteins voltage-dependent anion-selective channel 1 (VDAC-1), mitofusin-2 (MFN2), and translocase of outer mitochondrial membrane (TOM)20. Additionally, siRNA-mediated knockdown of ABIN-1 significantly decreased lysosomal uptake of mitochondria in HeLa cells expressing mCherry-Parkin and the fluorescence reporter mt-mKEIMA. Collectively, our results identify ABIN-1 as a novel and selective mitochondrial autophagy regulator that promotes mitophagy, thereby adding a new player to the complex cellular machinery regulating mitochondrial homeostasis.
    Keywords:  LC3-interacting region; Mitophagy; Selective autophagy receptor; mitochondrial outer membrane proteins
  12. Methods Mol Biol. 2023 ;2602 191-204
      The ATG8 family of proteins regulates the autophagy process from the autophagosome maturation and cargo recruitment up to degradation. Autophagy dysfunction is involved in the development of multiple diseases. The LC3 interacting region (LIR)-based molecular traps have been designed to isolate endogenous ATG8 proteins and their interactors in order to facilitate the study of selective autophagy events. Here, we summarize protocols describing LC3 traps and sample preparation as well as adaptations for the analysis of ATG8 proteins in different biological models. This protocol was optimized to prepare affinity columns, reduce background, and improve the protein recovery to be analyzed by immunodetection with antibodies recognizing proteins of interest.
    Keywords:  ATG8-family; Autophagy; GABARAP; Isolation; LC3; LIR; Purification
  13. Autophagy. 2022 Nov 30. 1-18
      Chemotherapy is an important treatment modality for osteosarcoma (OS), but the development of chemoresistance limits the therapeutic efficacy of OS and results in a poor prognosis. Thus, a better understanding of the mechanisms underlying chemoresistance in OS is essential. We previously demonstrated that COPS3/CSN3 (COP9 signalosome subunit 3) functions as an oncogene to promote OS cells lung metastasis, which is closely related to chemoresistance. Here, we showed that COPS3 was significantly upregulated in OS tissues with poor response to preoperative chemotherapy. Moreover, COPS3 depletion made OS cells more sensitive to cisplatin treatment in vitro and in vivo, implicating COPS3 as a driver of cisplatin resistance. Mechanistic investigations showed that COPS3 induced a cytoprotective macroautophagy/autophagy in response to cisplatin. Specifically, we identified FOXO3 as a critical target of COPS3, as high expression of COPS3 enhanced the nuclear abundance of FOXO3 and increased the expression of FOXO3-responsive genes, promoting autophagosome formation and maturation. In turn, FOXO3 regulated COPS3 levels by inhibiting ubiquitin-mediated degradation and attenuating SKP2-mediated COPS3 inhibition, cooperatively maintaining a high level of COPS3. In both COPS3-expressing OS cells and a murine xenograft model, inhibition of autophagy could also overcome resistance to cisplatin. Collectively, our results offer insights into the mechanisms of cisplatin resistance and suggest that targeting COPS3-mediated autophagy is a promising therapeutic strategy for overcoming the cisplatin resistance of OS.Abbreviations: 3-MA: 3-methyladenine; BECN1: beclin 1; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; COPS3/CSN3: COP9 signalosome subunit 3; CQ: chloroquine; DEGs: differentially expressed genes; FOXO3: forkhead box O3; GFP: green fluorescent protein; IC50: 50% inhibitory concentration; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; mRFP: monomeric red fluorescent protein; OS: osteosarcoma; PBS: phosphate-buffered saline; qRT-PCR: quantitative real-time PCR; RAB7: RAB7, member RAS oncogene family; RPS6KB1/p70S6K1: ribosomal protein S6 kinase B1; SEM: standard error of the mean; shRNA: short hairpin RNA; siRNA: small interfering RNA; SKP2: S-phase kinase associated protein 2; TEM: transmission electron microscopy; UPS: ubiquitin-proteasome system.
    Keywords:  Autophagy; COPS3; FOXO3; RAB7; SKP2; chemoresistance; osteosarcoma
  14. Autophagy. 2022 Nov 30.
    Keywords:  HLA-DM; MHC; T cells; TAX1BP1; antigen presentation; autophagy receptors; calnexin; immunopeptidome; interactome; invariant chain
  15. Cancer Res. 2022 Dec 02. 82(23): 4322-4324
      Autophagy is an attractive therapeutic target in cancer. Successful autophagy-focused clinical intervention will require a detailed understanding of when and where autophagy is important during tumorigenesis. In this issue of Cancer Research, Khayati and colleagues use state-of-the-art genetically engineered mouse models to demonstrate that transient systemic inhibition of autophagy can irreversibly impair the growth of established lung tumors with a good tolerability in normal tissues, suggesting a therapeutic strategy for cancer treatment. See related article by Khayati et al., p. 4429.
  16. Mol Aspects Med. 2022 Nov 29. pii: S0098-2997(22)00102-9. [Epub ahead of print]88 101157
      Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
    Keywords:  Age-related macular degeneration; Aging; Autophagy; Cataract; Development; Diabetes; Glaucoma; Lens; Nutrition; Retina; Retinopathy; Ubiquitin-proteasome system
  17. BMC Pharmacol Toxicol. 2022 Dec 01. 23(1): 90
      BACKGROUND: Intervertebral disc degeneration results from a variety of etiologies, including inflammation and aging. Degenerated intervertebral discs feature down-regulated extracellular matrix synthesis, resulting in losing their ability to retain water and absorb compression. Celecoxib is a well-known selective cyclooxygenase-2 inhibitor for treating arthritis and relieving pain. Nevertheless, the mechanism of Celecoxib for treating inflammation-related intervertebral disc degeneration has not yet been clarified.METHOD: Protein synthesis was analyzed by western blot. Fluorescent probes DCFH-DA and MitoSox Red detected reactive oxygen species and were measured by flow cytometry. The activity of the kinase pathway was evaluated by protein phosphorylation. Autophagy was monitored by mRFP-GFP-LC3 transfection and LC3 analysis. Mitochondrial apoptotic proteins were analyzed by western blot and cell membrane integrity was measured by flow cytometry. The autophagic gene was silenced by siRNA.
    RESULTS: In this study, interleukin-1β stimulation reduced the synthesis of aggrecan, type I and II collagen and caused excessive production of reactive oxygen species. We looked for a therapeutic window of Celecoxib for nucleus pulposus cells to regain extracellular matrix synthesis and reduce oxidative stress. To look into nucleus pulposus cells in response to stimuli, enhancement of autophagy was achieved by Celecoxib, confirmed by mRFP-GFP-LC3 transfection and LC3 analysis. The mammalian target of rapamycin and a panel of downstream proteins responded to Celecoxib and propelled autophagy machinery to stabilize homeostasis. Ultimately, inhibition of autophagy by silencing autophagy protein 5 disrupted the protective effects of Celecoxib, culminating in apoptosis.
    CONCLUSION: In summary, we have demonstrated a new use for the old drug Celecoxib that treats intervertebral disc degeneration by enhancing autophagy in nucleus pulposus cells and opening a door for treating other degenerative diseases.
    Keywords:  Apoptosis; Autophagy; Celecoxib; Intervertebral disc degeneration; mTOR
  18. PLoS One. 2022 ;17(11): e0276823
      Mutations in ATP13A2 cause Kufor-Rakeb Syndrome (KRS), a juvenile form of Parkinson's Disease (PD). The gene product belongs to a diverse family of ion pumps and mediates polyamine influx from lysosomal lumen. While the biochemical and structural studies highlight its unique mechanics, how PD pathology is linked to ATP13A2 function remains unclear. Here we report that localization of overexpressed TOM20, a mitochondrial outer-membrane protein, is significantly altered upon ATP13A2 expression to partially merge with lysosome. Using Halo-fused version of ATP13A2, ATP13A2 was identified in lysosome and autophagosome. Upon ATP13A2 co-expression, overexpressed TOM20 was found not only in mitochondria but also within ATP13A2-containing autolysosome. This modification of TOM20 localization was inhibited by adding 1-methyl-4-phenylpyridinium (MPP+) and not accompanied with mitophagy induction. We suggest that ATP13A2 may participate in the control of overexpressed proteins targeted to mitochondrial outer-membrane.
  19. Front Cell Infect Microbiol. 2022 ;12 1014897
      Rv0790c is predicted to be a conserved hypothetical protein encoded by Mycobacterium tuberculosis (Mtb). However, its function in Mtb infection remains largely unknown. In this study, we found that Rv0790c promoted bacillary survival of M. smegmatis (Ms), both in vitro and in vivo. The bacillary burden of Ms exogenously expressing Rv0790c increased, whereas in Rv0790c-knockouts the bacillary burden decreased in infected macrophages. Multiple cellular processes were analyzed to explore the underlying mechanisms. We found that neither inflammatory regulation nor apoptotic induction were responsible for the promotion of bacillary survival mediated by Rv0790c. Interestingly, we found that Rv0790c facilitates mycobacterial survival through cellular autophagy at its early stage. Immunoprecipitation assay of autophagy initiation-related proteins indicated that Rv0790c interacted with mTOR and enhanced its activity, as evidenced by the increased phosphorylation level of mTOR downstream substrates, ULK-1, at Ser757 and P70S6K, at Thr389. Our study uncovers a novel autophagy suppressor encoded by mycobacterial Rv0790c, which inhibits the early stage of cellular autophagy induction upon Mtb infection and takes an important role in maintaining intracellular mycobacterial survival. It may aid in understanding the mechanism of Mtb evasion of host cellular degradation, as well as hold the potential to develop new targets for the prevention and treatment of tuberculosis.
    Keywords:  Mycobacterium tuberculosis; Rv0790c; autophagy; mTOR; macrophage
  20. Nat Commun. 2022 Nov 28. 13(1): 6915
      Still's disease is a severe inflammatory syndrome characterized by fever, skin rash and arthritis affecting children and adults. Patients with Still's disease may also develop macrophage activation syndrome, a potentially fatal complication of immune dysregulation resulting in cytokine storm. Here we show that mTORC1 (mechanistic target of rapamycin complex 1) underpins the pathology of Still's disease and macrophage activation syndrome. Single-cell RNA sequencing in a murine model of Still's disease shows preferential activation of mTORC1 in monocytes; both mTOR inhibition and monocyte depletion attenuate disease severity. Transcriptomic data from patients with Still's disease suggest decreased expression of the mTORC1 inhibitors TSC1/TSC2 and an mTORC1 gene signature that strongly correlates with disease activity and treatment response. Unrestricted activation of mTORC1 by Tsc2 deletion in mice is sufficient to trigger a Still's disease-like syndrome, including both inflammatory arthritis and macrophage activation syndrome with hemophagocytosis, a cellular manifestation that is reproduced in human monocytes by CRISPR/Cas-mediated deletion of TSC2. Consistent with this observation, hemophagocytic histiocytes from patients with macrophage activation syndrome display prominent mTORC1 activity. Our study suggests a mechanistic link of mTORC1 to inflammation that connects the pathogenesis of Still's disease and macrophage activation syndrome.
  21. Cell Biochem Biophys. 2022 Dec 02.
      Lysosomes are known to influence cholesterol trafficking into endoplasmic reticulum (ER) membranes. Though intracellular cholesterol levels are known to influence the lipid biosynthetic responses in ER, the specific effects of lysosomal modulation on these outcomes is not known. To demonstrate this, C2C12 cells were treated with chloroquine, a lysosomotropic agent, and its effects on cellular biosynthetic capacity, structural and functional status of ER was determined. In addition to its known effects on autophagy reduction, chloroquine treatment induced accumulation of total cellular lipid and ER-specific cholesterol content. It was also observed that chloroquine caused an increase in smooth-ER content with defects in overall protein turnover. Further, since ER and mitochondria function in close association through ER membrane contact sites, it is likely that lysosomal modulation also brings about associated changes in mitochondria. In this regard, we found that chloroquine reduces mitochondrial membrane potential and mitochondrial dynamics. Collectively, the differential biosynthetic response of rise in lipid content, but not protein content, cannot be accounted by merely considering that chloroquine induced suppression of autophagy causes defects in organelle function. In this defective autophagy scenario, both biosynthetic responses such as lipid and protein synthesis are expected to be reduced rather than only the latter, as observed with chloroquine. These findings suggest that cholesterol trafficking/distribution within cellular organelles could act as an intracellular mediator of differential biosynthetic remodelling in interconnected organelles.
    Keywords:  Chloroquine; Cholesterol; Endoplasmic reticulum; Lysosome; Mitochondria
  22. Ecotoxicol Environ Saf. 2022 Nov 26. pii: S0147-6513(22)01173-3. [Epub ahead of print]248 114333
      PM2.5 exposure can be associated with the onset of neurodegenerative diseases, with oxidative stress-induced cellular homeostasis disruption and cell death as one of the main mechanisms. However, the exact cellular and molecular processes are still rarely investigated. Autophagy and KEAP1-NRF2 (Kelch-like ECH-Associating protein 1-nuclear factor erythroid 2 related factor 2) signaling pathway are two main cellular defense systems for maintaining cellular homeostasis and resisting oxidative stress. In this study, we primarily investigated the role of autophagy and KEAP1-NRF2 in regulating cell death resulting from PM2.5 exposure in mouse neuroblastoma N2a cells. Our results showed that PM2.5 exposure disrupted autophagic flux by impairing lysosomal function, including lysosomal alkalinization, increased lysosome membrane permeabilization (LMP), and Cathepsin B release. Furthermore, dysregulated autophagy enhances NRF2 activity in a p62-dependent manner, which then initiates the expression of a series of antioxidant genes and increases cellular insensitivity to ferroptosis. Meanwhile, autophagy dysfunction impairs the intracellular degradation of ferroptosis related proteins such as GPX4 and ferritin. As these proteins accumulate, cells also become less sensitive to ferroptosis. LMP-associated cell death may be the main mechanism of PM2.5-induced N2a cytotoxicity. Our results may provide insights into the mechanisms of PM2.5-induced neurotoxicity and predict effective prevention and treatment strategies.
    Keywords:  Ambient fine particulate matter (PM2.5); Autophagic-lysosomal dysfunction; Ferroptosis; Lysosomal membrane permeabilization (LMP); P62-keap1-Nrf2 signaling pathway
  23. Amino Acids. 2022 Dec 01.
      Protein arginine N-methyltransferases (PRMTs) have emerged as important actors in the eukaryotic stress response with implications in human disease, aging, and cell signaling. Intracellular free methylarginines contribute to cellular stress through their interaction with nitric oxide synthase (NOS). The arginine-dependent production of nitric oxide (NO), which is strongly inhibited by methylarginines, serves as a protective small molecule against oxidative stress in eukaryotic cells. NO signaling is highly conserved between higher and lower eukaryotes, although a canonical NOS homologue has yet to be identified in yeast. Since stress signaling pathways are well conserved among eukaryotes, yeast is an ideal model organism to study the implications of PRMTs and methylarginines during stress. We sought to explore the roles and fates of methylarginines in Saccharomyces cerevisiae. We starved methyltransferase-, autophagy-, and permease-related yeast knockouts by incubating them in water and monitored methylarginine production. We found that under starvation, methylarginines are expelled from yeast cells. We found that autophagy-deficient cells have an impaired ability to efflux methylarginines, which suggests that methylarginine-containing proteins are degraded via autophagy. For the first time, we determine that yeast take up methylarginines less readily than arginine, and we show that methylarginines impact yeast NO production. This study reveals that yeast circumvent a potential methylarginine toxicity by expelling them after autophagic degradation of arginine-modified proteins.
    Keywords:  Amino acid transport; Autophagy; Methylarginine; Nitric oxide; Protein methylation; Yeast
  24. Theranostics. 2022 ;12(17): 7450-7464
      Rationale: Hepatocellular carcinoma (HCC) is one of the most severe cancers worldwide, with few effective targeted therapies for HCC. Lipid metabolic reprogramming is emerged as a hallmark of cancer metabolism that guides response to antitumoral therapies. Such lipid metabolic alteration in cancers is critically regulated by the mammalian target of rapamycin mTOR, which is considered as a promising therapeutic target. Despite efforts, mTOR inhibitors (mTORi) have produced limited response clinically, partly due to incomplete knowledge of mTORC1 addiction in cancers. Methods: CRISPR-Cas9 system was used to establish Hpcal1 null mice. The liver cancer model in mice was generated using Hpcal1-deficient mice with diethylnitrosamine (DEN) /CCL4 or MYC/Trp53-/- via hydrodynamic tail-vein injection. RNA-sequencing (RNA-seq) was used to identify potential signaling pathways. The expression of HPCAL1 and mTOR signaling were determined using quantitative polymerase chain reaction (qPCR), western blot and immunohistochemistry. The role of Hpcal1 in liver tumorigenesis and its response to mTORi was assessed by CCK-8 measurements, colony formation assay and in mouse model. Results: In this study, we identified hippocalcin-like protein 1 (HPCAL1) as an important negative regulator of de novo lipid biosynthesis and mTOR signaling activation, limiting liver tumorigenesis and establishing a metabolic vulnerability of HCC in mice. Genetic loss of HPCAL1 rendered HCC mTORC1-addicted and sensitive to mTORi AZD-8055 in vitro and in vivo. Importantly, HPCAL1 expression was inversely correlated with the levels of mTOR phosphorylation and several critical lipid biosynthesis enzymes in human specimens. Mechanistically, HPCAL1 directly bound to RuvB Like AAA ATPase 1 (RUVBL1), inhibiting the assembly of TEL2-TTI1-TTI2 (TTT)-RUVBL complex and subsequent leading the mTOR signaling suppression. Conclusion: We uncover a metabolic vulnerability and mTOR addiction in HCC with HPCAL1 loss that provides a selective therapeutic window for HCC with mTORC1 hyperactivation using mTORi.
    Keywords:  Cholesterol synthesis; Hippocalcin-Like 1; RUVBL1; fatty acid biosynthesis; mTOR addiction
  25. Microbiol Spectr. 2022 Nov 29. e0202022
      The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, affecting various development and signaling processes. To date, the biological functions of the COP9 signalosome and its subunits have not been determined in Magnaporthe oryzae. In this study, we characterized the CSN in M. oryzae (which we named MoCsn6) and analyzed its biological functions. MoCsn6 is involved in fungal development, autophagy, and plant pathogenicity. Compared with the wild-type strain 70-15, ΔMocsn6 mutants showed a significantly reduced growth rate, sporulation rate, and germ tube germination rate. Pathogenicity assays showed that the ΔMocsn6 mutants did not cause or significantly reduced the number of disease spots on isolated barley leaves. After the MoCSN6 gene was complemented into the ΔMocsn6 mutant, vegetative growth, sporulation, and pathogenicity were restored. The Osm1 and Pmk1 phosphorylation pathways were also disrupted in the ΔMocsn6 mutants. Furthermore, we found that MoCsn6 participates in the autophagy pathway by interacting with the autophagy core protein MoAtg6 and regulating its ubiquitination level. Deletion of MoCSN6 resulted in rapid lipidation of MoAtg8 and degradation of the autophagic marker protein green fluorescent protein-tagged MoAtg8 under nutrient and starvation conditions, suggesting that MoCsn6 negatively regulates autophagic activity. Taken together, our results demonstrate that MoCsn6 plays a crucial role in regulating fungal development, pathogenicity, and autophagy in M. oryzae. IMPORTANCE Magnaporthe oryzae, a filamentous fungus, is the cause of many cereal diseases. Autophagy is involved in fungal development and pathogenicity. The COP9 signalosome (CSN) has been extensively studied in ubiquitin pathways, but its regulation of autophagy has rarely been reported in plant-pathogenic fungi. Investigations on the relationship between CSN and autophagy will deepen our understanding of the pathogenic mechanism of M. oryzae and provide new insights into the development of new drug targets to control fungal diseases. In this study, the important function of Csn6 in the autophagy regulation pathway and its impact on the pathogenicity of M. oryzae were determined. We showed that Csn6 manages autophagy by interacting with the autophagy core protein Atg6 and regulating its ubiquitination level. Furthermore, future investigations that explore the function of CSN will deepen our understanding of autophagy mechanisms in rice blast fungus.
    Keywords:  COP9 signalosome; MoCsn6; autophagy; development; rice blast fungus
  26. Autophagy. 2022 Nov 30.
      Macroautophagy/autophagy is a conserved degradation pathway in eukaryotes that is required for recycling unwanted intracellular components, maintaining homeostasis, and coping with biotic and abiotic stresses. Pathogens have evolved to subvert autophagic machinery by secreting host cell-entering effector proteins. Here, we provided evidence that an apple autophagy-related gene MdATG8i, activated autophagy and contributed to resistance against Valsa canker caused by Valsa mali (Vm) when being overexpressed in apple. MdATG8i interacted with a plastid elongation factor Tu (MdEF-Tu) which became insoluble and aggregated during Vm infection and was degraded through the autophagy pathway. Intriguingly, we identified a highly-induced effector secreted from Vm, Vm1G-1794, which competitively interacted with MdATG8i, suppressed autophagy, and depleted MdEF-Tu out of MdATG8i complexes. The formation of stable MdEF-Tu aggregates caused by Vm1G-1794 promoted the susceptibility of apple to Vm. Overall, our study demonstrated that MdATG8i contributed to Vm resistance by targeting and degrading MdEF-Tu, and Vm1G-1794 competed with MdEF-Tu to target MdATG8i and prevent MdEF-Tu degradation, thus favoring infection.
    Keywords:  Valsa mali; apple; autophagy; effector; ubiquitination
  27. Proc Natl Acad Sci U S A. 2022 Dec 06. 119(49): e2211999119
      Impairments in neural lysosomal- and autophagic-mediated degradation of cellular debris contribute to neuritic dystrophy and synaptic loss. While these are well-characterized features of neurodegenerative disorders such as Alzheimer's disease (AD), the upstream cellular processes driving deficits in pathogenic protein mishandling are less understood. Using a series of fluorescent biosensors and optical imaging in model cells, AD mouse models and human neurons derived from AD patients, we reveal a previously undescribed cellular signaling cascade underlying protein mishandling mediated by intracellular calcium dysregulation, an early component of AD pathogenesis. Increased Ca2+ release via the endoplasmic reticulum (ER)-resident ryanodine receptor (RyR) is associated with reduced expression of the lysosome proton pump vacuolar-ATPase (vATPase) subunits (V1B2 and V0a1), resulting in lysosome deacidification and disrupted proteolytic activity in AD mouse models and human-induced neurons (HiN). As a result of impaired lysosome digestive capacity, mature autophagosomes with hyperphosphorylated tau accumulated in AD murine neurons and AD HiN, exacerbating proteinopathy. Normalizing AD-associated aberrant RyR-Ca2+ signaling with the negative allosteric modulator, dantrolene (Ryanodex), restored vATPase levels, lysosomal acidification and proteolytic activity, and autophagic clearance of intracellular protein aggregates in AD neurons. These results highlight that prior to overt AD histopathology or cognitive deficits, aberrant upstream Ca2+ signaling disrupts lysosomal acidification and contributes to pathological accumulation of intracellular protein aggregates. Importantly, this is demonstrated in animal models of AD, and in human iPSC-derived neurons from AD patients. Furthermore, pharmacological suppression of RyR-Ca2+ release rescued proteolytic function, revealing a target for therapeutic intervention that has demonstrated effects in clinically-relevant assays.
    Keywords:  Alzheimer's disease; calcium; lysosome; ryanodine receptor; vATPase
  28. Cell Rep. 2022 Nov 29. pii: S2211-1247(22)01584-4. [Epub ahead of print]41(9): 111710
      The precise regulation of synaptic connectivity and function is essential to maintain neuronal circuits. Here, we show that the Drosophila pseudo-kinase Madm/NRBP1 (Mlf-1-adapter-molecule/nuclear-receptor-binding protein 1) is required presynaptically to maintain synaptic stability and to coordinate synaptic growth and function. Presynaptic Madm mediates these functions by controlling cap-dependent translation via the target of rapamycin (TOR) effector 4E-BP/Thor (eukaryotic initiation factor 4E binding protein/Thor). Strikingly, at degenerating neuromuscular synapses, postsynaptic Madm induces a compensatory, transsynaptic signal that utilizes the presynaptic homeostatic potentiation (PHP) machinery to offset synaptic release deficits and to delay synaptic degeneration. Madm is not required for canonical PHP but induces a neurodegeneration-specific form of PHP and acts via the regulation of the cap-dependent translation regulators 4E-BP/Thor and S6-kinase. Consistently, postsynaptic induction of canonical PHP or TOR activation can compensate for postsynaptic Madm to alleviate functional and structural synaptic defects. Our results provide insights into the molecular mechanisms underlying neurodegeneration-induced PHP with potential neurotherapeutic applications.
    Keywords:  CP: Neuroscience; Drosophila; PHP; TOR; homeostatic plasticity; neurodegeneration; presynaptic homeostatic potentiation; synaptic maintenance; synaptic plasticity
  29. Gastroenterology. 2022 Nov 24. pii: S0016-5085(22)01301-4. [Epub ahead of print]
      BACKGROUND & AIMS: In eukaryotes, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP) are essential for maintaining cellular proteostasis and associated with cancer progression. Our previous studies have demonstrated that phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, limits proteasome abundance and determines chemosensitivity to proteasome inhibitors in cholangiocarcinoma (CCA). However, whether PTEN regulates the lysosome pathway remains unclear.METHODS: We tested the effects of PTEN on lysosome biogenesis and exosome secretion using loss- and gain-of-function strategies in CCA cell lines. Using in vitro dephosphorylation assays, we explored the regulatory mechanism between PTEN and the key regulator of lysosome biogenesis, transcription factor EB (TFEB). Using the migration assays, invasion assays, and trans-splenic liver metastasis mouse models, we evaluated the function of PTEN deficiency, TFEB-mediated lysosome biogenesis, and exosome secretion on tumor metastasis. Moreover, we investigated the clinical significance of PTEN expression and exosome secretion by retrospective analysis.
    RESULTS: PTEN facilitated lysosome biogenesis and acidification through its protein phosphatase activity to dephosphorylate TFEB at Ser211. Notably, PTEN deficiency increased exosome secretion by reducing lysosome-mediated degradation of multi-vesicular bodies (MVBs), which further facilitated the proliferation and invasion of CCA. TFEB agonist curcumin analog C1 restrained the metastatic phenotype caused by PTEN deficiency in mouse models, and we highlighted the correlation between PTEN deficiency and exosome secretion in clinical cohorts.
    CONCLUSIONS: In CCA, PTEN deficiency impairs lysosome biogenesis to facilitate exosome secretion and cancer metastasis in a TFEB phosphorylation-dependent manner.
    Keywords:  Cholangiocarcinoma; Exosome; Lysosome; MVB; PTEN; TFEB
  30. J Biomed Sci. 2022 Dec 02. 29(1): 103
      BACKGROUND: Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy.METHODS: We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed.
    RESULTS: Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate.
    CONCLUSIONS: We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.
    Keywords:  Autophagy; Lung cancer; Lung-to-lung metastasis model; Rab37; TIMP1
  31. Front Cell Neurosci. 2022 ;16 1021592
      Huntington disease (HD) is caused by the expansion of CAG triplet repeats in exon 1 of the huntingtin (HTT) gene, which also encodes the first 17 amino acids (N-17) that can modulate the toxicity of the expanded polyQ repeat. N-17 are conserved in a wide range of species and are found to influence the subcellular distribution of mutant Htt. Moreover, N-17 is subject to many posttranslational modifications that may regulate the function, stability, and distribution of HTT. However, the function of Htt exon 1 and its influence on the normal Htt remains to be fully investigated. By investigating a knock-in mouse model that lacks Htt exon1, we found that deletion of Htt exon1 does not affect the survival of mice and differentiation of cultured mouse neurons. Furthermore, the lack of Htt exon 1 does not alter the subcellular distribution of Htt, autophagy protein expression, and global gene transcription in the mouse brain. These results suggest that removing the entire exon 1 of Htt could be a therapeutic approach to eliminate expanded polyQ toxicity.
    Keywords:  Huntington; autophagy; gene expression; polyglutamine; subcellular distribution
  32. PLoS One. 2022 ;17(11): e0277648
      The protein kinase Gcn2 is present in virtually all eukaryotic cells. It is best known for its role in helping cells cope with amino acid starvation. Under starvation, Gcn2 phosphorylates the α subunit of the eukaryotic translation initiation factor 2 (eIF2α), to stimulate a signal transduction pathway that allows cells to cope and overcome starvation. Gcn2 has been implicated in many additional biological functions. It appears that for all functions, Gcn2 must directly bind to its effector protein Gcn1, mediated via a region in Gcn1 called the RWD binding domain (RWDBD). Arg-2259 in this region is important for Gcn2 binding. Overexpression of a Gcn1 fragment only encompassing the RWDBD binds Gcn2, thereby disrupting endogenous Gcn1-Gcn2 interaction which dampens Gcn2 activation. Consequently, cells are unable to increase eIF2α phosphorylation under starvation conditions, visible by impaired growth. This dominant negative phenotype is reverted by the R2259A substitution, again allowing Gcn1-Gcn2 interaction and enhanced eIF2α phosphorylation. We have found that the amino acid substitutions, R2289A, R2297A, and K2301A, also reverted the dominant negative phenotype as well as allowed enhanced eIF2α phosphorylation, as found previously for the R2259A substitution. This suggests that the respective amino acids are relevant for the overexpressed RWDBD to disrupt Gcn1-Gcn2 interaction and impair Gcn2 activation, supporting the idea that in Gcn1 these amino acids mediate Gcn2-binding. Our findings suggest that two helices in Gcn1 constitute a Gcn2 binding site. We serendipitously found amino acid substitutions that enhanced the dominant negative phenotype that correlated with a further reduction in eIF2α-P levels, suggesting that the respective RWDBD variants are more potent in disrupting Gcn1-Gcn2 interaction.
  33. Hum Cell. 2022 Nov 29.
      Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
    Keywords:  Ageing; Free radicals; Mitochondria; Mitochondrial transfer; Mitophagy; Neurodegenerative disorders
  34. Int J Biol Sci. 2022 ;18(16): 6176-6188
      Mammals maintain a constant core body temperature through adaptive thermogenesis which includes shivering and non-shivering thermogenesis. Non-shivering thermogenesis relies primarily on mitochondrial uncoupling protein 1 (UCP1) in thermogenic fat (including brown and beige adipose tissue) to burn substrates, such as fatty acids (FAs), and convert chemical energy into heat. Lipid droplets (LDs), which are organelles that store lipids, are present in large numbers in thermogenic fat and are essential for adipose thermogenesis. Upon cold stimulation, LDs rapidly release FAs through autophagy or lipase-mediated lipolysis and rapidly translocate FAs into the mitochondria by interacting with mitochondria to burn and so promote thermogenesis. In addition, LD proteins promote the expression of UCP1 by activating the transcriptional activity of thermogenesis-related proteins. Here, the progress of research on the important role of LDs in thermogenesis is reviewed, mainly in terms of LD proteins, LD-organelle interactions, and LD autophagy (lipophagy). The emerging rationale for the involvement of LDs in each thermogenic pathway is described and the remaining unanswered questions in this field are highlighted.
    Keywords:  Brown/beige adipose tissue; Lipid droplets; Lipophagy; Thermogenesis
  35. Cell Prolif. 2022 Nov 30. e13368
      Lysophagy is a form of selective autophagy to remove unwanted lysosomes. However, its role in the pathogenesis of intervertebral disc degeneration (IDD) remains unclear. We intended to investigate the relationship between lysophagy and ferroptosis, as well as the potential involved molecules during IDD. Human nucleus pulposus (NP) cells were obtained from clinical patients. The protein levels, protein colocalization and cellular reactive oxygen species levels were assessed by western blotting, immunofluorescence analysis, immunoprecipitation and flow cytometry, respectively. The in vivo experiments were conducted based on the needle puncture-induced IDD model in rats. Compression pressure induces the lysophagy inactivation and lysosomal damage, resulting in iron overload and ferroptosis in human NP cells. Notably, Ras GTPase-activating protein-binding proteins 1 (G3BP1) resides at lysosomes to coordinate lysophagy activity mainly via the function of G3BP1/TSC2 complex. Dysfunction of G3BP1/TSC2 complex accelerates the lysosomal damage and ferroptosis in NP cells. Besides, inhibition of mTOR signalling ameliorates lysosomal damage and protects against cell ferroptosis. The in vivo experiments also demonstrate that the G3BP1/mTOR signalling is involved in the progression of IDD. These findings illustrate the relationship between lysophagy and compression-induced cell ferroptosis. It also indicates the positive role of G3BP1 and may provide potential targets for IDD treatment.
  36. PLoS One. 2022 ;17(12): e0274763
      Chloroquine often causes serious eye and vision problems, which are mainly mediated by lysosomotropic alteration. In this study, we investigated whether the ginsenoside protopanaxadiol relieves chloroquine-induced retinopathy by restoring lysosomotropic abnormalities in human adult retinal pigment epithelial-19 cells. Cytotoxicity was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Morphological alterations in autophagosomes of adult retinal pigment epithelial-19 cells was detected using confocal microscopy. Apoptosis was examined using flow cytometry, whereas cellular reactive oxygen species levels were determined by measuring the fluorescence intensity of 5-(and-6)-carboxy-2'-7'-dichlorohydrofluorescein diacetate. Lysosomal function was assessed by measuring lysosomal pH and enzyme activity. Immunoprecipitation and western blotting analyses were performed. Adult retinal pigment epithelial-19 cells accumulated autophagosomes with fusion defects in lysosomes and reactive oxygen species formation following exposure to chloroquine. This effect trapped Beclin-1 and B-cell lymphoma 2 interfering with autophagy initiation and autophagosome development. Protopanaxadiol alleviated chloroquine-induced toxicity by modulating the interaction between Beclin-1 and Bcl-2, which was mediated by the AMP-activated protein kinase-mammalian target of rapamycin signal axis. Furthermore, autophagy and apoptosis were simultaneously controlled by protopanaxadiol via upregulation of autophagy flux and decreased reactive oxygen species formation and apoptotic protein expression. These findings suggest that protopanaxadiol is a promising treatment strategy for chloroquine-mediated retinopathy.
  37. Cell Stress. 2022 Aug;6(8): 72-75
      Phosphoinositide 3-kinase (PI3K) is a key component of the insulin signaling pathway that controls cellular me-tabolism and growth. Loss-of-function mutations in PI3K signaling and other downstream effectors of the insulin signaling pathway extend the lifespan of various model organisms. However, the pro-longevity effect appears to be sex-specific and young mice with reduced PI3K signaling have increased risk of cardiac disease. Hence, it remains elusive as to whether PI3K inhibition is a valid strategy to delay aging and extend healthspan in humans. We recently demonstrated that reduced PI3K activity in cardiomyocytes delays cardiac growth, causing subnormal contractility and cardiopulmonary functional capacity, as well as increased risk of mortality at young age. In stark contrast, in aged mice, experi-mental attenuation of PI3K signaling reduced the age-dependent decline in cardiac function and extended maximal lifespan, suggesting a biphasic effect of PI3K on cardiac health and survival. The cardiac anti-aging effects of reduced PI3K activity coincided with enhanced oxida-tive phosphorylation and required increased autophagic flux. In humans, explanted failing hearts showed in-creased PI3K signaling, as indicated by increased phos-phorylation of the serine/threonine-protein kinase AKT. Hence, late-life cardiac-specific targeting of PI3K might have a therapeutic potential in cardiac aging and related diseases.
    Keywords:  IGF1; PI3K; aging; autophagy; cardiomyopathy; heart failure; insulin signaling; mitochondrial dysfunction
  38. Pharmacol Res. 2022 Nov 24. pii: S1043-6618(22)00528-X. [Epub ahead of print] 106582
      Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
    Keywords:  Gastrointestinal cancer; autophagy; drug resistance; epigenetic factor; non-coding RNA
  39. EMBO J. 2022 Nov 29. e111389
      The cellular activation of the NLRP3 inflammasome is spatiotemporally orchestrated by various organelles, but whether lysosomes contribute to this process remains unclear. Here, we show the vital role of the lysosomal membrane-tethered Ragulator complex in NLRP3 inflammasome activation. Deficiency of Lamtor1, an essential component of the Ragulator complex, abrogated NLRP3 inflammasome activation in murine macrophages and human monocytic cells. Myeloid-specific Lamtor1-deficient mice showed marked attenuation of NLRP3-associated inflammatory disease severity, including LPS-induced sepsis, alum-induced peritonitis, and monosodium urate (MSU)-induced arthritis. Mechanistically, Lamtor1 interacted with both NLRP3 and histone deacetylase 6 (HDAC6). HDAC6 enhances the interaction between Lamtor1 and NLRP3, resulting in NLRP3 inflammasome activation. DL-all-rac-α-tocopherol, a synthetic form of vitamin E, inhibited the Lamtor1-HDAC6 interaction, resulting in diminished NLRP3 inflammasome activation. Further, DL-all-rac-α-tocopherol alleviated acute gouty arthritis and MSU-induced peritonitis. These results provide novel insights into the role of lysosomes in the activation of NLRP3 inflammasomes by the Ragulator complex.
    Keywords:  HDAC6; NLRP3 inflammasome; Ragulator complex; α-tocopherol
  40. Front Pharmacol. 2022 ;13 1036844
      Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase belonging to the protein kinase A, G, and C (AGC) family. Upon initiation of the phosphoinositide 3-kinase (PI3K) signaling pathway, mammalian target of rapamycin complex 2 (mTORC2) and phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylate the hydrophobic motif and kinase domain of SGK1, respectively, inducing SGK1 activation. SGK1 modulates essential cellular processes such as proliferation, survival, and apoptosis. Hence, dysregulated SGK1 expression can result in multiple diseases, including hypertension, cancer, autoimmunity, and neurodegenerative disorders. This review provides a current understanding of SGK1, particularly in sodium transport, cancer progression, and autoimmunity. In addition, we summarize the developmental status of SGK1 inhibitors, their structures, and respective potencies evaluated in pre-clinical experimental settings. Collectively, this review highlights the significance of SGK1 and proposes SGK1 inhibitors as potential drugs for treatment of clinically relevant diseases.
    Keywords:  SGK1; T cell modulation; cancer; ion channel; kinase inhibitor
  41. Nat Commun. 2022 Nov 28. 13(1): 7338
      Transient lysosomal damage after infection with cytosolic pathogens or silica crystals uptake results in protease leakage. Whether limited leakage of lysosomal contents into the cytosol affects the function of cytoplasmic organelles is unknown. Here, we show that sterile and non-sterile lysosomal damage triggers a cell death independent proteolytic remodelling of the mitochondrial proteome in macrophages. Mitochondrial metabolic reprogramming required leakage of lysosomal cathepsins and was independent of mitophagy, mitoproteases and proteasome degradation. In an in vivo mouse model of endomembrane damage, live lung macrophages that internalised crystals displayed impaired mitochondrial function. Single-cell RNA-sequencing revealed that lysosomal damage skewed metabolic and immune responses in alveolar macrophages subsets with increased lysosomal content. Functionally, drug modulation of macrophage metabolism impacted host responses to Mycobacterium tuberculosis infection in an endomembrane damage dependent way. This work uncovers an inter-organelle communication pathway, providing a general mechanism by which macrophages undergo mitochondrial metabolic reprograming after endomembrane damage.
  42. J Nutr Sci Vitaminol (Tokyo). 2022 ;68(Supplement): S31-S33
      Amino acids are compounds that contain an amino group (-NH2) and a carboxyl group (-COOH) and are components of proteins and materials for various bioactive molecules. The skeletal muscle, which is the largest organ in the human body, representing ~40% of the total body weight, plays important roles in exercise, energy expenditure, and glucose/amino acid usage-processes that are modulated by various amino acids and their metabolites. In this review, we address the metabolism and function of amino acids, especially non-proteinogenic amino acids, in the skeletal muscle. Leucine, a BCAA, and its metabolite, β-hydroxy-β-methylbutyrate (HMB), both activate mammalian target of rapamycin complex 1 (mTORC1) and increase protein synthesis, but the mechanisms of activation appear to be different. The metabolite of valine (another BCAA), β-aminoisobutyric acid (BAIBA), is increased by exercise, is secreted by the skeletal muscle, and acts on other tissues, such as white adipose tissue, to increase energy expenditure. In addition, several amino acid-related molecules reportedly activate skeletal muscle function. Oral 5-aminolevulinic acid (ALA) supplementation can protect against mild hyperglycemia and help prevent type 2 diabetes. β-alanine levels are decreased in the skeletal muscles of aged mice. β-alanine supplementation increased the physical performance and improved the executive function induced by endurance exercise in middle-aged individuals. Further studies focusing on the effects of amino acids and their metabolites on skeletal muscle function will provide data essential for the production of food supplements for older adults, athletes, and individuals with metabolic diseases.
    Keywords:  PGC1α; branched-chain amino acid (BCAA); energy expenditure; exercise; leucine; skeletal muscle; β-aminoisobutyric acid (BAIBA); β-hydroxy-β-methylbutyrate (HMB)
  43. Theranostics. 2022 ;12(17): 7431-7449
      Background: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck, and it has shown increasing incidence and mortality. The mechanistic target of rapamycin complex 1 (mTORC1) is frequently dysregulated in LSCC, but its underlying mechanisms remain unclear. Methods: Establishment of a novel LSCC cell line using primary LSCC tumor tissues with dysregulated mTORC1 activity and then stable knockdown of Raptor (an mTORC1 specific component) in this cell line. Transcriptomic sequencing, quantitative real-time PCR, western blot analysis, and immunofluorescence assays were used to identify the crucial downstream effector of mTORC1. A series of experiments were conducted to investigate the functions and underlying mechanisms of the mTORC1 target gene in LSCC progression. Clinical LSCC samples were used to evaluate the association of mTORC1 and its downstream targets with clinicopathological features and patient prognosis. Finally, the influence on cisplatin (CDDP) sensitivity upon depletion of the mTORC1 target gene was assessed using a cell culture system, a cell line-derived xenograft (CDX) model, and a patient-derived xenograft (PDX) model. Results: We successfully established a novel LSCC cell line with hyperactivated mTORC1 activity and then identified integrin subunit alpha 5 (ITGA5) as a novel functional downstream effector of mTORC1 in the progression of LSCC. Elevated ITGA5 promotes LSCC progression through augmentation of ephrin-B2 (EFNB2). Clinical data analysis indicated that the activation of the mTORC1-ITGA5-EFNB2 signaling pathway is associated with malignant progression and poor prognosis of LSCC patients. Inhibition of ITGA5 significantly sensitized LSCC cells to CDDP. Conclusions: Our findings highlight a novel molecular mechanism for the tumorigenesis driven by deregulated mTORC1 signaling in LSCC, suggesting that the ITGA5-EFNB2 axis may be a therapeutic target for the treatment of mTORC1-related LSCC.
    Keywords:  EFNB2; ITGA5; LSCC; mTOR; tumorigenesis
  44. Sci Signal. 2022 Nov 29. 15(762): eabo7940
      The lipid kinase VPS34 orchestrates autophagy, endocytosis, and metabolism and is implicated in cancer and metabolic disease. The proximal tubule in the kidney is a key metabolic organ that controls reabsorption of nutrients such as fatty acids, amino acids, sugars, and proteins. Here, by combining metabolomics, proteomics, and phosphoproteomics analyses with functional and superresolution imaging assays of mice with an inducible deficiency in proximal tubular cells, we revealed that VPS34 controlled the metabolome of the proximal tubule. In addition to inhibiting pinocytosis and autophagy, VPS34 depletion induced membrane exocytosis and reduced the abundance of the retromer complex necessary for proper membrane recycling and lipid retention, leading to a loss of fuel and biomass. Integration of omics data into a kidney cell metabolomic model demonstrated that VPS34 deficiency increased β-oxidation, reduced gluconeogenesis, and enhanced the use of glutamine for energy consumption. Furthermore, the omics datasets revealed that VPS34 depletion triggered an antiviral response that included a decrease in the abundance of apically localized virus receptors such as ACE2. VPS34 inhibition abrogated SARS-CoV-2 infection in human kidney organoids and cultured proximal tubule cells in a glutamine-dependent manner. Thus, our results demonstrate that VPS34 adjusts endocytosis, nutrient transport, autophagy, and antiviral responses in proximal tubule cells in the kidney.
  45. Development. 2022 Nov 28. pii: dev.201286. [Epub ahead of print]
      Spatiotemporal regulation of the mechanistic target of rapamycin (mTOR) pathway is pivotal for establishment of brain architecture. Dysregulation of mTOR signaling is associated with a variety of neurodevelopmental disorders (NDDs). Here, we discover that the UBE4B-KLHL22 E3 ubiquitin ligase cascade regulates mTOR activity in neurodevelopment. In a mouse model with UBE4B conditionally deleted in the nervous system, animals display severe growth defects, spontaneous seizures, and premature death. Loss of UBE4B in the brains of mutant mice results in depletion of neural precursor cells (NPCs) and impairment of neurogenesis. Mechanistically, UBE4B polyubiquitinates and degrades KLHL22, an E3 ligase previously shown to degrade the GATOR1 component DEPDC5. Deletion of UBE4B causes upregulation of KLHL22 and hyperactivation of mTOR, leading to defective proliferation and differentiation of NPCs. Suppression of KLHL22 expression reverses the elevated activity of mTOR caused by acute local deletion of UBE4B. Prenatal treatment with the mTOR inhibitor rapamycin rescues neurogenesis defects in Ube4b mutant mice. Taken together, these findings demonstrate that UBE4B and KLHL22 are essential for maintenance and differentiation of the precursor pool through fine-tuning of mTOR activity.
    Keywords:  KLHL22; Neural precursor cell; Neurogenesis; UBE4B E3/E4 ubiquitin ligase; mTOR signaling
  46. Neurochem Int. 2022 Nov 29. pii: S0197-0186(22)00186-3. [Epub ahead of print] 105461
      Parkinson's disease (PD) is characterized by an abnormal post-translational modifications (PTM) in amino acid sequence and aggregation of alpha-synuclein (α-Syn) protein. It is generally believed that dopamine (DA) metabolite in dopaminergic (DAergic) neurons promotes the aggregation of toxic α-Syn oligomers and protofibrils, whereas DA inhibits the formation of toxic fibers and even degrades the toxic fibers. Therefore, the study on interaction between DA metabolites and α-Syn oligomers is one of the current hot topics in neuroscience, because this effect may have direct relevance to the selective DAergic neuron loss in PD. Several mechanisms have been reported for DA metabolites induced α-Syn oligomers viz. i) The reactive oxygen species (ROS) released during the auto-oxidation or enzymatic oxidation of DA changes the structure of α-Syn by the oxidation of amino acid residue leading to misfolding, ii) The oxidized DA metabolites directly interact with α-Syn through covalent or non-covalent bonding leading to the formation of oligomers, iii) DA interacts with lipid or autophagy related proteins to decreases the degradation efficiency of α-Syn aggregates. However, there is no clear-cut mechanism proposed for the interaction between DA and α-Syn. However, it is believed that the lysine (Lys) side chain of α-Syn sequence is the initial trigger site for the oligomer formation. Herein, we review different chemical mechanism involved during the interaction of Lys side chain of α-Syn with DA metabolites such as dopamine-o-quinone (DAQ), dopamine-chrome (DAC), dopamine-aldehyde (DOPAL) and neuromelanin. This review also provides the promotive effect of divalent Cu2+ ions on DA metabolites induced α-Syn oligomers and its inhibition effect by antioxidant glutathione (GSH).
    Keywords:  Autophagy; Chaperone; Dopamine; Glutathione Neuron loss; Metabolites; Metal ions; Oligomers; Parkinson's disease; α-Synuclein
  47. Metab Brain Dis. 2022 Dec 01.
      Microglia are resident immune cells in the brain and are closely associated with central nervous system inflammation and neurodegenerative diseases. It is known that mammalian target of rapamycin (mTOR) pathway plays an important role in the polarization of microglia. Castor1 has been identified as the cytosolic arginine sensor for the mTOR complex 1 (mTORC1) pathway, but the role of Castor1 in microglial polarization is still unknown. The purpose of this study was to explore the regulatory effect of Castor1 on microglial polarization and the underlying mechanism. The results demonstrated that Castor1 expression was significantly decreased in lipopolysaccharides (LPS) and interferon (IFN)-γ treated microglia. Castor1 overexpression inhibited the microglia M1 polarization by reducing the expression of M1 related markers. However, the expression of M2-related genes was promoted when Castor1 was overexpressed in IL-4 treated microglia. Mechanistically, Castor1 overexpression inhibited the activation of mTOR signaling pathway. In addition, after treatment with the mTOR activator MHY1485, the inhibitory effect of Castor1 overexpression on M1 polarization was attenuated, indicating that the regulation effects of Castor1 on M1 polarization was dependent on its inhibition of mTOR pathway. We propose that Castor1-mTOR signaling pathway could be considered as a potential target for treatment and intervention of central nervous system-related diseases by regulating microglia polarization.
    Keywords:  Castor1; M1/M2 phenotype; Microglia; Polarization; mTOR signaling pathway
  48. Nat Commun. 2022 Dec 01. 13(1): 7400
      The p53 transcription factor is a master regulator of cellular stress responses inhibited by repressors such as MDM2 and the phosphatase PPM1D. Activation of p53 with pharmacological inhibitors of its repressors is being tested in clinical trials for cancer therapy, but efficacy has been limited by poor induction of tumor cell death. We demonstrate that dual inhibition of MDM2 and PPM1D induces apoptosis in multiple cancer cell types via amplification of the p53 transcriptional program through the eIF2α-ATF4 pathway. PPM1D inhibition induces phosphorylation of eIF2α, ATF4 accumulation, and ATF4-dependent enhancement of p53-dependent transactivation upon MDM2 inhibition. Dual inhibition of p53 repressors depletes heme and induces HRI-dependent eIF2α phosphorylation. Pharmacological induction of eIF2α phosphorylation synergizes with MDM2 inhibition to induce cell death and halt tumor growth in mice. These results demonstrate that PPM1D inhibits both the p53 network and the integrated stress response controlled by eIF2α-ATF4, with clear therapeutic implications.
  49. Biochem Pharmacol. 2022 Nov 23. pii: S0006-2952(22)00449-X. [Epub ahead of print] 115354
      Doxorubicin (DOX) is a highly effective and extensively used chemotherapeutic drug but is limited by its cardiotoxicity. In our previous study, we showed that DOX-induced cardiotoxicity (DIC) triggers autophagy and pyroptosis. Sirtuin 3(SIRT3) is an NAD+-dependent deacetylase of the mitochondria that regulates autophagy. However, it is unknown if the protective effects of SIRT3 on DOX-induced cardiotoxicity involve the inhibition of NLRP3 inflammasome activation. In this study, we constructed in vivo and in vitro DIC models to investigate the effects and potential mechanisms of SIRT3 on DIC. We found that the overexpression of SIRT3 remarkably attenuated DIC through inhibition of the NLRP3 inflammasome. Moreover, we found that the overexpression of SIRT3 restored the dynamic balance of autophagosome/autolysosomes by targeting the mTOR/ULK1 signaling pathway. Application of the mTOR agonist MHY1485 further demonstrated that SIRT3 inhibited NLRP3 inflammasome activation by regulating autophagy. Collectively, the results suggest that SIRT3 effectively attenuates the cardiotoxicity of DOX and provides a theoretical foundation for further exploration of DIC.
    Keywords:  Cardiotoxicity; Doxorubicin; NLRP3 Inflammasome; SIRT3; autophagy
  50. Trends Cell Biol. 2022 Nov 24. pii: S0962-8924(22)00252-5. [Epub ahead of print]
      Cyclic GMP-AMP (cGAMP) synthase (cGAS) senses misplaced genomic, mitochondrial, and microbial double-stranded DNA (dsDNA) to synthesize 2'3'-cGAMP that mobilizes stimulator of interferon genes (STING) to unleash innate immune responses, constituting a ubiquitous and effective surveillance system against tissue damage and pathogen invasion. However, imbalanced cGAS-STING signaling tethers considerably in infectious, autoimmune, malignant, fibrotic, and neurodegenerative diseases. Recently, multifaceted roles for cGAS-STING signaling at the cellular scale have emerged; these include autophagy, translation, metabolism homeostasis, cellular condensation, DNA damage repair, senescence, and cell death. These dominances adaptively shape cellular physiologies and impact disease pathogenesis. However, understanding how DNA sensing-initiated responses trigger these diverse cellular processes remains an outstanding challenge. In this review we discuss recent developments of cellular physiological states controlled by cGAS-STING machinery, as well as their disease relevance and underlying mechanisms, canonical or noncanonical. Ultimately, exploiting these cellular functions and mechanisms may represent promising targets for disease therapeutics.
    Keywords:  autophagy; cGAMP; cGAS-STING; condensation; innate immunity; metabolism; organelle; pathogenesis; senescence; translation
  51. Biol Cell. 2022 Dec 01.
      Various types of stress initially induce a state of 'Cardiac Hypertrophy (CH) in the heart. But, persistent escalation of cardiac stress leads to progression from an adaptive physiological to a maladaptive pathological state. So, elucidating molecular mechanisms that can attenuate CH is imperative in developing cardiac therapies. Previously, we showed that Prohibitin1 (PHB1) has a protective role in CH-induced oxidative stress. Nevertheless, it is unclear how PHB1, a mitochondrial protein, has a protective role in CH. Therefore, we hypothesized that PHB1 maintains mitochondrial quality in CH. To test this hypothesis, we used Isoproterenol (ISO) to induce CH in H9C2 cells overexpressing PHB1 and elucidated mitochondrial quality control pathways. We found that overexpressing PHB1 attenuates ISO-induced CH and restores mitochondrial morphology in H9C2 cells. In addition, PHB1 blocks the pro-hypertrophic IGF1R/AKT pathway and restores the mitochondrial membrane polarization in ISO-treated cells. We observed that overexpressing PHB1 promotes mitochondrial biogenesis, improves mitochondrial respiratory capacity, and triggers mitophagy. We conclude that PHB1 maintains mitochondrial quality in ISO-induced CH in H9C2 cells. Based on our results, we suggest that small molecules that induce PHB1 in cardiac cells may prove beneficial in developing cardiac therapies. This article is protected by copyright. All rights reserved.
    Keywords:  Cardiac hypertrophy; H9C2; OCR; PHB1; mitochondrial quality; mitophagy
  52. Peptides. 2022 Nov 25. pii: S0196-9781(22)00183-8. [Epub ahead of print] 170917
      Myocardial infarction is a predominant cause of cardiovascular diseases with high incidence and death rate worldwide. Although growing evidence has suggested that IMD has significant protective influences on the cardiovascular system, the molecular regulatory mechanism of IMD in hypoxia-induced injury caused by myocardial infarction is urgent to be elucidated. In the present study, we found hypoxia led to a noteworthy enhancement in IMD expression and IMD alleviated hypoxia-induced myocardial injury of NRCMs. Furthermore, IMD was proved to inhibit hypoxia-induced injury by regulating MALAT1. Our findings suggested MALAT1 positively regulated the mRNA and protein expression level of ULK1 and hypoxia induced autophagy of NRCMs. MALAT1 stimulated autophagy to block hypoxia-induced cell injury in NRCMs via upregulation of ULK1 expression. Autophagy suppression abolished the protective capability of IMD overexpression against hypoxia-induced myocardial injury in NRCMs. In a word, our study shed light on the central mechanism of IMD in preventing hypoxia-induced injury caused by myocardial infarction. We confirmed IMD induced autophagy and attenuated hypoxia-induced injury in cardiomyocytes via MALAT1/ULK1, which may contribute to designing effective therapeutic approaches of myocardial infarction.
    Keywords:  IMD; MALAT1; ULK1; autophagy; hypoxia; myocardial infarction
  53. Arch Pharm Res. 2022 Nov 28.
      Metabolism of carbohydrates and lipids and protein degradation occurs in the liver and contributes to the body's homeostasis by secreting a variety of mediators. Any imbalance in this homeostasis due to excess fat consumption and the pathologic events accompanying lipotoxicity, autophagy dysregulation, endoplasmic reticulum stress, and insulin resistance may cause disturbances in the secretion of the proteins from the liver and their physiologic modifications and interactions with others. Since the liver secretome plays a role in the regulation of fuel metabolism and inflammation not only in the liver per se but also in other organs, the proteins belong to the utmost targets for treating metabolic and inflammatory diseases (e.g., COVID-19), depending on the available and feasible approaches to controlling their biological effects. However, in this era, we still come across new liver-derived proteins but are yet unable to entirely understand the pathologic basis underlying disease progression. This review aims to provide an updated overview of liver secretome biology with explanatory mechanisms with regard to the progression of metabolic and inflammatory liver diseases.
    Keywords:  Autophagy; COVID-19; ER stress; Hepatokines; Liver disorders
  54. Front Pharmacol. 2022 ;13 1070184
      Inflammatory bowel disease (IBD) is a typical immune-mediated chronic inflammatory disorder. Following the industrialization and changes in lifestyle, the incidence of IBD in the world is rising, which makes health concerns and heavy burdens all over the world. However, the pathogenesis of IBD remains unclear, and the current understanding of the pathogenesis involves dysregulation of mucosal immunity, gut microbiome dysbiosis, and gut barrier defect based on genetic susceptibility and environmental triggers. In recent years, autophagy has emerged as a key mechanism in IBD development and progression because Genome-Wide Association Study revealed the complex interactions of autophagy in IBD, especially immunopathogenesis. Besides, autophagy markers are also suggested to be potential biomarkers and target treatment in IBD. This review summarizes the autophagy-related genes regulating immune response in IBD. Furthermore, we explore the evolving evidence that autophagy interacts with intestinal epithelial and immune cells to contribute to the inflammatory changes in IBD. Finally, we discuss how novel discovery could further advance our understanding of the role of autophagy and inform novel therapeutic strategies in IBD.
    Keywords:  autophagy; immunity; immunopathogenesis; inflammatory bowel disease; pathology
  55. Exp Brain Res. 2022 Nov 27.
      Astrocyte-specific glutamate transporter subtype 1 (GLT-1) plays an important role in influencing glutamate excitatory toxicity and preventing the death of excitatory toxic neurons. Although the mammalian target of rapamycin (mTOR)/protein kinase B(Akt)/nuclear factor kappa B signaling cascade is involved in the upregulation of astrocytic GLT-1 in oxygen-glucose deprivation (OGD), it is unclear whether the mTOR/Akt pathway is involved in astrocytic GLT-1 upregulation in OGD and reoxygenation (OGD/R). In this study, we found that the treatment of cultured astrocytes with rapamycin and triciribine led to the decreased astrocytes' protrusions, smaller nuclei, and an increased apoptotic rate. The inhibitors of mTOR complex 1 significantly increased the expression levels of phosphorylated Akt-Ser473 (p-Akt), phosphorylated Akt-Thr308(p-Akt), and GLT-1, while Akt-specific inhibitors blocked GLT-1 expression, suggesting that the mTOR/Akt pathway is involved in GLT-1 upregulation. We further demonstrated that astrocytes under OGD/R adapted to environmental changes through the mTOR/Akt pathway, mainly by altering cell morphology and apoptosis and upregulating the expression levels of p-Akt and GLT-1. Our results suggested that astrocytes may adapt to short-term ischemic-reperfusion injury by regulating cell morphology, apoptosis and GLT-1 upregulation.
    Keywords:  Astrocytes; GLT-1; OGD/R; Rapamycin; p-Akt