bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2022‒06‒05
fifty-nine papers selected by
Viktor Korolchuk, Newcastle University



  1. Trends Cell Biol. 2022 May 30. pii: S0962-8924(22)00117-9. [Epub ahead of print]
      The mechanistic target of rapamycin complex 1 (mTORC1) signaling hub integrates multiple environmental cues to modulate cell growth and metabolism. Over the past decade considerable knowledge has been gained on the mechanisms modulating mTORC1 lysosomal recruitment and activation. However, whether and how mTORC1 is able to elicit selective responses to diverse signals has remained elusive until recently. We discuss emerging evidence for a 'non-canonical' mTORC1 signaling pathway that controls the function of microphthalmia/transcription factor E (MiT-TFE) transcription factors, key regulators of cell metabolism. This signaling pathway is mediated by a specific mechanism of substrate recruitment, and responds to stimuli that appear to converge on the lysosomal surface. We discuss the relevance of this pathway in physiological and disease conditions.
    Keywords:  FLCN; Rag GTPases; TFEB; lysosome; mTORC1
    DOI:  https://doi.org/10.1016/j.tcb.2022.04.012
  2. Curr Opin Neurobiol. 2022 May 29. pii: S0959-4388(22)00048-4. [Epub ahead of print]75 102554
      Macroautophagy (hereafter referred to as autophagy) is an essential quality-control pathway in neurons, which face unique functional and morphological challenges in maintaining the integrity of organelles and the proteome. To overcome these challenges, neurons have developed compartment-specific pathways for autophagy. In this review, we discuss the organization of the autophagy pathway, from autophagosome biogenesis, trafficking, to clearance, in the neuron. We dissect the compartment-specific mechanisms and functions of autophagy in axons, dendrites, and the soma. Furthermore, we highlight examples of how steps along the autophagy pathway are impaired in the context of aging and neurodegenerative disease, which underscore the critical importance of autophagy in maintaining neuronal function and survival.
    DOI:  https://doi.org/10.1016/j.conb.2022.102554
  3. Autophagy. 2022 Jun 02. 1-2
      During macroautophagy/autophagy, autophagosomes fuse with lysosomes to form autolysosomes. After fusion, the autophagosome inner membrane and enclosed substrates are degraded and transported out of lysosomes for recycling. The lysosomal membrane components are recycled by autophagic lysosome reformation (ALR) to generate new lysosomes. However, the fate of autophagosome outer membrane components on autolysosomes remains unknown. Our recent work discovered that autophagosome outer membrane components are not degraded but are recycled through an unidentified process which we named autophagosomal components recycling (ACR). Further investigation revealed the recycler complex (SNX4-SNX5-SNX17) responsible for ACR. The discovery of ACR not only fills a missing part in autophagy, but also reveals a new recycling pathway on autolysosomes.
    Keywords:  ATG9A; STX17; autophagosomal components recycling; autophagy; lysosome
    DOI:  https://doi.org/10.1080/15548627.2022.2083807
  4. Front Cell Dev Biol. 2022 ;10 844481
      Autophagy is a stress-induced lysosomal degradation pathway regulated by evolutionarily conserved autophagy-related (ATG) genes. Recent research has revealed that autophagy plays an important role in the regulation of energy metabolism, development of metabolic tissues, and pathogenesis of metabolic disorders. Bulk and selective degradation by autophagy helps maintain protein homeostasis and physiological function of cells. Aside from classical degradative roles, ATG proteins also carry out non-classical secretory functions of metabolic tissues. In this review, we summarize recent progresses and unanswered questions on the mechanisms of autophagy and ATG proteins in metabolic regulation, with a focus on organelle and nutrient storage degradation, as well as vesicular and hormonal secretion. Such knowledge broadens our understanding on the cause, pathophysiology, and prevention of metabolic diseases including obesity and diabetes.
    Keywords:  ER-phagy; adipose tissue; autophagy-related gene; beta cell (β cell); lipophagy; liver; mitophagy; secretion
    DOI:  https://doi.org/10.3389/fcell.2022.844481
  5. Aging Cell. 2022 Jun 01. e13620
      Mitochondria are the major source of reactive oxygen species (ROS), whose aberrant production by dysfunctional mitochondria leads to oxidative stress, thus contributing to aging as well as neurodegenerative disorders and cancer. Cells efficiently eliminate damaged mitochondria through a selective type of autophagy, named mitophagy. Here, we demonstrate the involvement of the atypical MAP kinase family member MAPK15 in cellular senescence, by preserving mitochondrial quality, thanks to its ability to control mitophagy and, therefore, prevent oxidative stress. We indeed demonstrate that reduced MAPK15 expression strongly decreases mitochondrial respiration and ATP production, while increasing mitochondrial ROS levels. We show that MAPK15 controls the mitophagic process by stimulating ULK1-dependent PRKN Ser108 phosphorylation and inducing the recruitment of damaged mitochondria to autophagosomal and lysosomal compartments, thus leading to a reduction of their mass, but also by participating in the reorganization of the mitochondrial network that usually anticipates their disposal. Consequently, MAPK15-dependent mitophagy protects cells from accumulating nuclear DNA damage due to mitochondrial ROS and, consequently, from senescence deriving from this chronic DNA insult. Indeed, we ultimately demonstrate that MAPK15 protects primary human airway epithelial cells from senescence, establishing a new specific role for MAPK15 in controlling mitochondrial fitness by efficient disposal of old and damaged organelles and suggesting this kinase as a new potential therapeutic target in diverse age-associated human diseases.
    Keywords:  MAP kinases; Oxidative DNA damage; autophagy; cellular senescence; mitophagy; signal transduction
    DOI:  https://doi.org/10.1111/acel.13620
  6. Cell Rep. 2022 May 31. pii: S2211-1247(22)00678-7. [Epub ahead of print]39(9): 110903
      Selective autophagy receptors and adapters contain short linear motifs called LIR motifs (LC3-interacting region), which are required for the interaction with the Atg8-family proteins. LIR motifs bind to the hydrophobic pockets of the LIR motif docking site (LDS) of the respective Atg8-family proteins. The physiological significance of LDS docking sites has not been clarified in vivo. Here, we show that Atg8a-LDS mutant Drosophila flies accumulate autophagy substrates and have reduced lifespan. Using quantitative proteomics to identify the proteins that accumulate in Atg8a-LDS mutants, we identify the cis-Golgi protein GMAP (Golgi microtubule-associated protein) as a LIR motif-containing protein that interacts with Atg8a. GMAP LIR mutant flies exhibit accumulation of Golgi markers and elongated Golgi morphology. Our data suggest that GMAP mediates the turnover of Golgi by selective autophagy to regulate its morphology and size via its LIR motif-mediated interaction with Atg8a.
    Keywords:  CP: Cell biology; CP: Immunology; Golgi; Golgiphagy Drosophila; LIR motif; LIR motif docking site; autophagy
    DOI:  https://doi.org/10.1016/j.celrep.2022.110903
  7. Front Pharmacol. 2022 ;13 887045
      Mitochondria, the intracellular organelles for cellular aerobic respiration and energy production, play an important role in the regulation of cell metabolism and cell fate. Mitophagy, a selective form of autophagy, maintains dynamic homeostasis of cells through targeting long-lived or defective mitochondria for timely clearance and recycling. Dysfunction in mitophagy is involved in the molecular mechanism responsible for the onset and development of human diseases. FUN14 domain containing 1 (FUNDC1) is a mitochondrial receptor located in the outer mitochondria membrane (OMM) to govern mitophagy process. Emerging evidence has demonstrated that levels and phosphorylation states of FUNDC1 are closely related to the occurrence, progression and prognosis of cardiovascular diseases, indicating a novel role for this mitophagy receptor in the regulation of mitochondrial homeostasis in cardiovascular system. Here we review mitophagy mediated by FUNDC1 in mitochondria and its role in various forms of cardiovascular diseases.
    Keywords:  FUNDC1; cardiovascular diseases; mitophagy; myocardial cells; receptor protein
    DOI:  https://doi.org/10.3389/fphar.2022.887045
  8. Essays Biochem. 2022 May 30. pii: EBC20210063. [Epub ahead of print]
      Plant immunity is antagonized by pathogenic effectors during interactions with bacteria, viruses or oomycetes. These effectors target core plant processes to promote infection. One such core plant process is autophagy, a conserved proteolytic pathway involved in ensuring cellular homeostasis. It involves the formation of autophagosomes around proteins destined for autophagic degradation. Many cellular components from organelles, aggregates, inactive or misfolded proteins have been found to be degraded via autophagy. Increasing evidence points to a high degree of specificity during the targeting of these components, strengthening the idea of selective autophagy. Selective autophagy receptors bridge the gap between target proteins and the forming autophagosome. To achieve this, the receptors are able to recognize specifically their target proteins in a ubiquitin-dependent or -independent manner, and to bind to ATG8 via canonical or non-canonical ATG8-interacting motifs. Some receptors have also been shown to require oligomerization to achieve their function in autophagic degradation. We summarize the recent advances in the role of selective autophagy in plant immunity and highlight NBR1 as a key player. However, not many selective autophagy receptors, especially those functioning in immunity, have been characterized in plants. We propose an in silico approach to identify novel receptors, by screening the Arabidopsis proteome for proteins containing features theoretically needed for a selective autophagy receptor. To corroborate these data, the transcript levels of these proteins during immune response are also investigated using public databases. We further highlight the novel perspectives and applications introduced by immunity-related selective autophagy studies, demonstrating its importance in research.
    Keywords:  Autophagy; Effectors; Immunity
    DOI:  https://doi.org/10.1042/EBC20210063
  9. Mol Biomed. 2022 Jun 03. 3(1): 17
      Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) global pandemic. Omicron, a new variant of SARS-CoV-2, has the characteristics of strong transmission and pathogenicity, short incubation period, and rapid onset progression, and has spread rapidly around the world. The high replication rate and intracellular accumulation of SARS-CoV-2 are remarkable, but the underlying molecular mechanisms remain unclear. Autophagy acts as a conservative cellular defence mechanism against invading pathogens. Here, we provide evidence that the main protease of SARS-CoV-2, NSP5, effectively cleaves the selective autophagy receptor p62. NSP5 targets p62 for cleavage at glutamic acid 354 and thus abolishes the capacity of p62 to mediate selective autophagy. It was further shown that p62 specifically interacted with ubiquitinated SARS-CoV-2 M, the viral membrane protein, to promote its autophagic degradation. In the presence of NSP5, p62-mediated autophagic degradation of the M protein was inhibited. The cleaved products of p62 also cannot facilitate the degradation of the M protein. Collectively, our findings reveal that p62 is a novel host target of SARS-CoV-2 NSP5 and suggest that selective autophagy targets viruses and potential strategies by which the virus evades autophagic clearance. Our results may provide new ideas for the development of anti-COVID-19 drugs based on autophagy and NSP5.
    Keywords:  Autophagic degradation; Autophagy; NSP5; SARS-CoV-2; SQSTM1/p62
    DOI:  https://doi.org/10.1186/s43556-022-00083-2
  10. Autophagy. 2022 Jun 01. 1-7
      The aggregation of mutant HTT (huntingtin; mHTT) is a hallmark of Huntington disease (HD). mHTT aggregates interact and sequester dozens of proteins and affect diverse key cellular functions. Here we report that TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy, is yet another protein that co-aggregates with mHTT. We also found the mHTT-TFEB co-aggregation is mediated by a prion-like domain (PrLD) near the N terminus of TFEB. Our findings point out a possible limitation for therapeutic strategies targeting TFEB to clear mHTT, and also provided a possible explanation for controversies that TFEB overexpression lowered soluble mHTT in some HD models but failed to reduce mHTT aggregates or HD pathology in others. Moreover, we found that TFE3, another MiT family transcription factor that shares overlapping functions with TFEB, lacks PrLD and does not co-aggregate with mHTT, and thus might serve as an alternative drug target for HD.
    Keywords:  Aggregate; HD; TFEB; mHTT; prion-like domain
    DOI:  https://doi.org/10.1080/15548627.2022.2083857
  11. Toxicol Lett. 2022 May 28. pii: S0378-4274(22)00110-2. [Epub ahead of print]
      Endoplasmic reticulum autophagy (ER-phagy) is an important strategy for cells against ER stress and maintain ER homeostasis. ER stress is considered as a potential toxicity of nanoparticles, but only a few studies have explored whether the nanoparticles-induced ER stress can trigger ER-phagy, and the precise molecular mechanism of ER-phagy mediated by nanoparticle-induced ER stress is still poorly understood. Therefore, our study focuses on the relationship between ER stress and ER-phagy caused by emerging nanoparticles CdTe-QDs and its molecular mechanism. The results showed that the accumulation of ROS and ER stress induced by CdTe-QDs contributed to the activation of autophagy and ER-phagy. Importantly, our study unravelled that CdTe-QDs activate autophagy by up-regulating the transcription of core autophagy machinery. It was found that the induced ER-phagy was mediated by Atg11/Atg40/Lst1-Sec23 instead of the autophagy machinery genes. We speculated that the ER-phagy caused by CdTe-QDs may include micro-ER-phagy and macro-ER-phagy. Collectively, this work provided valuable information for the application of CdTe-QDs in the field of biology and a theoretical basis for further understanding of ER-phagy.
    Keywords:  CdTe-QDs; ER stress; ER-phagy; ROS; autophagy
    DOI:  https://doi.org/10.1016/j.toxlet.2022.05.010
  12. Aging Dis. 2022 Jun;13(3): 712-731
      Renal fibrosis is a common process of almost all the chronic kidney diseases progressing to end-stage kidney disease. As a highly conserved lysosomal protein degradation pathway, autophagy is responsible for degrading protein aggregates, damaged organelles, or invading pathogens to maintain intracellular homeostasis. Growing evidence reveals that autophagy is involved in the progression of renal fibrosis, both in the tubulointerstitial compartment and in the glomeruli. Nevertheless, the specific role of autophagy in renal fibrosis has still not been fully understood. Therefore, in this review we will describe the characteristics of autophagy and summarize the recent advances in understanding the functions of autophagy in renal fibrosis. Moreover, the problem existing in this field and the possibility of autophagy as the potential therapeutic target for renal fibrosis have also been discussed.
    Keywords:  autophagy; cellular senescence; chronic kidney disease; renal fibrosis; senescence-associated secretory phenotype
    DOI:  https://doi.org/10.14336/AD.2021.1027
  13. Small. 2022 May 29. e2201585
      To overcome the autophagy compromised mechanism of protective cellular processes by "eating"/"digesting" damaged organelles or potentially toxic materials with autolysosomes in tumor cells, lysosomal impairment can be utilized as a traditional autophagy dysfunction route for tumor therapy; however, this conventional one-way autophagy dysfunction approach is always limited by the therapeutic efficacy. Herein, an innovative pharmacological strategy that can excessively provoke autophagy via endoplasmic reticulum (ER) stress is implemented along with lysosomal impairment to enhance autophagy dysfunction. In this work, the prepared tellurium double-headed nanobullets (TeDNBs) with controllable morphology are modified with human serum albumin (HSA) which facilitates internalization by tumor cells. On the one hand, ER stress can be stimulated by upregulating the phosphorylation eukaryotic translation initiation factor 2 (P-eIF2α) owing to the production of tellurite (TeO3 2- ) in the specifical hydrogen peroxide-rich tumor environment; thus, autophagy overstimulation occurs. On the other hand, OME can deacidify and impair lysosomes by downregulating lysosomal-associated membrane protein 1 (LAMP1), therefore blocking autolysosome formation. Both in vitro and in vivo results demonstrate that the synthesized TeDNBs-HSA/OME (TeDNBs-HO) exhibit excellent therapeutic efficacy by autophagy dysfunction through ER stress induction and lysosomal damnification. Thus, TeDNBs-HO is verified to be a promising theranostic nanoagent for effective tumor therapy.
    Keywords:  Te double-headed nanobullets; boosted autophagy dysfunction; endoplasmic reticulum stress activation; lysosomal impairment; omeprazole
    DOI:  https://doi.org/10.1002/smll.202201585
  14. Cancer Lett. 2022 May 26. pii: S0304-3835(22)00236-1. [Epub ahead of print]541 215752
      Previous studies have demonstrated that autophagy tightly regulates apoptosis. However, the underlying mechanism whereby autophagy regulates apoptosis remains unclear. Here, we discover a "autophagy inhibition-mitochondrial turnover disruption-ROS elevation-DNA damage-p53 transactivation-apoptosis" axis that explicates the process of autophagy modulating apoptosis. We found that autophagy inhibition induced by TRPML1, a cationic channel localized in the lysosome, results in accumulation of damaged mitochondria via blocking the mitophagic flux to lysosomes in human melanoma and glioblastoma cells. The disrupted mitochondria turnover leads to ROS elevation, which in turn causes severe damage to DNA in these cancer cells. Damage to DNA resulted from TRPML1-mediated autophagy inhibition subsequently activates p53, which ultimately triggers mitochondrial mediated apoptosis by modulating pro- and anti-apoptosis proteins in these cancer cells. As a result, by triggering apoptosis, TRPML1-induced autophagy inhibition greatly suppresses growth of human melanoma and glioma both in vitro and in vivo. In summary, our findings define the mechanism underling the regulation of autophagy inhibition in apoptosis and represent TRPML1 as a novel target for potentially treating melanoma and glioblastoma in the clinical setting.
    Keywords:  DNA damage; Glioblastoma; Lysosomes; Melanoma; p53
    DOI:  https://doi.org/10.1016/j.canlet.2022.215752
  15. Mol Biol Cell. 2022 Jun 02. mbcE21110595T
      Lysosomes receive extracellular and intracellular cholesterol and redistribute it throughout the cell. Cholesterol egress from lysosomes is critical for cholesterol homeostasis, and its failure underlies the pathogenesis of genetic disorders such as Niemann-Pick C disease. Here, we report that the BORC-ARL8-HOPS ensemble is required for egress of free cholesterol from lysosomes and for storage of esterified cholesterol in lipid droplets. Depletion of BORC, ARL8 or HOPS does not alter the localization of the lysosomal transmembrane cholesterol transporter NPC1 to degradative compartments, but decreases the association of the luminal transporter NPC2 and increases NPC2 secretion. BORC-ARL8-HOPS depletion also increases lysosomal degradation of CI-MPR, which normally sorts NPC2 to the endosomal-lysosomal system and then is recycled to the trans-Golgi network (TGN). These defects likely result from impaired HOPS-dependent fusion of endosomal-lysosomal organelles and an uncharacterized function of HOPS in CI-MPR recycling. Our study demonstrates that the BORC-ARL8-HOPS ensemble is required for cholesterol egress from lysosomes by enabling CI-MPR-dependent trafficking of NPC2 to the endosomal-lysosomal system.
    DOI:  https://doi.org/10.1091/mbc.E21-11-0595-T
  16. Semin Cell Dev Biol. 2022 May 28. pii: S1084-9521(22)00172-0. [Epub ahead of print]
      The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
    Keywords:  Autophagy; Epithelial; Lumenogenesis; Polarity; Polarized transport
    DOI:  https://doi.org/10.1016/j.semcdb.2022.05.015
  17. FEBS Lett. 2022 May 31.
      Plant selective (macro)autophagy is a highly regulated process whereby eukaryotic cells spatiotemporally degrade some of their constituents that have become superfluous or harmful. The identification and characterization of the factors determining this selectivity make it possible to integrate selective (macro)autophagy into plant cell physiology and homeostasis. The specific cargo receptors and/or scaffold proteins involved in this pathway are generally not structurally conserved, as are the biochemical mechanisms underlying recognition and integration of a given cargo into the autophagosome in different cell types. This review discusses the few specific cargo receptors described in plant cells to highlight key features of selective autophagy in the plant kingdom and its integration with plant physiology, so as to identify evolutionary convergence and knowledge gaps to be filled by future research.
    Keywords:  Chlorophagy; ER-phagy; Mitophagy; nucleophagy; pexophagy; plant cell; plant physiology; selective autophagy; selective autophagy receptor/adaptor; xenophagy
    DOI:  https://doi.org/10.1002/1873-3468.14412
  18. Front Cell Dev Biol. 2022 ;10 863922
      Lysosomes are acidic, membrane-bound organelles that play essential roles in cellular quality control, metabolism, and signaling. The lysosomes of a cell are commonly depicted as vesicular organelles. Yet, lysosomes in fact show a high degree of ultrastructural heterogeneity. In some biological contexts, lysosome membranes naturally transform into tubular, non-vesicular morphologies. Though the purpose and regulation of tubular lysosomes has been historically understudied, emerging evidence suggests that tubular lysosomes may carry out unique activities, both degradative and non-degradative, that are critical to cell behavior, function, and viability. Here, we discuss recent advances in understanding the biological significance of tubular lysosomes in cellular physiology, and we highlight a growing number of examples that indicate the centrality of this special class of lysosomes to health and disease.
    Keywords:  aging; autophagy; cell biology; lysosome morphology; organelles; tubular lysosomes
    DOI:  https://doi.org/10.3389/fcell.2022.863922
  19. Autophagy. 2022 Jun 02. 1-10
      Alopecia areata (AA) involves an aberrant immune attack on the hair follicle (HF), which leads to hair loss. Previous genetic data from our lab pointed to a connection between macroautophagy/autophagy and AA pathogenesis, and GWAS identified STX17, CLEC16A and BCL2L11/BIM as risk factors for AA. Additionally, AA patients have copy number deletions in region spanning the ATG4B gene. To test whether autophagy might contribute to disease pathogenesis in AA, we investigated autophagic activity in C3H/HeJ mouse model. We found that autophagy protein SQSTM1 accumulated in HF of AA mice, while in immune cells from AA skin-draining lymph nodes SQSTM1 was not altered, suggesting that autophagic activity is inhibited in the HF of AA mice. Induction of autophagy with Tat-BECN1 peptide attenuated AA, while treatment with the autophagy blocker chloroquine promoted disease, compared to untreated AA mice. Together, our findings suggest the involvement of impaired autophagy in disease pathogenesis of AA.Abbreviations: AA: alopecia areata; CQ: chloroquine; GWAS: genome-wide association studies; HF: hair follicle; MHC: major histocompatibility complex; SDLN: skin-draining lymph nodes.
    Keywords:  Autoimmunity; BECN1; MAP1LC3B; SQSTM1; T cells; Tat-BECN1; hair; inflammation; mammalian autophagy; skin
    DOI:  https://doi.org/10.1080/15548627.2022.2074104
  20. J Biol Chem. 2022 May 30. pii: S0021-9258(22)00534-8. [Epub ahead of print] 102093
      Autophagy is an essential cellular process involving degradation of superfluous or defective macromolecules and organelles as a form of homeostatic recycling. Initially proposed to be a 'bulk' degradation pathway, a more nuanced appreciation of selective autophagy pathways has developed in the literature in recent years. As a glycogen-selective autophagy process, 'glycophagy' is emerging as a key metabolic route of transport and delivery of glycolytic fuel substrate. Study of glycophagy is at an early stage. Enhanced understanding of this major non-canonical pathway of glycogen flux will provide important opportunities for new insights into cellular energy metabolism. In addition, glycogen metabolic mishandling is centrally involved in the pathophysiology of several metabolic diseases in a wide range of tissues, including liver, skeletal muscle, cardiac muscle, and brain. Thus, advances in this exciting new field are of broad multi-disciplinary interest relevant to many cell types and metabolic states. Here, we review the current evidence of glycophagy involvement in homeostatic cellular metabolic processes and of molecular mediators participating in glycophagy flux, We integrate information from a variety of settings including cell lines, primary cell culture systems, ex vivo tissue preparations, genetic disease models and clinical glycogen disease states.
    Keywords:  Atg8; Gabarapl1; Stbd1; autophagy; glycogen; glycophagy; lysosome
    DOI:  https://doi.org/10.1016/j.jbc.2022.102093
  21. Acta Pharm Sin B. 2022 May;12(5): 2506-2521
      Retinal pigment epithelial (RPE) is primarily impaired in age-related macular degeneration (AMD), leading to progressive loss of photoreceptors and sometimes choroidal neovascularization (CNV). mTOR has been proposed as a promising therapeutic target, while the usage of its specific inhibitor, rapamycin, was greatly limited. To mediate the mTOR pathway in the retina by a noninvasive approach, we developed novel biomimetic nanocomplexes where rapamycin-loaded nanoparticles were coated with cell membrane derived from macrophages (termed as MRaNPs). Taking advantage of the macrophage-inherited property, intravenous injection of MRaNPs exhibited significantly enhanced accumulation in the CNV lesions, thereby increasing the local concentration of rapamycin. Consequently, MRaNPs effectively downregulated the mTOR pathway and attenuate angiogenesis in the eye. Particularly, MRaNPs also efficiently activated autophagy in the RPE, which was acknowledged to rescue RPE in response to deleterious stimuli. Overall, we design and prepare macrophage-disguised rapamycin nanocarriers and demonstrate the therapeutic advantages of employing biomimetic cell membrane materials for treatment of AMD.
    Keywords:  Age-related macular degeneration; Biomimetic nanoparticles; Choroidal neovascularization; Inflammation; Macrophage membrane; Rapamycin; Targeted drug delivery; mTOR signaling
    DOI:  https://doi.org/10.1016/j.apsb.2021.10.022
  22. Yeast. 2022 Jun 02.
      Lipid droplet (LD) autophagy (lipophagy) is a recently discovered selective form of autophagy and is a pathway for LD catabolism. This ubiquitous process has been an ongoing area of research within the budding yeast, Saccharomyces cerevisiae. Yeast lipophagy phenotypically resembles microautophagy, although it has a distinct set of genetic requirements depending on the mode of induction. This review highlights the similarities and differences between different forms of yeast lipophagy and offers perspectives on how our knowledge of lipophagy in yeast may guide our understanding of this process within mammalian cells to ultimately inform future applications of lipophagy.
    Keywords:  lipid droplets; lipolysis; microautophagy; vacuoles; yeasts
    DOI:  https://doi.org/10.1002/yea.3705
  23. Biochim Biophys Acta Mol Basis Dis. 2022 May 26. pii: S0925-4439(22)00123-5. [Epub ahead of print] 166453
      Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The FA proteins have functions in genome maintenance and in the cytoplasmic process of selective autophagy, beyond their canonical roles of repairing DNA interstrand cross-links. FA core complex proteins FANCC, FANCF, FANCL, FANCA, FANCD2, BRCA1 and BRCA2, which previously had no known direct functions outside the nucleus, have recently been implicated in mitophagy. Although mutations in FANCL account for only a very small number of cases in FA families, it plays a key role in the FA pathophysiology and might drive carcinogenesis. Here, we demonstrate that FANCL protein is present in mitochondria in the control and Oligomycin and Antimycin (OA)-treated cells and its ubiquitin ligase activity is not required for its localization to mitochondria. CRISPR/Cas9-mediated knockout of FANCL in HeLa cells overexpressing parkin results in increased sensitivity to mitochondrial stress and defective clearing of damaged mitochondria upon OA treatment. This defect was reversed by the reintroduction of either wild-type FANCL or FANCL(C307A), a mutant lacking ubiquitin ligase activity. To summarize, FANCL protects from mitochondrial stress and supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner.
    Keywords:  FANCL; Fanconi anemia; Mitophagy; Parkin; Ubiquitin ligase
    DOI:  https://doi.org/10.1016/j.bbadis.2022.166453
  24. Life Sci. 2022 May 27. pii: S0024-3205(22)00362-9. [Epub ahead of print] 120662
      AIMS: In pulmonary fibrosis, autophagy handles the maintenance of alveolar epithelial cells, prevents epithelial-mesenchymal transition (EMT), and controls collagen turnover. The mammalian target of rapamycin (mTOR) and its translational-dependent proteins are essential regulators of autophagy. Irbesartan (IRB) has earlier ameliorative effects in experimental pulmonary fibrosis. The current study aimed to explore therapeutic autophagy-modulated pulmonary fibrotic changes by IRB versus rapamycin (RAPA) in bleomycin (BLM)-challenged rats.MATERIALS AND METHODS: A single intratracheal BLM dose at day (0), IRB in different doses (10, 20, and 40 mg/kg) or RAPA (2.5 mg/kg) was given daily for 14 continuous days.
    KEY FINDINGS: IRB significantly diminished the fibrotic lung scores. Pulmonary levels of transforming growth factor (TGF)-β1 and hydroxyproline exhibited marked attenuation in IRB (40 mg/kg)-treated rats compared to other treated groups. IRB (40 mg/kg) was not significantly different from RAPA. It downregulated the fibrotic lung phosphorylated mammalian target of rapamycin (p-mTOR) levels and augmented lung Unc-51-like autophagy activating kinase 1 (ULK1), LC3-I and LC3-II more than IRB (10 and 20 mg/kg)-treated fibrotic groups.
    SIGNIFICANCE: Autophagic effects via the mTOR signalling pathway may play a role in IRB's antifibrotic effects. Consideration of IRB as a therapeutic antifibrotic agent in pulmonary fibrosis needs further experimental and clinical long-term validation, especially in comorbid with primary hypertension, heart failure, and diabetic renal insults.
    Keywords:  Bleomycin; Experimental pulmonary fibrosis; Irbesartan; Macroautophagy; Mammalian target of rapamycin; Rapamycin
    DOI:  https://doi.org/10.1016/j.lfs.2022.120662
  25. Cancer Sci. 2022 Jun 03.
      Lysosomes function as the digestive system of a cell, which are involved in macromolecular recycling, vesicle trafficking, metabolic reprogramming, and pro-growth signaling. Although quality control of lysosome biogenesis is thought to be a potential target for cancer therapy, practical strategies have not been established. Here, we show that lysosomal membrane integrity supported by lysophagy, a selective autophagy for damaged lysosomes, is a promising therapeutic target for glioblastoma (GBM). In this study, we found that ifenprodil, an FDA-approved drug with neuromodulatory activities, efficiently inhibited spheroid formation of patient-derived GBM cells in a combination with autophagy inhibition. Ifenprodil increased intracellular Ca2+ level, resulting in mitochondrial reactive oxygen species-mediated cytotoxicity. The ifenprodil-induced Ca2+ elevation was due to Ca2+ release from lysosomes, but not endoplasmic reticulum, associated with galectin-3 punctation as an indicator of lysosomal membrane damage. Since the Ca2+ release was enhanced by ATG5 deficiency, autophagy protected against lysosomal membrane damage. By comparative analysis of 765 FDA-approved compounds, we identified another clinically available drug for CNS diseases, amoxapine, in addition to ifenprodil. Both compounds promoted degradation of lysosomal membrane proteins, indicating a critical role of lysophagy in quality control of lysosomal membrane integrity. Importantly, a synergistic inhibitory effect of ifenprodil and chloroquine, a clinically available autophagy inhibitor, on spheroid formation was remarkable in GBM cells, but not in non-transformed neural progenitor cells. Finally, chloroquine dramatically enhanced effects of the compounds inducing lysosomal membrane damage in a patient-derived xenograft model. These data demonstrate a therapeutic advantage of targeting lysosomal membrane integrity in GBM.
    Keywords:  Lysosomal membrane turnover; autophagy; calcium; glioblastoma; lysosomal membrane integrity
    DOI:  https://doi.org/10.1111/cas.15451
  26. Front Cell Dev Biol. 2022 ;10 868465
      Mitochondrial repair is essential to metabolic homeostasis. Outer mitochondrial membrane mitofusin (MFN) proteins orchestrate mitochondrial fusion that opposes mitochondrial degeneration caused by senescence. Depending upon physiological context, MFN2 can either mediate mitochondrial fusion or recruit cytosolic Parkin to initiate mitophagic elimination. Because it is not clear how these events are counter-regulated we engineered and expressed MFN2 mutants that mimic phosphorylated or non-phosphorylatable MFN2 at its PINK1 phosphorylation sites: T111, S378, and S442. By interrogating mitochondrial fusion, polarization status, and Parkin binding/mitophagy as a function of inferred MFN2 phosphorylation, we discovered that individual MFN2 phosphorylation events act as a biological "bar-code", directing mitochondrial fate based on phosphorylation site state. Experiments in Pink1 deficient cells supported a central role for PINK1 kinase as the pivotal regulator of MFN2 functionality. Contrary to popular wisdom that Parkin-mediated ubiquitination regulates MFN-mediated mitochondrial fusion, results in Prkn null cells demonstrated the dispensability of Parkin for MFN2 inactivation. These data demonstrate that PINK1-mediated phosphorylation is necessary and sufficient, and that Parkin is expendable, to switch MFN2 from fusion protein to mitophagy effector.
    Keywords:  MFN2; PINK1 kinase; Parkin; fusion; mitochondrial quality control; mitofusin regulation; phosphorylation
    DOI:  https://doi.org/10.3389/fcell.2022.868465
  27. Int J Biol Sci. 2022 ;18(8): 3374-3389
      Intestinal inflammation is a vital precipitating factor of colorectal cancer (CRC), but the underlying mechanisms are still elusive. TANK-binding kinase 1 (TBK1) is a core enzyme downstream of several inflammatory signals. Recent studies brought the impacts of TBK1 in malignant disease to the forefront, we found aberrant TBK1 expression in CRC is correlated with CRC progression. TBK1 inhibition impaired CRC cell proliferation, migration, drug resistance and tumor growth. Bioinformatic analysis and experiments in vitro showed overexpressed TBK1 inhibited mTORC1 signaling activation in CRC along with elevated GLUT1 expression without inducing GLUT1 translation. TBK1 mediated mTORC1 inhibition induces intracellular autophagy, which in turn decreasing GLUT1 degradation. As a rescue, blocking of autophagosome and retromer respectively via autophagy-related gene 7 (ATG7) or TBC1 Domain Family Member 5 (TBC1D5) silence diminished the regulation of TBK1 to GLUT1. GLUT1 staining presented that TBK1 facilitated GLUT1 membrane translocation which subsequently enhanced glucose consumption. Inhibitor of TBK1 also decreased GLUT1 expression which potentiated drug-sensitivity of CRC cell. Collectively, TBK1 facilitates glucose consumption for supporting CRC progression via initiating mTORC1 inhibition induced autophagy which decreases GLUT1 degradation and increases GLUT1 membrane location. The adaptive signaling cascade between TBK1 and GLUT1 proposes a new strategy for CRC therapy.
    Keywords:  Autophagy; Colorectal cancer; GLUT1; TBK1; mTORC1
    DOI:  https://doi.org/10.7150/ijbs.70742
  28. Clin Exp Pharmacol Physiol. 2022 May 30.
      Regular endurance exercise is a non-pharmacological strategy to protect the liver against diseases. Conversely, exercise may be harmful when excessive, the so-called overtraining. As expected, mice who underwent an overtraining protocol presented higher levels of proinflammatory cytokines in the serum and liver. Based on the relationship among overtraining, inflammation, and mammalian target of rapamycin complex 1 (mTORC1) up-regulation, the present study verified if animals submitted to an overtraining protocol but with inhibition of the mTOR pathway via rapamycin injections could mitigate the liver and serum inflammation. Once autophagy can be linked to the improvement of hepatic dysfunction, we also investigated if the inhibition of mTORC1 by rapamycin can improve hepatic autophagy. The animals were randomized into four groups: Control (CT; sedentary mice), Overtraining by downhill running (OT; mice submitted to the downhill running-based overtraining protocol), Overtraining by downhill running with chronic administration of rapamycin (OT/Rapa; mice submitted to the downhill running-based overtraining protocol with intraperitoneal injections of rapamycin) and Aerobic (AER; submitted to aerobic training protocol). The serum and liver of the animals were used for biochemical analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunoblotting. The main results are 1) OT and OT/Rapa protocols decreased the performance; 2) the protein levels of interleukin 6 (IL-6) were higher for the OT group; the OT/Rapa group reduced the autophagic genes, increased the Microtubule-associated protein light chain 3 II/I (LC3II/LC3I) protein ratio, and decreased the Sequestosome 1 (SQSTM1) protein. In conclusion, rapamycin appears efficiently to increase the autophagy proteins and decrease IL-6 protein in the liver of overtraining mice. This article is protected by copyright. All rights reserved.
    Keywords:  autophagy; exercise; liver; mTORC1; rapamycin
    DOI:  https://doi.org/10.1111/1440-1681.13677
  29. J Physiol. 2022 Jun 02.
      
    Keywords:  denervation; lysosomes; mitochondria; mitophagy; muscle atrophy
    DOI:  https://doi.org/10.1113/JP283207
  30. Nat Neurosci. 2022 Jun 02.
      Autophagy is markedly impaired in Alzheimer's disease (AD). Here we reveal unique autophagy dysregulation within neurons in five AD mouse models in vivo and identify its basis using a neuron-specific transgenic mRFP-eGFP-LC3 probe of autophagy and pH, multiplex confocal imaging and correlative light electron microscopy. Autolysosome acidification declines in neurons well before extracellular amyloid deposition, associated with markedly lowered vATPase activity and build-up of Aβ/APP-βCTF selectively within enlarged de-acidified autolysosomes. In more compromised yet still intact neurons, profuse Aβ-positive autophagic vacuoles (AVs) pack into large membrane blebs forming flower-like perikaryal rosettes. This unique pattern, termed PANTHOS (poisonous anthos (flower)), is also present in AD brains. Additional AVs coalesce into peri-nuclear networks of membrane tubules where fibrillar β-amyloid accumulates intraluminally. Lysosomal membrane permeabilization, cathepsin release and lysosomal cell death ensue, accompanied by microglial invasion. Quantitative analyses confirm that individual neurons exhibiting PANTHOS are the principal source of senile plaques in amyloid precursor protein AD models.
    DOI:  https://doi.org/10.1038/s41593-022-01084-8
  31. Autophagy Rep. 2022 ;1(1): 38-41
      Cell detachment from the extracellular matrix (ECM) typically promotes cell death via a form of apoptosis known as anoikis. However, in tumor cells, detachment can also induce cell survival, utilizing a process known as macroautophagy/autophagy, which involves degradation and removal of apoptotic proteins as well as rewiring of metabolic pathways so that cells can survive under stress. The crosstalk between the competing processes of anoikis and autophagy is only partially understood but may be critical for the design of multi-drug therapeutic strategies. Here, we summarize our recent studies, which reveal a direct regulatory link between a major mediator of cell survival in adherent cells, the ECM-integrin-activated dual tyrosine kinase complex of SRC and PTK2/FAK, and a major regulator of cell metabolism and autophagy, AMP-activated protein kinase (AMPK). We identify a novel SRC phosphorylation site on AMPK and demonstrate that this phosphorylation event plays key roles in AMPK regulation, autophagy induction, and cell survival.
    Keywords:  AMPK; PTK2/FAK; SRC; apoptosis; autophagy; cell attachment; cell detachment; phosphorylation
    DOI:  https://doi.org/10.1080/27694127.2022.2047266
  32. Antioxid Redox Signal. 2022 Jun 01.
      AIMS: Huntington's Disease (HD) is an autosomal-dominant neurodegenerative disorder with no effective therapies. Mutant huntingtin (mHTT), the main HD proteinaceous hallmark, has been linked to reactive oxygen species (ROS) formation and mitochondrial dysfunction, among other pathological mechanisms. Importantly, Src-related kinases, c-Src and Fyn, are activated by ROS and regulate mitochondrial activity. However, c-Src/Fyn involvement in HD is largely unexplored. Thus, in this study we aimed to explore changes in Src/Fyn proteins in HD models and their role in defining altered mitochondrial function and dynamics and redox regulation.RESULTS: We show, for the first time, that c-Src/Fyn phosphorylation/activation and proteins levels are decreased in several human and mouse HD models mainly due to autophagy degradation, concomitantly with mHtt-expressing cells showing enhanced TFEB-mediated autophagy induction and autophagy flux. c-Src/Fyn co-localization with mitochondria is also reduced. Importantly, expression of constitutive active c-Src/Fyn to restore active SKF levels improves mitochondrial morphology and function, namely through improved mitochondrial transmembrane potential, mitochondrial basal respiration and ATP production, but did not affect mitophagy. Additionally, constitutive active c-Src/Fyn expression diminishes the levels of reactive species in cells expressing mHTT.
    INNOVATION: This work supports a relevant role for c-Src/Fyn proteins in controlling mitochondrial function and redox regulation in HD, revealing a potential HD therapeutic target.
    CONCLUSION: c-Src/Fyn restoration in HD improves mitochondrial morphology and function, precluding the rise in oxidant species and cell death.
    DOI:  https://doi.org/10.1089/ars.2022.0001
  33. Mol Biotechnol. 2022 May 30.
      To develop whitening cosmetic materials, we conducted a study on lysosomes that decisively contribute to the decomposition of melanin during autophagy in keratinocytes. In this study, we found that the lysosomal fraction inhibits melanin synthesis in melanocyte, and the potential for the whitening function of lysosomal fraction to degrade melanin in the cells, or accompany other melanin synthesis inhibition pathways, including tyrosinase inhibition. Additionally, through the zebrafish test, we confirmed the effect of lysosomal fraction on melanin production in vivo. The results suggest that the lysosome fraction effectively reduces melanin or inhibits melanogenesis in a melanogenesis phenotype whole-animal model.
    Keywords:  Lysosome; Melanin; Skin; Whitening; Zebrafish
    DOI:  https://doi.org/10.1007/s12033-022-00516-x
  34. Mol Cell Biochem. 2022 May 31.
      Mitotic catastrophe (MC) is a suppressive mechanism that mediates the elimination of mitosis-deficient cells through apoptosis, necrosis or senescence after M phase block. SIRT1 is involved in the regulation of several cellular processes, including autophagy. However, the relationship between SIRT1 and MC has been largely obscure. Our study highlights that SIRT1 might be involved in the regulation of MC. We have shown that degradation of the SIRT1 protein via proteasome and lysosomal pathway was accompanied by MC induced via BMH-21. Overexpression of SIRT1 alleviated MC by decreasing the proportion of apoptotic and multinuclear cells induced by G2/M block and triggered autophagy whereas knockdown of SIRT1 aggravated MC and repressed autophagy. Furthermore, we found that serum starvation triggered autophagy evidently generated lower MC whereas siRNA of ATG5/7 suppressed autophagy leading to higher MC. ChIP analysis revealed that SIRT1 could bind to the promoter of BubR1, a component of spindle assembly checkpoint (SAC), to upregulate its expression. Overexpression of BubR1 decreased MC whereas knockdown of BubR1 increased it. These results reveal that SIRT1 regulates MC through autophagy and BubR1 signaling, and provide evidence for SIRT1, autophagy and BubR1 being the potential cancer therapeutic targets.
    Keywords:  Autophagy; BubR1; Cell cycle; Mitotic catastrophe; SIRT1
    DOI:  https://doi.org/10.1007/s11010-022-04470-9
  35. Front Aging Neurosci. 2022 ;14 885145
      Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by the accumulation of amyloid-beta (Aβ) proteins in the form of plaques that cause a proteostasis imbalance in the brain. Several studies have identified autophagy deficits in both AD patients and AD animal models. Here, we used transgenic Caenorhabditis elegans to study the relationship between autophagy flux and Aβ. We labeled autophagosomes with an advanced fluorescence reporter system, and used this to observe that human Aβ expression caused autophagosome accumulation in C. elegans muscle. The autophagy-related drugs chloroquine and 3-MA were employed to investigate the relationship between changes in autophagic flux and the toxicity of Aβ expression. We found that reducing autophagosome accumulation delayed Aβ-induced paralysis in the CL4176 strain of C. elegans, and alleviated Aβ-induced toxicity, thus having a neuroprotective effect. Finally, we used RNA-sequencing and proteomics to identify genes whose expression was affected by Aβ aggregation in C. elegans. We identified a series of enriched autophagy-related signal pathways, suggesting that autophagosome accumulation impairs Aβ protein homeostasis in nematodes. Thus, maintaining normal autophagy levels appears to be important in repairing the protein homeostasis imbalance caused by Aβ expression.
    Keywords:  Alzheimer’s disease; Caenorhabditis elegans; RNA-sequencing; autophagy; quantitative proteomics
    DOI:  https://doi.org/10.3389/fnagi.2022.885145
  36. Front Cell Dev Biol. 2022 ;10 819571
      Background: Spermidine has recently received major attention for its potential therapeutic benefits in the context of neurodegeneration, cancer, and aging. However, it is unclear whether concentration dependencies of spermidine exist, to differentially enhance autophagic flux. Moreover, the relationship between low or high autophagy activity relative to basal neuronal autophagy flux and subsequent protein clearance as well as cellular toxicity has remained largely unclear. Methods: Here, we used high-resolution imaging and biochemical techniques to investigate the effects of a low and of a high concentration of spermidine on autophagic flux, neuronal toxicity, and protein clearance in in vitro models of paraquat (PQ) induced neuronal toxicity and amyloid precursor protein (APP) overexpression, as well as in an in vivo model of PQ-induced rodent brain injury. Results: Our results reveal that spermidine induces autophagic flux in a concentration-dependent manner, however the detectable change in the autophagy response critically depends on the specificity and sensitivity of the method employed. By using correlative imaging techniques through Super-Resolution Structured Illumination Microscopy (SR-SIM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), we demonstrate that spermidine at a low concentration induces autophagosome formation capable of large volume clearance. In addition, we provide evidence of distinct, context-dependent protective roles of spermidine in models of Alzheimer's disease. In an in vitro environment, a low concentration of spermidine protected against PQ-induced toxicity, while both low and high concentrations provided protection against cytotoxicity induced by APP overexpression. In the in vivo scenario, we demonstrate brain region-specific susceptibility to PQ-induced neuronal toxicity, with the hippocampus being highly susceptible compared to the cortex. Regardless of this, spermidine administered at both low and high dosages protected against paraquat-induced toxicity. Conclusions: Taken together, our results demonstrate that firstly, administration of spermidine may present a favourable therapeutic strategy for the treatment of Alzheimer's disease and secondly, that concentration and dosage-dependent precision autophagy flux screening may be more critical for optimal autophagy and cell death control than previously thought.
    Keywords:  Alzheimer’s disease; autophagy; correlative light and electron microscopy; direct stochastic optical reconstruction microscopy; focused ion beam scanning electron microscopy; spermidine; super-resolution structured illumination
    DOI:  https://doi.org/10.3389/fcell.2022.819571
  37. Mol Biol Rep. 2022 Jun 02.
      Recent advances in exosome biology have revealed significant roles of exosome and their contents in intercellular communication. Among various exosomal content, long non-coding RNAs (lncRNAs), which have a large size (˃ 200 nt) and lack protein coding potential, are known to play key roles in intercellular communication and novel biomarkers of various metabolic disorders. Moreover, long non-coding RNAs are often involved in the regulation of various cellular processes such as autophagy, apoptosis, cell proliferation. On the other hand, autophagy is the central regulating point that controls the various metabolic functions of the body. This process is known to prevent diseases and promote longevity. Therefore, the present review discusses the relationship between diseases and autophagy, and also look into the biological functions of exosome-associated lncRNAs in regulating autophagy. Furthermore, this review will summarize some of the studies that provide novel insights into the pathogenesis of autophagy-related diseases followed by the non-canonical roles played by autophagy and related proteins in the development of exosome biogenesis.
    Keywords:  Autophagy; Autophagy related diseases; Exosome; Long non-coding RNAs (lncRNAs)
    DOI:  https://doi.org/10.1007/s11033-022-07514-x
  38. Virus Res. 2022 May 28. pii: S0168-1702(22)00158-7. [Epub ahead of print]318 198830
      Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.
    Keywords:  Autophagy; Hantaviruses; Viral replication
    DOI:  https://doi.org/10.1016/j.virusres.2022.198830
  39. Front Mol Neurosci. 2022 ;15 831687
      Tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that promotes the inhibition of mechanistic target of rapamycin (mTOR) pathway, and mutations in TSC1 lead to a rare complex disorder of the same name. Despite phenotype heterogeneity, up to 50% of TSC patients present with autism spectrum disorder (ASD). Consequently, TSC models are often used to probe molecular and behavioral mechanisms of ASD development. Amongst the different brain areas proposed to play a role in the development of ASD, the cerebellum is commonly reported to be altered, and cerebellar-specific deletion of Tsc1 in mice is sufficient to induce ASD-like phenotypes. However, despite these functional changes, whether Tsc1 haploinsufficiency affects cerebellar development is still largely unknown. Given that the mTOR pathway is a master regulator of cell replication and migration, we hypothesized that dysregulation of this pathway would also disrupt the development of cell populations during critical periods of cerebellar development. Here, we used a mouse model of TSC to investigate gene and protein expression during embryonic and early postnatal periods of cerebellar development. We found that, at E18 and P7, mRNA levels of the cerebellar inhibitory interneuron marker paired box gene 2 (Pax2) were dysregulated. This dysregulation was accompanied by changes in the expression of mTOR pathway-related genes and downstream phosphorylation of S6. Differential gene correlation analysis revealed dynamic changes in correlated gene pairs across development, with an overall loss of correlation between mTOR- and cerebellar-related genes in Tsc1 mutants compared to controls. We corroborated the genetic findings by characterizing the mTOR pathway and cerebellar development on protein and cellular levels with Western blot and immunohistochemistry. We found that Pax2-expressing cells were largely unchanged at E18 and P1, while at P7, their number was increased and maturation into parvalbumin-expressing cells delayed. Our findings indicate that, in mice, Tsc1 haploinsufficiency leads to altered cerebellar development and that cerebellar interneuron precursors are particularly susceptible to mTOR pathway dysregulation.
    Keywords:  Pax2; autism spectrum disorder (ASD); cerebellar development; mouse model; tuberous sclerosis complex (TSC)
    DOI:  https://doi.org/10.3389/fnmol.2022.831687
  40. J Nutr Biochem. 2022 May 25. pii: S0955-2863(22)00131-0. [Epub ahead of print] 109060
      Quercetin, a natural flavonoid, has been reported to prevent pancreatic β-cell apoptosis in animal models of diabetes. However, the underlying mechanism remains unclear. We investigated the mechanisms through which quercetin protects β cells from palmitate-induced apoptosis and determined whether autophagy is involved in this process. We found that quercetin treatment partially reduced palmitate-induced β-cell apoptosis. This protective effect was abolished by pharmacological inhibition of autophagy and by silencing a key autophagy gene. Further analysis revealed that palmitate treatment promoted the expression of LC3 II, a marker of autophagosomes, but resulted in the blockade of autophagic flux due to lysosome dysfunction. Defective lysosome accumulation can cause lysosomal membrane permeabilization and the release of cathepsins from lysosome into the cytosol that triggers apoptosis. Treatment with quercetin reversed lysosomal dysfunction and promoted autophagosome-lysosome fusion, which restored defective autophagic flux and provoked autophagy. Overall, our results indicate that lysosomal dysfunction is a major factor that contributes to β-cell apoptosis and demonstrate that quercetin improves cell survival by restoring lysosomal function and autophagic flux. This study provides new evidence regarding the anti-apoptotic mechanism of quercetin in the treatment of type 2 diabetes.
    Keywords:  Autophagic flux; Lysosomal dysfunction; Quercetin; β-cell apoptosis
    DOI:  https://doi.org/10.1016/j.jnutbio.2022.109060
  41. Anticancer Res. 2022 Jun;42(6): 2835-2845
      BACKGROUND/AIM: Due to the lack of early detection methods and effective treatments, pancreatic cancer has one of the lowest five-year survival rates among all cancers. We have previously identified novel isoprenylated coumarin compounds that exhibit preferential cytotoxicity against pancreatic adenocarcinoma cell line PANC-1 exclusively under glucose deprivation conditions.MATERIALS AND METHODS: Using cell cytotoxicity assays, we investigated the anti-proliferative mechanism of our most potent isoprenylated coumarin compound of the series, DCM-MJ-I-21, with respect to time, against two other pancreatic cancer cell lines, BxPC-3 and Capan-2. We used western blotting to quantify the autophagic flux influenced by our compound, autophagy inducers (starvation and Rapamycin), and autophagy inhibitors (chloroquine and wortmannin).
    RESULTS: We observed a clear dependence on glucose in DCM-MJ-I-21 in BxPC-3 and Capan-2 pancreatic cancer cell lines, suggesting that our compound targets a pathway shared by these cancer cell lines when glycolysis is not an option for survival. Our lead compound increased the conversion of LC3-I to LC3-II in PANC-1, similar to the effect of chloroquine, an autophagy inhibitor. In addition, Spautin-1, another autophagy inhibitor, showed almost the same anti-proliferative activities at the same concentration under nutrient-deprived conditions as our lead compound in both 2D and 3D cell cultures.
    CONCLUSION: Our lead isoprenylated coumarin compound induces selective pancreatic cancer cell death under nutrient-deprived conditions through inhibition of autophagy, potentially providing insights into new therapeutic options.
    Keywords:  Novel anti-pancreatic cancer agent; autophagy; coumarin derivative; selective cytotoxicity
    DOI:  https://doi.org/10.21873/anticanres.15765
  42. Mol Biol Rep. 2022 Jun 02.
      BACKGROUND: There is a relationship between autophagy and the occurrence, maintenance, and progression of several neurodegenerative diseases. The activation of microglia after ischemia contributes to neuronal injury via proinflammatory cytokines and neurotoxic elements. The purpose of this study was to evaluate the function of autophagy in the microglia-mediated death of neuronal cells.METHODS AND RESULTS: Microglial activation by oxygen/glucose deprivation induced both apoptosis and autophagy in neuron-like PC12 cells. Microglia-derived interleukin (IL)-6 induced PC12 cell apoptosis in vitro; however, this effect was inhibited by the autophagy inhibitor chloroquine. Further analysis demonstrated that miR-30d in PC12 cells suppressed microglia-induced PC12 apoptosis and autophagy by directly targeting autophagy protein 5. Moreover, microglia-derived IL-6 activated signal transducer and activator of transcription 3 (STAT3), which can then directly repress miR-30d genes via a conserved STAT3-binding site in its promoter, thereby promoting PC12 cell autophagy and apoptosis.
    CONCLUSIONS: Our study identified IL-6-dependent autophagy-related signaling between microglia and neurons, which contributed to neuronal apoptosis. Importantly, we also provided potential therapeutic targets for ischemic treatment via the interruption of proinflammatory signaling.
    Keywords:  Autophagy; IL-6; Microglial activation; Neuronal apoptosis
    DOI:  https://doi.org/10.1007/s11033-022-07587-8
  43. Proc Natl Acad Sci U S A. 2022 Jun 07. 119(23): e2200363119
      SignificanceThis study analyzed the dynamic protein corona on the surface of nanoparticles as they traversed from blood to cell lysosomes and escaped from lysosomes to cytoplasm in the target cells. We found with proteomic analysis an abundance of chaperone and glycolysis coronal proteins (i.e., heat shock cognate protein 70, heat shock protein 90, and pyruvate kinase M2 [PKM2]) after escape of the nanoparticles from lysosomes to the cytosol. Alterations of the coronal proteins (e.g., PKM2 and chaperone binding) induced proteostasis collapse, which subsequently led to elevated chaperone-mediated autophagy (CMA) activity in cells. As PKM2 is a key molecule in cell metabolism, we also revealed that PKM2 depletion was causative to CMA-induced cell metabolism disruption from glycolysis to lipid metabolism.
    Keywords:  cell metabolism; chaperone-mediated autophagy; protein corona; proteostasis
    DOI:  https://doi.org/10.1073/pnas.2200363119
  44. Front Cell Dev Biol. 2022 ;10 863825
      Several proteins are secreted outside the cell, and in many cases, they may be identified by a characteristic signal peptide. However, more and more studies point to the evidence for an "unconventional" secretion, where proteins without a hitherto unknown signal are secreted, possibly in conditions of starvation. In this work, we analyse a set of 202 RNA binding mammalian proteins, whose unconventional secretion has recently been established. Analysis of these proteins secreted by LC3 mediation, the largest unconventionally secreted dataset to our knowledge, identifies the role of KKX motif as well as triacidic amino acid motif in unconventional secretion, the latter being an extension of the recent implicated diacidic amino acid motif. Further data analysis evolves a hypothesis on the sequence or structural proximity of the triacidic or KKX motifs to the LC3 interacting region, and a phosphorylatable amino acid such as serine as a statistically significant feature among these unconventionally secreted proteins. This hypothesis, although needs to be validated in experiments that challenge the specific details of each of these aspects, appears to be one of the early steps in defining what may be a plausible signal for unconventional protein secretion.
    Keywords:  LC3 interacting region; autophagy; mammalian proteins; triacidic motif; unconventional protein secretion
    DOI:  https://doi.org/10.3389/fcell.2022.863825
  45. Acta Pharmacol Sin. 2022 Jun 02.
      Metabolic cardiomyopathy (MC) is characterized by intracellular lipid accumulation and utilizing fatty acids as a foremost energy source, thereby leading to excess oxidative stress and mitochondrial dysfunction. There is no effective therapy available yet. In this study we investigated whether defective mitophagy contributed to MC and whether urolithin A (UA), a naturally occurring microflora-derived metabolite, could protect against MC in experimental obese mice. Mice were fed high fat diet for 20 weeks to establish a diet-induced obese model. We showed that mitochondrial autophagy or mitophagy was significantly downregulated in the heart of experimental obese mice. UA (50 mg·kg-1·d-1, for 4 weeks) markedly activated mitophagy and ameliorated MC in obese mice by gavage. In PA-challenged H9C2 cardiomyocytes, UA (5 μM) significantly increased autophagosomes and decreased autolysosomes. Furthermore, UA administration rescued PINK1/Parkin-dependent mitophagy and relieved mitochondrial defects in the heart of obese mice, which led to improving cardiac diastolic function and ameliorating cardiac remodelling. In PA-challenged primarily isolated cardiomyocytes, both application of mitophagy inhibitor Mdivi-1 (15 μM) and silencing of mitophagy gene Parkin blunted the myocardial protective effect of UA. In summary, our data suggest that restoration of mitophagy with UA ameliorates symptoms of MC, which highlights a therapeutic potential of UA in the treatment of MC.
    Keywords:  autophagy; high fat diet; metabolic cardiomyopathy; mitochondrial dysfunction; mitophagy; obesity
    DOI:  https://doi.org/10.1038/s41401-022-00919-1
  46. J Neurosci. 2022 Jun 01. pii: JN-RM-2030-21. [Epub ahead of print]
      Cerebral ischemia-reperfusion injury in ischemic penumbra is accountable for poor outcome of ischemic stroke patients receiving recanalization therapy. Compelling evidence previously demonstrated a dual role of autophagy in stroke. This study aimed to understand the traits of autophagy in the ischemic penumbra and the potential mechanism that switches the dual role of autophagy. We found that autophagy induction by rapamycin and lithium carbonate performed before ischemia reduced neurological deficits and infarction, while autophagy induction after reperfusion had the opposite effect in the male murine middle cerebral artery occlusion/reperfusion model, both of which were eliminated in mice lacking autophagy (Atg7flox/flox; Nestin-Cre). Autophagic flux determination showed that reperfusion led to a blockage of axonal autophagosome retrograde transport in neurons, which then led to autophagic flux damage. Then, we found that ischemia-reperfusion induced changes in the protein levels of Sec22b and Ykt6 in neurons, two autophagosome transport-related factors, in which Sec22b significantly increased and Ykt6 significantly decreased. In the absence of exogenous autophagy induction, Sec22b knockdown and Ykt6 overexpression significantly alleviated autophagic flux damage, infarction, and neurological deficits in neurons or murine exposed to cerebral ischemia-reperfusion in an autophagy-dependent manner. Furthermore, Sec22b knockdown and Ykt6 overexpression switched the outcome of rapamycin post-treatment from deterioration to neuroprotection. Thus, Sec22b and Ykt6 play key roles in neuronal autophagic flux, and modest regulation of Sec22b and Ykt6 may help to reverse the failure of targeting autophagy induction to improve the prognosis of ischemic stroke.Significance Statement:The highly polarized architecture of neurons with neurites presents challenges for material transport, such as autophagosomes, which form at the neurite tip and need to be transported to the cell soma for degradation. Here, we demonstrate that Sec22b and Ykt6 act as autophagosome porters and play an important role in maintaining the integrity of neuronal autophagic flux. Ischemia-reperfusion-induced excess Sec22b and loss of Ykt6 in neurons lead to axonal autophagosome retrograde trafficking failure, autophagic flux damage, and finally neuronal injury. Facilitated axonal autophagosome retrograde transport by Sec22b knockdown and Ykt6 overexpression may reduce ischemia-reperfusion-induced neuron injury and extend the therapeutic window of pharmacological autophagy induction for neuroprotection.
    DOI:  https://doi.org/10.1523/JNEUROSCI.2030-21.2022
  47. Bioengineered. 2022 May;13(5): 13596-13606
      Tripartite Motif Containing 24 (TRIM24) is an oncogenic protein and promotes proliferation in several cancer cell lines. Nevertheless, the role of TRIM24 in proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) remains to be clarified. The current study was aimed to reveal the role of TRIM24 in proliferation and migration of PASMCs during the development of pulmonary arterial hypertension (PAH). In pulmonary arteries (PAs) of chronic hypoxia-PAH (CH-PAH) mice and PASMCs challenged with hypoxia, the expression of TRIM24 was increased. Silencing TRIM24 by Trim24 short hair RNA (shTrim24) suppressed hypoxia-induced increase in Ki-67 positive PASMCs and wound-healing rate. Furthermore, hypoxia caused enhanced phosphorylation of AKT and two major effectors of mammalian target of rapamycin complex 1 (mTORC1), S6 and 4EBP1 in PASMCs. The enhancement was then attenuated after silencing TRIM24. Both restoring mTORC1 activity and AKT reactivation abolished silencing TRIM24-mediated inhibition of proliferation and migration of PASMCs. Additionally, AKT reactivation also reversed the declined phosphorylation of S6 and 4EBP1 induced by shTrim24. In conclusion, TRIM24 is involved in the excessive proliferation and migration of PASMCs after hypoxic stimulus during PAH. The mechanism of TRIM24-mediated regulation of PASMCs is partly illustrated by promoting activity of AKT/mTORC1 signaling pathway.
    Keywords:  AKT; TRIM24; mTORC1; pulmonary arterial hypertension; pulmonary artery smooth muscle cells
    DOI:  https://doi.org/10.1080/21655979.2022.2080423
  48. Biochim Biophys Acta Mol Cell Biol Lipids. 2022 May 28. pii: S1388-1981(22)00074-9. [Epub ahead of print] 159184
      Autophagy is regulated by phosphoinositides. We have previously shown that phosphatidylinositol 4-phosphate (PtdIns(4)P) is localized in the autophagosomal membrane. Additionally, in yeast cells, phosphatidylinositol 4-kinases Pik1p and Stt4p play important roles in the formation of the autophagosome and its fusion with the vacuole, respectively. In this study, we analyzed the primary role of PtdIns(4)P phosphatases in yeast autophagy. The PtdIns(4)P labeling densities in the membranes of the vacuoles, mitochondria, nucleus, endoplasmic reticulum, and plasma membrane dramatically increased in the phosphatase deletion mutants sac1∆ and sjl3∆, and the temperature-sensitive mutant sac1ts/sjl3∆ at the restrictive temperature. GFP-Atg8 processing assay indicated defective autophagy in the sac1∆ and sac1ts/sjl3∆ mutants. In contrast to the localization of PtdIns(4)P in the luminal leaflet of autophagosomal membranes in the wild-type yeast, PtdIns(4)P was localized in both the luminal and cytoplasmic leaflets of the autophagosomal membranes in the sac1∆ strain. In addition, the number of autophagic bodies in the vacuole significantly decreased in the sac1∆ strain, although autophagosomes were present in the cytoplasm. In the sac1ts/sjl3∆ strain, the number of autophagosomes in the cytoplasm dramatically decreased at the restrictive temperature. Considering that the numbers of autophagosomes and autophagic bodies in the sjl3∆ strain were comparable to those in the wild-type yeast, we found that the autophagosome could not be formed when PtdIns(4)P phosphatase activities of both Sac1p and Sjl3p were diminished. Together, these results indicate that the turnover of PtdIns(4)P by phosphatases is essential for autophagosome biogenesis.
    Keywords:  Autophagosome; Freeze-fracture; Lipid distribution; Nanoscale; electron microscopy
    DOI:  https://doi.org/10.1016/j.bbalip.2022.159184
  49. Autophagy. 2022 Jun 02.
      The evolutionary plant-pathogen arms race has equipped plants with the immune system that can defend against pathogens. Pattern-triggered immunity and effector-triggered immunity are two major branches of innate immunity that share immune responses, including oxidative bursts, transcriptional reprogramming, and cell wall modifications such as lignin deposition. In a previous study, we reported that lignin rapidly accumulates in pathogen-infected Arabidopsis leaves and acts as a mechanical barrier, spatially restricting pathogens and cell death. Lignin deposition into the cell wall is a three-step process: monolignol biosynthesis, transport, and polymerization. While monolignol biosynthesis and polymerization are relatively well understood, the mechanism of monolignol transport remains unclear. In this study, we show that macroautophagy/autophagy modulates pathogen-induced lignin formation. Lignification and other immune responses were impaired in autophagy-defective atg (autophagy-related) mutants. In microscopy analyses, monolignols formed punctate structures in response to pathogen infection and colocalized with autophagic vesicles. Furthermore, autophagic activity and lignin accumulation were both enhanced in dnd1 (defense, no death 1) mutant with elevated disease resistance but no cell death and crossing dnd1-1 with atg mutants resulted in a lignin deficit, further supporting that lignin formation requires autophagy. Collectively, these findings demonstrate that lignification, particularly monolignol transport, is achieved through autophagic membrane trafficking in plant immunity.
    Keywords:  Arabidopsis; autophagy; cell death; dnd1; immunity; lignin; monolignol transport
    DOI:  https://doi.org/10.1080/15548627.2022.2085496
  50. Life Sci Alliance. 2022 Oct;pii: e202000745. [Epub ahead of print]5(10):
      Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy and functional synapses. SV protein turnover is driven by neuronal activity in an endosomal sorting complex required for transport (ESCRT)-dependent manner. Here, we characterize a critical step in this process: axonal transport of ESCRT-0 component Hrs, necessary for sorting proteins into the ESCRT pathway and recruiting downstream ESCRT machinery to catalyze multivesicular body (MVB) formation. We find that neuronal activity stimulates the formation of presynaptic endosomes and MVBs, as well as the motility of Hrs+ vesicles in axons and their delivery to SV pools. Hrs+ vesicles co-transport ESCRT-0 component STAM1 and comprise a subset of Rab5+ vesicles, likely representing pro-degradative early endosomes. Furthermore, we identify kinesin motor protein KIF13A as essential for the activity-dependent transport of Hrs to SV pools and the degradation of SV membrane proteins. Together, these data demonstrate a novel activity- and KIF13A-dependent mechanism for mobilizing axonal transport of ESCRT machinery to facilitate the degradation of SV membrane proteins.
    DOI:  https://doi.org/10.26508/lsa.202000745
  51. FEBS Lett. 2022 Jun 01.
      In Eukaryotes, organelle interactions occur at specialised contact sites between organelle membranes. Contact sites are regulated by specialised tethering proteins, which bring organelle membranes into close proximity, and facilitate functional crosstalk between compartments. Whilst contact site proteins are well characterised in mammals and yeast, the regulators of plant contact site formation are only now beginning to emerge. Having unique subcellular structures, plants must also utilise unique mechanisms of organelle interaction to regulate plant-specific functions. The recently characterised NETWORKED proteins are the first dedicated family of plant-specific contact site proteins. Research into the NET proteins and their interacting partners continues to uncover plant-specific mechanisms of organelle interaction and the importance of these organelle contacts to plant life. Moreover, it is becoming increasingly apparent that organelle interactions are fundamental to autophagy in plants. Here, we will present recent developments in our understanding of the mechanisms of plant organelle interactions, their functions, and emerging roles in autophagy.
    Keywords:  Actin; Autophagy; Chloroplast; Contact Site; Cytoskeleton; Endoplasmic Reticulum; Membrane; Mitochondria; Plasma Membrane; Vacuole
    DOI:  https://doi.org/10.1002/1873-3468.14414
  52. Front Cell Neurosci. 2022 ;16 865568
      Background: Heat stroke is the outcome of excessive heat stress, which results in core temperatures exceeding 40°C accompanied by a series of complications. The brain is particularly vulnerable to damage from heat stress. In our previous studies, both activated microglia and increased neuronal autophagy were found in the cortices of mice with heat stroke. However, whether activated microglia can accelerate neuronal autophagy under heat stress conditions is still unknown. In this study, we aimed to investigate the underlying mechanism that caused neuronal autophagy upregulation in heat stroke from the perspective of exosome-mediated intercellular communication.Methods: In this study, BV2 and N2a cells were used instead of microglia and neurons, respectively. Exosomes were extracted from BV2 culture supernatants by ultracentrifugation and then characterized via transmission electron microscopy, nanoparticle tracking analysis and Western blotting. N2a cells pretreated with/without miR-155 inhibitor were cocultured with microglial exosomes that were treated with/without heat stress or miR-155 overexpression and subsequently subjected to heat stress treatment. Autophagy in N2a cells was assessed by detecting autophagosomes and autophagy-related proteins through transmission electron microscopy, immunofluorescence, and Western blotting. The expression of miR-155 in BV2 and BV2 exosomes and N2a cells was measured using real-time reverse transcription polymerase chain reaction. Target binding analysis was verified via a dual-luciferase reporter assay.
    Results: N2a autophagy moderately increased in response to heat stress and accelerated by BV2 cells through transferring exosomes to neurons. Furthermore, we found that neuronal autophagy was positively correlated with the content of miR-155 in microglial exosomes. Inhibition of miR-155 partly abolished autophagy in N2a cells, which was increased by coculture with miR-155-upregulated exosomes. Mechanistic analysis confirmed that Rheb is a functional target of miR-155 and that microglial exosomal miR-155 accelerated heat stress-induced neuronal autophagy mainly by regulating the Rheb-mTOR signaling pathway.
    Conclusion: Increased miR-155 in microglial exosomes after heat stroke can induce neuronal autophagy via their transfer into neurons. miR-155 exerted these effects by targeting Rheb, thus inhibiting the activity of mTOR signaling. Therefore, miR-155 could be a promising target for interventions of neuronal autophagy after heat stroke.
    Keywords:  exosome; heat stress; miR-155; microglia; neuronal autophagy
    DOI:  https://doi.org/10.3389/fncel.2022.865568
  53. Front Pharmacol. 2022 ;13 903599
      Colorectal cancer (CRC) is an aggressive cancer. Isoalantolactone (IATL) has been reported to exert cytotoxicity against various cancer cells, but not CRC. In this study, we explored the anti-CRC effects and mechanism of action of IATL in vitro and in vivo. Our results demonstrated that IATL inhibited proliferation by inducing G0/G1 phase cell cycle arrest, apoptosis and autophagy in CRC cells. Repression of autophagy with autophagy inhibitors chloroquine (CQ) and Bafilomycin A1 (Baf-A1) enhanced the anti-CRC effects of IATL, suggesting that IATL induces cytoprotective autophagy in CRC cells. Mechanistic studies revealed that IATL lowered protein levels of phospho-AKT (Ser473), phospho-mTOR (Ser2448), phospho-70S6K (Thr421/Ser424) in CRC cells. Inhibition of AKT and mTOR activities using LY294002 and rapamycin, respectively, potentiated the inductive effects of IATL on autophagy and cell death. In vivo studies showed that IATL suppressed HCT116 tumor growth without affecting the body weight of mice. In consistent with the in vitro results, IATL lowered protein levels of Bcl-2, Bcl-XL, phospho-AKT (Ser473), phospho-mTOR (Ser2448), and phsopho-70S6K (Thr421/Ser424), whereas upregulated protein levels of cleaved-PARP and LC3B-II in HCT116 tumors. Collectively, our results demonstrated that in addition to inhibiting proliferation, inducing G0/G1-phase cell cycle arrest and apoptosis, IATL initiates cytoprotective autophagy in CRC cells by inhibiting the AKT/mTOR signaling pathway. These findings provide an experimental basis for the evaluation of IATL as a novel medication for CRC treatment.
    Keywords:  AKT/mTOR signaling; apoptosis; autophagy; cell cycle arrest; colorectal cancer; isoalantolactone
    DOI:  https://doi.org/10.3389/fphar.2022.903599
  54. Front Immunol. 2022 ;13 859231
      Heat stroke (HS) is a severe condition characterized by increased morbidity and high mortality. Acute liver injury (ALI) is a well-documented complication of HS. The tumor suppressor p53 plays an important role in regulation of mitochondrial integrity and mitophagy in several forms of ALI. However, the role of p53-regulated mitophagy in HS-ALI remains unclear. In our study, we discovered the dynamic changes of mitophagy in hepatocytes and demonstrated the protective effects of mitophagy activation on HS-ALI. Pretreatment with 3-MA or Mdivi-1 significantly exacerbated ALI by inhibiting mitophagy in HS-ALI mice. Consistent with the animal HS-ALI model results, silencing Parkin aggravated mitochondrial damage and apoptosis by inhibiting mitophagy in HS-treated normal human liver cell line (LO2 cells). Moreover, we described an increase in the translocation of p53 from the nucleus to the cytoplasm, and cytosolic p53 binds to Parkin in LO2 cells following HS. p53 overexpression using a specific adenovirus or Tenovin-6 exacerbated HS-ALI through Parkin-dependent mitophagy both in vivo and in vitro, whereas inhibition of p53 using siRNA or PFT-α effectively reversed this process. Our results demonstrate that cytosolic p53 binds to Parkin and inhibits mitophagy by preventing Parkin's translocation from the cytosol to the mitochondria, which decreases mitophagy activation and leads to hepatocyte apoptosis in HS-ALI. Overall, pharmacologic induction of mitophagy by inhibiting p53 may be a promising therapeutic approach for HS-ALI treatment.
    Keywords:  Parkin; acute liver injury; apoptosis; mitophagy; p53
    DOI:  https://doi.org/10.3389/fimmu.2022.859231
  55. Nat Commun. 2022 May 31. 13(1): 3034
      Abnormal neddylation activation is frequently observed in human cancers and neddylation inhibition has been proposed as a therapy for cancer. Here, we report that MLN4924, a small-molecule inhibitor of neddylation activating enzyme, increases glutamine uptake in breast cancer cells by causing accumulation of glutamine transporter ASCT2/SLC1A5, via inactivation of CRL3-SPOP E3 ligase. We show the E3 ligase SPOP promotes ASCT2 ubiquitylation, whereas SPOP itself is auto-ubiquitylated upon glutamine deprivation. Thus, SPOP and ASCT2 inversely regulate glutamine uptake and metabolism. SPOP knockdown increases ASCT2 levels to promote growth which is rescued by ASCT2 knockdown. Adding ASCT2 inhibitor V-9302 enhances MLN4924 suppression of tumor growth. In human breast cancer specimens, SPOP and ASCT2 levels are inversely correlated, whereas lower SPOP with higher ASCT2 predicts a worse patient survival. Collectively, our study links neddylation to glutamine metabolism via the SPOP-ASCT2 axis and provides a rational drug combination for enhanced cancer therapy.
    DOI:  https://doi.org/10.1038/s41467-022-30559-2
  56. Cell Death Dis. 2022 Jun 02. 13(6): 521
      Carboplatin is the most used first-line drug for the treatment of human retinoblastoma (RB), a rare form of cancer in infancy and childhood. However, the clinical application of carboplatin is restricted due to the emergence of acquired multi-drug resistance (MDR) after long-term treatment. Here, we report a new strategy to eliminate MDR RB cells by inducing autophagy-dependent ferroptosis. Compared with parent cells, carboplatin-resistant human RB cells have higher autophagy activity, which drives the formation of MDR to other chemotherapeutic drugs (e.g., etoposide and vincristine). In addition to confirming the traditional strategy of inhibiting autophagy to overcome MDR, we also establish an approach of inducing selective ferritinophagy to eliminate drug-resistant cells. We evaluate the effectiveness and safety of 4-octyl itaconate, a cell-permeable derivative of the metabolite itaconate, in inducing ferritinophagy-dependent ferroptosis in the treatment of MDR RB cells in vitro and in xenograft mouse models. These findings may provide essential clues for initiating clinical trials that target autophagy-dependent ferroptosis to kill drug-tolerant persistent cells during RB therapy.
    DOI:  https://doi.org/10.1038/s41419-022-04974-8
  57. Structure. 2022 May 19. pii: S0969-2126(22)00177-0. [Epub ahead of print]
      SQSTM1/p62 is an autophagic receptor that plays a major role in mediating stress and innate immune responses. Preclinical studies identified p62 as a target of the prototype innate defense regulator (IDR); however, the molecular mechanism of this process remains unclear. Here, we describe the structural basis and biological consequences of the interaction of p62 with the next generation of IDRs, dusquetide. Both electrostatic and hydrophobic contacts drive the formation of the complex between dusquetide and the ZZ domain of p62. We show that dusquetide penetrates the cell membrane and associates with p62 in vivo. Dusquetide binding modulates the p62-RIP1 complex, increases p38 phosphorylation, and enhances CEBP/B expression without activating autophagy. Our findings provide molecular details underlying the IDR action that may help in the development of new strategies to pharmacologically target p62.
    Keywords:  IDR; ZZ domain; dusquetide; innate immune response; p62
    DOI:  https://doi.org/10.1016/j.str.2022.05.003
  58. Neuron. 2022 May 25. pii: S0896-6273(22)00450-0. [Epub ahead of print]
      Parkinson's disease (PD) is mediated, in part, by intraneuronal accumulation of α-synuclein aggregates andsubsequent death of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc). Microglial hyperactivation of the NOD-like receptor protein 3 (NLRP3) inflammasome has been well-documented in various neurodegenerative diseases, including PD. We show here that loss of parkin activity in mouse and human DA neurons results in spontaneous neuronal NLRP3 inflammasome assembly, leading to DA neuron death. Parkin normally inhibits inflammasome priming by ubiquitinating and targeting NLRP3 for proteasomal degradation. Loss of parkin activity also contributes to the assembly of an active NLRP3 inflammasome complex via mitochondrial-derived reactive oxygen species (mitoROS) generation through the accumulation of another parkin ubiquitination substrate, ZNF746/PARIS. Inhibition of neuronal NLRP3 inflammasome assembly prevents degeneration of DA neurons in familial and sporadic PD models. Strategies aimed at limiting neuronal NLRP3 inflammasome activation hold promise as a disease-modifying therapy for PD.
    Keywords:  Caspase-1; NLRP3; PARIS; Parkinson’s disease; ZNF746; inflammasome; neurodegeneration; parkin; ubiquitination
    DOI:  https://doi.org/10.1016/j.neuron.2022.05.009