bims-auttor Biomed News
on Autophagy and mTOR
Issue of 2022‒02‒20
sixty-four papers selected by
Viktor Korolchuk
Newcastle University

  1. Biochem Soc Trans. 2022 Feb 15. pii: BST20210813. [Epub ahead of print]
      Autophagy is an evolutionally conserved cytoplasmic degradation pathway in which the double membrane structure, autophagosome sequesters cytoplasmic material and delivers them to lysosomes for degradation. Many autophagy related (ATG) proteins participate in the regulation of the several steps of autophagic process. Among ATGs, ubiquitin-like protein, ATG8 plays a pivotal role in autophagy. ATG8 is directly conjugated on lipid in autophagosome membrane upon induction of autophagy thus providing a good marker to monitor and analyze autophagy process. However, recent discoveries suggest that ATG8 has autophagy independent non-canonical functions and ATG8 positive structures are not always autophagosomes. This review briefly overviews canonical and non-canonical roles of ATG8 and introduce novel function of ATG8 to activate Transcriptional Factor EB(TFEB), a master transcription factor of autophagy and lysosome function during lysosomal damage.
    Keywords:  ATG8; TFEB; autophagy; lysosomes
  2. Neurochem Int. 2022 Feb 15. pii: S0197-0186(22)00033-X. [Epub ahead of print] 105308
      Autophagy is an evolutionally conserved process by which cytoplasmic contents including protein aggregates and damaged organelles such as mitochondria and lysosomes, are sequestered by double-membrane structure, autophagosomes, and delivered to the lysosomes for degradation. Recently, considerable efforts have been made to reveal the role of autophagy in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease. Impairment of autophagy aggravates the accumulation of misfolded protein and damaged organelles in neurons, while sufficient autophagic activity reduces such accumulation in nervous system and ameliorates the pathology. Here we summarize recent progress regarding the role of autophagy in several neurodegenerative diseases and the potential autophagy-associated therapies for them.
    Keywords:  Aggregates; Autophagy; Neurodegenerative disease; Therapy
  3. Int J Mol Sci. 2022 Feb 01. pii: 1709. [Epub ahead of print]23(3):
      Autophagy is a vital cellular mechanism that benefits cellular maintenance and survival during cell stress. It can eliminate damaged or long-lived organelles and improperly folded proteins to maintain cellular homeostasis, development, and differentiation. Impaired autophagy is associated with several diseases such as cancer, neurodegenerative diseases, and age-related macular degeneration (AMD). Several signaling pathways are associated with the regulation of the autophagy pathway. The glycogen synthase kinase-3 signaling pathway was reported to regulate the autophagy pathway. In this review, we will discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy. Autophagy and lysosomal function are regulated by transcription factor EB (TFEB). GSK-3 was shown to be involved in the regulation of TFEB nuclear expression in an mTORC1-dependent manner. In addition to mTORC1, GSK-3β also regulates TFEB via the protein kinase C (PKC) and the eukaryotic translation initiation factor 4A-3 (eIF4A3) signaling pathways. In addition to TFEB, we will also discuss the mechanisms by which the GSK-3 signaling pathway regulates autophagy by modulating other signaling molecules and autophagy inducers including, mTORC1, AKT and ULK1. In summary, this review provides a comprehensive understanding of the role of the GSK-3 signaling pathway in the regulation of autophagy.
    Keywords:  AKT; GSK-3; GSK-3β; PKC; TFEB; ULK1; autophagy; lysosome; mTORC1
  4. Autophagy. 2022 Feb 15. 1-3
      The circadian clock drives daily cycles of physiology and behavioral outputs to keep organisms in tune with the environment. Cyclic oscillations in levels of the clock proteins maintain circadian rhythmicity. In our recent work, we have discovered the interdependence of the circadian clock and chaperone-mediated autophagy (CMA), a selective form of lysosomal protein degradation. Central and peripheral degradation of core clock proteins by CMA (selective chronophagy) modulates circadian rhythm. Loss of CMA in vivo disrupts physiological circadian cycling, resembling defects observed in aging, a condition with reduced CMA. Conversely, the circadian clock temporally regulates CMA activity in a tissue-specific manner, contributing to remodeling of a distinct subproteome at different circadian times. This timely remodeling cannot be sustained when CMA fails, despite rerouting of some CMA substrates to other degradation pathways.
    Keywords:  Central clock; chaperones; circadian rhythms; lysosomes; organelle proteomics; peripheral clock
  5. Science. 2022 Feb 18. 375(6582): eabc4203
      Adaptation to nutrient scarcity involves an orchestrated response of metabolic and signaling pathways to maintain homeostasis. We find that in the fat body of fasting Drosophila, lysosomal export of cystine coordinates remobilization of internal nutrient stores with reactivation of the growth regulator target of rapamycin complex 1 (TORC1). Mechanistically, cystine was reduced to cysteine and metabolized to acetyl-coenzyme A (acetyl-CoA) by promoting CoA metabolism. In turn, acetyl-CoA retained carbons from alternative amino acids in the form of tricarboxylic acid cycle intermediates and restricted the availability of building blocks required for growth. This process limited TORC1 reactivation to maintain autophagy and allowed animals to cope with starvation periods. We propose that cysteine metabolism mediates a communication between lysosomes and mitochondria, highlighting how changes in diet divert the fate of an amino acid into a growth suppressive program.
  6. Autophagy. 2022 Feb 15. 1-11
      Macroautophagy/autophagy is a highly conserved catabolic process by which cytoplasmic constituents are delivered to the vacuole/lysosome for degradation and recycling. To maintain cellular homeostasis and prevent pathologies, the induction and amplitude of autophagy activity are finely controlled through regulation of ATG gene expression. Here we report that the Ccr4-Not complex in Saccharomyces cerevisiae has bidirectional roles in regulating autophagy before and after nutrient deprivation. Under nutrient-rich conditions, Ccr4-Not directly targets the mRNAs of several ATG genes in the core autophagy machinery to promote their degradation through deadenylation, thus contributing to maintaining autophagy at the basal level. Upon starvation, Ccr4-Not releases its repression of these ATG genes and switches its role to promote the expression of a different subset of ATG genes, which is required for sufficient autophagy induction and activity. These results reveal that the Ccr4-Not complex is indispensable to maintain autophagy at the appropriate amplitude in both basal and stress conditions.
    Keywords:  ATG mRNA; Ccr4-Not complex; Pop2/Caf1; RNA decay; autophagy; deadenylation; nitrogen starvation; post-transcriptional regulation
  7. Cells. 2022 Feb 01. pii: 507. [Epub ahead of print]11(3):
      Defective mitochondria are pathophysiological features of a number of neurodegenerative diseases. Here, we investigated mitochondrial dysfunction in the context of the rare lysosomal storage diseases Niemann-Pick disease type C1 and type C2 (NP-C1 and NP-C2). Mutations in either the NPC1 or NPC2 gene lead to cholesterol accumulation in late endosomes and lysosomes, resulting in impaired cholesterol homeostasis. The extent to which this may lead to mitochondrial dysfunction has been poorly studied so far. Therefore, we investigated the morphology, function, and transport of mitochondria, as well as their degradation via mitophagy, in a disease-associated human neural cell model of NP-C. By performing live cell imaging, we observed markedly reduced mitochondrial transport, although morphology and function were not appreciably altered. However, we observed a defective mitophagy induction shown by a reduced capability to elevate parkin expression and engulf mitochondria in autophagosomes after treatment with carbonyl cyanide 3-chlorophenylhydrazone (CCCP). This was accompanied by defects in autophagy induction, exhibited by a hampered p62 expression and progression, shown by increased LC3BII levels and a defective fusion of autophagosomes and lysosomes. The latter might have been additionally influenced by the observed reduced lysosomal transport. Hence, we hypothesized that a reduced recycling of mitochondria contributes to the pathophysiology of NP-C.
    Keywords:  NPC1; NPC2; iPSCs; induced pluripotent stem cells; lysosomal storage disorder; mitochondria
  8. Autophagy. 2022 Feb 17. 1-3
      The STX17-SNAP29-VAMP8 SNARE complex mediates autophagosome-lysosome fusion. Our recent study showed that MTOR directly phosphorylates VAMP8's T48 residue in nutrient-rich conditions. Phosphorylated VAMP8 inhibits autophagosome-lysosome fusion by blocking STX17-SNAP29-VAMP8 SNARE complex formation. Our study also showed that SCFD1 is a previously unrecognized macroautophagy/autophagy regulatory protein, which can be recruited by VAMP8 (in its non-phosphorylated form) to autolysosomes, where it promotes STX17-SNAP29-VAMP8 complex assembly - and consequently promotes autophagosome-lysosome fusion. Moreover, we observed that mice harboring a phosphomimic VAMP8 variant accumulate aberrantly high lipid levels in their livers. VAMP8 phosphorylation can disrupt autophagosome-lysosome fusion in the liver and thereby dysregulate lipid metabolism. Beyond providing insights into the molecular mechanisms of autophagosome maturation, our study suggests that modulating autophagic SNARE function may help treat liver lipid disorders.
    Keywords:  Autophagosome-lysosome fusion; MTORC1; SCFD1; VAMP8; phosphorylation
  9. Bioessays. 2022 Feb 15. e2100271
      There is a debate regarding the function of Drp1, a GTPase involved in mitochondrial fission, during the elimination of mitochondria by autophagy. A number of experiments indicate that Drp1 is needed to eliminate mitochondria during mitophagy, either by reducing the mitochondrial size or by providing a noncanonical mitophagy function. Yet, other convincing experimental results support the conclusion that Drp1 is not necessary. Here, we review the possible functions for Drp1 in mitophagy and autophagy, depending on tissues, organisms and stresses, and discuss these apparent discrepancies. In this regard, it appears that the reduction of mitochondria size is often required for mitophagy but not always in a Drp1-dependent manner. Finally, we speculate on Drp1-independent mitochondrial fission mechanism that may take place during mitophagy and on noncanonical roles, which Drp1 may play such as modulating organelle contact sites dynamic during the autophagosome formation.
    Keywords:  Dnm1; Drp1; MERCs; autophagosome; fission; mitochondria; mitophagy
  10. Autophagy. 2022 Feb 15. 1-3
      Several cytotoxic agents used in cancer therapy cause DNA damage and replication stress. Understanding the metabolic determinants of the cell response to replication stress-inducing agents could have relevant implications for cancer treatment. In a recent study, we showed that cell survival during replication stress is influenced by the availability of amino acids, as well as by TORC1 and Gcn2-mediated amino acid sensing pathways. Amino acid starvation, or TORC1 inhibition, sensitizes cells to replication stress conditions, whereas Gcn2 ablation promotes cell survival by stimulating protein synthesis. The Vps34-Vps15-Vps30/Atg6/BECN1-Vps38/UVRAG phosphatidylinositol-3-phosphate (PtdIns3P) complex at the endosomes sets the balance between survival and death signals during replication stress and amino acid starvation. The Vps34-Vps15-Vps30/Atg6/BECN1-Vps38/UVRAG axis promotes the degradation of amino acid transporters, thus sensitizing cells to amino acid starvation, while Vps34-Vps15-Vps30/Atg6/BECN1-Vps38/UVRAG inactivation promotes cell survival by enabling synthesis of stress response proteins mediating survival under replication stress conditions. Our study unravels an autophagy-independent mechanism through which Vps34-Vps30/Atg6/BECN1 promotes lethal events during replication stress.
    Keywords:  Amino acids; Atg6; DNA damage; Gcn2; TORC1; autophagy; endosomal trafficking; phosphatidylinositol-3 phosphate; replication stress
  11. Cell Rep. 2022 02 15. pii: S2211-1247(22)00086-9. [Epub ahead of print]38(7): 110365
      AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) are metabolic kinases that co-ordinate nutrient supply with cell growth. AMPK negatively regulates mTORC1, and mTORC1 reciprocally phosphorylates S345/7 in both AMPK α-isoforms. We report that genetic or torin1-induced loss of α2-S345 phosphorylation relieves suppression of AMPK signaling; however, the regulatory effect does not translate to α1-S347 in HEK293T or MEF cells. Dephosphorylation of α2-S345, but not α1-S347, transiently targets AMPK to lysosomes, a cellular site for activation by LKB1. By mass spectrometry, we find that α2-S345 is basally phosphorylated at 2.5-fold higher stoichiometry than α1-S347 in HEK293T cells and, unlike α1, phosphorylation is partially retained after prolonged mTORC1 inhibition. Loss of α2-S345 phosphorylation in endogenous AMPK fails to sustain growth of MEFs under amino acid starvation conditions. These findings uncover an α2-specific mechanism by which AMPK can be activated at lysosomes in the absence of changes in cellular energy.
    Keywords:  AMPK; energy homeostasis; kinase; lysosome; mTORC1; metabolic signaling; phosphorylation
  12. Aging (Albany NY). 2022 Feb 15. 14(undefined):
      The protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK), a key ER stress sensor of the unfolded protein response (UPR), can confer beneficial effects by facilitating the removal of cytosolic aggregates through the autophagy-lysosome pathway (ALP). In neurodegenerative diseases, the ALP ameliorates the accumulation of intracellular protein aggregates in the brain. Transcription factor-EB (TFEB), a master regulator of the ALP, positively regulates key genes involved in the cellular degradative pathway. However, in neurons, the role of PERK activation in mitigating amyloidogenesis by ALP remains unclear. In this study, we found that SB202190 selectively activates PERK independently of its inhibition of p38 mitogen-activated protein kinase, but not inositol-requiring transmembrane kinase/endoribonuclease-1α (IRE1α) or activating transcription factor 6 (ATF6), in human neuroblastoma cells. PERK activation by SB202190 was dependent on mitochondrial ROS production and promoted Ca2+-calcineurin activation. The activation of the PERK-Ca2+-calcineurin axis by SB202190 positively affects TFEB activity to increase ALP in neuroblastoma cells. Collectively, our study reveals a novel physiological mechanism underlying ALP activation, dependent on PERK activation, for ameliorating amyloidogenesis in neurodegenerative diseases.
    Keywords:  PERK; amyloidogenesis; autophagy-lysosome pathway; mitochondrial reactive oxygen species; transcription factor-EB
  13. Cancers (Basel). 2022 Feb 01. pii: 760. [Epub ahead of print]14(3):
      Hepatocarcinogenesis is a long process with a complex pathophysiology. The current therapeutic options for HCC management, during the advanced stage, provide short-term survival ranging from 10-14 months. Autophagy acts as a double-edged sword during this process. Recently, two main autophagic pathways have emerged to play critical roles during hepatic oncogenesis, macroautophagy and chaperone-mediated autophagy. Mounting evidence suggests that upregulation of macroautophagy plays a crucial role during the early stages of carcinogenesis as a tumor suppressor mechanism; however, it has been also implicated in later stages promoting survival of cancer cells. Nonetheless, chaperone-mediated autophagy has been elucidated as a tumor-promoting mechanism contributing to cancer cell survival. Moreover, the autophagy pathway seems to have a complex role during the metastatic stage, while induction of autophagy has been implicated as a potential mechanism of chemoresistance of HCC cells. The present review provides an update on the role of autophagy pathways in the development of HCC and data on how the modulation of the autophagic pathway could contribute to the most effective management of HCC.
    Keywords:  chaperone-mediated autophagy; chemoresistance; hepatocellular carcinoma; macroautophagy
  14. Cells. 2022 Jan 31. pii: 496. [Epub ahead of print]11(3):
      Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by five mutations in the RAB7A gene. Autophagy and late endocytic trafficking were already characterized in CMT2B. Indeed, impairment of autophagy and an increase in lysosomal degradative activity were found in cells expressing the mutant proteins. Recently, we described a novel RAB7 mutation associated with predominantly motor CMT2 and impaired EGFR trafficking. With the aim to analyze the autophagy process and lysosomal activity in CMT2B fibroblasts carrying the p.K126R RAB7 novel mutation and to investigate further the causes of the different phenotype, we have performed Western blot, immunofluorescence and cytometric analyses monitoring autophagic markers and endocytic proteins. Moreover, we investigated lipophagy by analyzing accumulation of lipid droplets and their co-localization with endolysosomal degradative compartments. We found that cells expressing the RAB7K126R mutant protein were characterized by impairment of autophagy and lipophagy processes and by a moderate increase in lysosomal activity compared to the previously studied cells carrying the RAB7V162M mutation. Thus, we concluded that EGFR trafficking alterations and a moderate increase in lysosomal activity with concomitant impairment of autophagy could induce the specific predominantly motor phenotype observed in K126R patients.
    Keywords:  Charcot-Marie-Tooth; RAB7A; autophagy; lipid droplets; lipophagy; lysosome
  15. Cancers (Basel). 2022 Feb 04. pii: 804. [Epub ahead of print]14(3):
      Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in prominence has transformed our basic understanding and alerted us to the existence of non-canonical pathways, independent of nutrient deprivation, that potently control the autophagy downstream of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin has single-handedly pioneered the connection between extracellular matrix signaling and autophagy regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast carcinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan members) will represent a quantum leap forward in transforming autophagic progression into a powerful tool to control intracellular cell catabolism from the outside.
    Keywords:  MET; Peg3; VEGFR2; autophagy; mitostatin; small leucine-rich proteoglycans
  16. Autophagy. 2022 Feb 15. 1-2
      Very little is known about the mechanisms that restrict neurotropic herpesviruses such as herpes simplex virus-1 (HSV-1) from infecting the central nervous system (CNS) and causing widespread death of neurons. Likewise, HSV-1 is thought to play a role in chronic neurodegeneration, yet a direct association has remained elusive. To address these issues, we recently showed that the selective macroautophagy/autophagy receptor OPTN (optineurin) specifically targets HSV-1 proteins VP16 and gB for degradation to prevent viral spread in the brain. OPTN deficiency alters host cytokine expression and tissue-specific immune signaling, and enhances necroptotic death of infected neurons. HSV-1-infected optn knockout mice show higher susceptibility to lethal CNS infection and the surviving animals demonstrate cognitive deficiency. Our research suggests that OPTN-mediated autophagy provides an intrinsic immune barrier against neurotropic viruses and protects the CNS from neurodegenerative stress.
    Keywords:  HSV-1; Herpesvirus; necroptosis; neurodegeneration; neuroprotection; optineurin; selective autophagy
  17. J Neurosci. 2022 Feb 14. pii: JN-RM-1508-21. [Epub ahead of print]
      Dysregulation of autophagic pathways leads to accumulation of abnormal proteins and damaged organelles in many neurodegenerative disorders, including Parkinson's disease (PD) and Lewy body dementia (LBD). Autophagy-related dysfunction may also trigger secretion and spread of misfolded proteins such as α-synuclein (α-syn), the major misfolded protein found in PD/LBD. However, the mechanism underlying these phenomena remains largely unknown. Here, we used cell-based models, including human induced pluripotent stem cell (hiPSC)-derived neurons, CRISPR/Cas9 technology, and male transgenic PD/LBD mice, plus vetting in human postmortem brains (both male and female). We provide mechanistic insight into this pathological pathway. We find that aberrant S-nitrosylation of the autophagic adaptor protein p62 causes inhibition of autophagic flux and intracellular build-up of misfolded proteins, with consequent secretion resulting in cell-to-cell spread. Thus, our data show that pathological protein S-nitrosylation of p62 represents a critical factor not only for autophagic inhibition and demise of individual neurons, but also for α-syn release and spread of disease throughout the nervous system.SIGNIFICANCE STATEMENTIn Parkinson's disease and Lewy body dementia, dysfunctional autophagy contributes to accumulation and spread of aggregated α-synuclein. Here, we provide evidence that protein S-nitrosylation of p62 inhibits autophagic flux, contributing to α-synuclein aggregation and spread.
  18. Molecules. 2022 Jan 25. pii: 766. [Epub ahead of print]27(3):
      Renal fibrosis is a common process of various kidney diseases. Autophagy is an important cell biology process to maintain cellular homeostasis. In addition, autophagy is involved in the pathogenesis of various renal disease, including acute kidney injury, glomerular diseases, and renal fibrosis. However, the functional role of autophagy in renal fibrosis remains poorly unclear. The mammalian target of rapamycin (mTOR) plays a negative regulatory role in autophagy. Signal transducer and activator of transcription 3 (STAT3) is an important intracellular signaling that may regulate a variety of inflammatory responses. In addition, STAT3 regulates autophagy in various cell types. Thus, we synthesized the mTOR/STAT3 oligodeoxynucleotide (ODN) to regulate the autophagy. The aim of this study was to investigate the beneficial effect of mTOR/STAT3 ODN via the regulation of autophagy appearance on unilateral ureteral obstruction (UUO)-induced renal fibrosis. This study showed that UUO induced inflammation, tubular atrophy, and tubular interstitial fibrosis. However, mTOR/STAT3 ODN suppressed UUO-induced renal fibrosis and inflammation. The autophagy markers have no statistically significant relation, whereas mTOR/STAT3 ODN suppressed the apoptosis in tubular cells. These results suggest the possibility of mTOR/STAT3 ODN for preventing renal fibrosis. However, the role of mTOR/STAT3 ODN on autophagy regulation needs to be further investigated.
    Keywords:  STAT3; antisense; autophagy; decoy; mTOR; oligodeoxynucleotide; renal fibrosis
  19. eNeuro. 2022 Feb 11. pii: ENEURO.0317-21.2022. [Epub ahead of print]
      Genetic mutations in nitrogen permease regulator-like 2 (NPRL2) are associated with a wide spectrum of familial focal epilepsies, autism, and sudden unexpected death of epileptics (SUDEP), but the mechanisms by which NPRL2 contributes to these effects are not well known. NPRL2 is a requisite subunit of the Gap Activity TOward Rags 1 (GATOR1) complex, which functions as a negative regulator of mammalian Target Of Rapamycin Complex 1 (mTORC1) kinase when intracellular amino acids are low. Here we show that loss of NPRL2 expression in mouse excitatory glutamatergic neurons causes seizures prior to death, consistent with SUDEP in humans with epilepsy. Additionally, the absence of NPRL2 expression increases mTORC1-dependent signal transduction and significantly alters amino acid homeostasis in the brain. Loss of NPRL2 reduces dendritic branching and increases the strength of electrically stimulated action potentials in neurons. The increased action potential strength is consistent with elevated expression of epilepsy-linked, voltage-gated sodium channels in the NPRL2-deficient brain. Targeted deletion of NPRL2 in primary neurons increases the expression of sodium channel Scn1A, whereas treatment with the pharmacological mTORC1 inhibitor called rapamycin prevents Scn1A upregulation. These studies demonstrate a novel role of NPRL2 and mTORC1 signaling in the regulation of sodium channels, which can contribute to seizures and early lethality.Significance StatementNPRL2 is a requisite subunit of the epilepsy-linked GATOR1 complex that functions as a negative regulator of mTORC1 kinase when intracellular amino acids are limited. Here we report the generation and characterization of a new neurological model of GATOR1-dependent mTORopathy, caused by the loss of NPRL2 function in glutamatergic neurons. Loss of NPRL2 increases mTORC1 signal transduction, significantly alters amino acid homeostasis in the brain, and causes SUDEP. In addition, loss of NPRL2 increases the strength of electrically stimulated action potentials and the expression of epilepsy-linked sodium channels. These data reveal an unanticipated link between intracellular amino acid signaling by NPRL2 and a novel mTORC1-dependent regulation of sodium-channel expression in epilepsy.
    Keywords:  GATOR1; NPRL2; epilepsy; mTORC1; neurometabolism; sodium channels
  20. Nat Commun. 2022 Feb 18. 13(1): 967
      Inhibition of the master growth regulator mTORC1 (mechanistic target of rapamycin complex 1) slows ageing across phyla, in part by reducing protein synthesis. Various stresses globally suppress protein synthesis through the integrated stress response (ISR), resulting in preferential translation of the transcription factor ATF-4. Here we show in C. elegans that inhibition of translation or mTORC1 increases ATF-4 expression, and that ATF-4 mediates longevity under these conditions independently of ISR signalling. ATF-4 promotes longevity by activating canonical anti-ageing mechanisms, but also by elevating expression of the transsulfuration enzyme CTH-2 to increase hydrogen sulfide (H2S) production. This H2S boost increases protein persulfidation, a protective modification of redox-reactive cysteines. The ATF-4/CTH-2/H2S pathway also mediates longevity and increased stress resistance from mTORC1 suppression. Increasing H2S levels, or enhancing mechanisms that H2S influences through persulfidation, may represent promising strategies for mobilising therapeutic benefits of the ISR, translation suppression, or mTORC1 inhibition.
  21. J Agric Food Chem. 2022 Feb 18.
      Autophagy, an evolutionarily conserved process, is intricately involved in many aspects of human health and a variety of human diseases, including cancer. Discovery of small-molecule autophagy modulators with potent anticancer effect would be of great significance. To this end, a natural product library consisting of 170 natural compounds were screened as autophagy modulators with potent cytotoxicity in our present study. Among these compounds, gossypol acetate (GAA), the mostly used medicinal form of gossypol, was identified. GAA effectively increased the number of autophagic puncta in GFP-LC3B-labeled 293T cells and significantly decreased cell viability in different cancer cells. In A549 cells, GAA at concentrations below 10 μM triggered caspase-independent cell death via targeting autophagy, as evidenced by elevated LC3 conversion and decreased p62/SQSTM1 levels. Knocking down of LC3 significantly attenuated GAA-induced cell death. Mechanistically, GAA at low concentrations induced autophagy through targeting AMPK-mTORC1-ULK1 signaling. Interestingly, high concentrations of GAA induced LC3 conversion, p62 accumulation, and yellow autophagosome formation, indicating that GAA at high concentrations blocked autophagic flux. Mechanistically, GAA decreased intracellular ATP level and suppressed lysosome activity. Exogenous ATP partially reversed the inhibitory effect of GAA on autophagy, suggesting that decreased ATP level and lysosome activity might be involved in the blocking of autophagy flux by GAA. Collectively, our present study reveals the mechanisms by which GAA modulates autophagy and illustrates whether autophagy regulation by GAA is functionally involved in GAA-induced cancer cell death.
    Keywords:  ATP; adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK); apoptosis; autophagy; cancer cell death; gossypol acetate; lysosome; mammalian target of rapamycin complex-1 (mTORC1); unc-51-like autophagy-activating kinase 1 (ULK1)
  22. J Biol Chem. 2022 Feb 14. pii: S0021-9258(22)00170-3. [Epub ahead of print] 101730
      Optimal activation of NF-κB signaling is crucial for the initiation of inflammatory responses and eliminating invading bacteria. Bacteria have likewise evolved the ability to evade immunity; however, mechanisms by which bacteria dysregulate host NF-κB signaling are unclear. In this study, we identify eukaryotic translation initiation factor eIF3k, a non-essential member of the eIF3 translation initiation complex, as a suppressor of the NF-κB pathway. Mechanistically, we show that eIF3k expression induced by Vibrio harveyi enhances E3 ligase Nrdp1-mediated K27-linked ubiquitination of MyD88, an upstream regulator of NF-κB pathway activation. Furthermore, we show eIF3k acts as a bridge linking ubiquitin-tagged MyD88 and ATG5, an important mediator of autophagy. We demonstrate that the MyD88-eIF3k-ATG5 complex is transported to the autophagosome for degradation, and that innate immune signaling is subsequently terminated and does not attack invading V. harveyi. Therefore, our study identifies eIF3k as a specific inhibitor of the MyD88-dependent NF-κB pathway and suggests that eIF3k may act as a selective autophagic receptor that synergizes with ATG5 to promote the autophagic degradation of MyD88, which help V. harveyi to evade innate immunity. We conclude that V. harveyi can manipulate a host's autophagy process to evade immunity in fish, and also provide a new perspective on mammalian resistance to bacterial invasion.
    Keywords:  MyD88; Vibrio harveyi; autophagy; eIF3k; immune evasion
  23. Front Cell Neurosci. 2021 ;15 753369
      Otitis media (OM) is a pervasive disease that involves hearing loss and severe complications. In our previous study, we successfully established a mouse model of human OM using Tlr2tm1Kir (TLR2-/-) mice with middle ear (ME) inoculation of streptococcal peptidoglycan-polysaccharide (PGPS). In this study, we found that hearing loss and OM infections in OM mice were significantly alleviated after treatment with rapamycin (RPM), a widely used mechanistic target of RPM complex 1 (mTORC1) inhibitor and autophagy inducer. First of all, we tested the activity of mTORC1 by evaluating p-S6, Raptor, and mTOR protein expression. The data suggested that the protein expression level of p-S6, Raptor and mTOR are decreased in TLR2-/- mice after the injection of PGPS. Furthermore, our data showed that both the autophagosome protein LC3-II, Beclin-1, ATG7, and autophagy substrate protein p62 accumulated at higher levels in mice with OM than in OM-negative mice. The expression of lysosomal-associated proteins LAMP1, Cathepsin B, and Cathepsin D increased in the OM mice compared with OM-negative mice. Rab7 and Syntaxin 17, which is necessary for the fusion of autophagosomes with lysosomes, are reduced in the OM mice. In addition, data also described that the protein expression level of p-S6, mTOR and Raptor are lower than PGPS group after RPM treatment. The accumulation of LC3-II, Beclin-1, and ATG7 are decreased, and the expression of Rab7 and Syntaxin 17 are increased significantly after RPM treatment. Our results suggest that autophagy impairment is involved in PGPS-induced OM and that RPM improves OM at least partly by relieving autophagy impairment. Modulating autophagic activity by RPM may be a possible effective treatment strategy for OM.
    Keywords:  PGPS; TLR2; autophagy; otitis media; rapamycin
  24. J Cell Biol. 2022 Apr 04. pii: e202107148. [Epub ahead of print]221(4):
      The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo-receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.
  25. J Biol Chem. 2022 Feb 10. pii: S0021-9258(22)00158-2. [Epub ahead of print] 101718
      Peripheral myelination is a complicated process, wherein Schwann cells (SCs) promote the formation of the myelin sheath around the axons of peripheral neurons. Fibroblasts are the second resident cells in the peripheral nerves; however, the precise function of fibroblasts in SC-mediated myelination has rarely been examined. Here, we show that exosomes derived from fibroblasts boost myelination-related gene expression in SCs. We used exosome sequencing, together with bioinformatic analysis, to demonstrate that exosomal microRNA miR-673-5p is capable of stimulating myelin gene expression in SCs. Subsequent functional studies revealed that miR-673-5p targets the regulator of mTOR complex 1 (mTORC1) TSC2 in SCs, leading to the activation of downstream signaling pathways including mTORC1 and SREBP2. In vivo experiments further confirmed that miR-673-5p activates the TSC2/mTORC1/SREBP2 axis, thus promoting the synthesis of cholesterol and related lipids and subsequently accelerating myelin sheath maturation in peripheral nerves. Overall, our findings revealed exosome-mediated crosstalk between fibroblasts and SCs that plays a pivotal role in peripheral myelination. We propose that exosomes derived from fibroblasts and miR-673-5p might be useful for promoting peripheral myelination in translational medicine.
    Keywords:  Exosomes; Fibroblasts; Lipid synthesis; Myelination; Peripheral nerve regeneration; Schwann cells
  26. Cell Cycle. 2022 Feb 15. 1-19
      Cervical carcinoma is a leading malignant tumor among women worldwide, characterized by the dysregulation of cell cycle. Cyclin-dependent kinase 6 (CDK6) plays important roles in the cell cycle progression, cell differentiation, and tumorigenesis. However, the role of CDK6 in cervical cancer remains controversial. Here, we found that loss of CDK6 in cervical adenocarcinoma HeLa cell line inhibited cell proliferation but induced apoptosis as well as autophagy, accompanied by attenuated expression of mammalian target of rapamycin complex 1 (mTORC1) and hexokinase 2 (HK2), reduced glycolysis, and production of protein, nucleotide, and lipid. Similarly, we showed that CDK6 knockout inhibited the survival of CDK6-high CaSki but not CDK6-low SiHa cervical cancer cells by regulation of glycolysis and autophagy process. Collectively, our studies indicate that CDK6 is a critical regulator of human cervical cancer cells, especially with high CDK6 level, through its ability to regulate cellular apoptosis and metabolism. Thus, inhibition of CDK6 kinase activity could be a powerful therapeutic avenue used to treat cervical cancers.
    Keywords:  CDK6; Cervical carcinoma; apoptosis; autophagy; glycolysis; mTOR
  27. Cells. 2022 Jan 19. pii: 326. [Epub ahead of print]11(3):
      Epithelial cells that form the kidney proximal tubule (PT) rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients-a key requisite for homeostasis. The endolysosome stands at the crossroads of this sophisticated network, internalizing molecules through endocytosis, sorting receptors and nutrient transporters, maintaining cellular quality control via autophagy, and toggling the balance between PT differentiation and cell proliferation. Dysregulation of such endolysosome-guided trafficking pathways might thus lead to a generalized dysfunction of PT cells, often causing chronic kidney disease and life-threatening complications. In this review, we highlight the biological functions of endolysosome-residing proteins from the perspectives of understanding-and potentially reversing-the pathophysiology of rare inherited diseases affecting the kidney PT. Using cystinosis as a paradigm of endolysosome disease causing PT dysfunction, we discuss how the endolysosome governs the homeostasis of specialized epithelial cells. This review also provides a critical analysis of the molecular mechanisms through which defects in autophagy pathways can contribute to PT dysfunction, and proposes potential interventions for affected tissues. These insights might ultimately accelerate the discovery and development of new therapeutics, not only for cystinosis, but also for other currently intractable endolysosome-related diseases, eventually transforming our ability to regulate homeostasis and health.
    Keywords:  autophagy; endolysosome; epithelial cell differentiation; homeostasis; kidney proximal tubule; lysosomal storage diseases; mitochondrial distress
  28. STAR Protoc. 2022 03 18. 3(1): 101154
      Electron microscopy (EM) is considered the gold standard for studying macroautophagy and mitophagy, essential cellular processes for brain health. Here, we present a protocol using EM to analyze autophagosomes and mitophagosomes in the mouse amygdala. We describe the preparation of brain sections, followed by staining and EM imaging. We then detail the steps to identify and analyze autophagosome-like and mitophagosome-like structures. This protocol can be easily adapted to analyze autophagosomes and mitophagosomes in other mouse brain regions. For complete details on the use and execution of this protocol, please refer to Duan et al. (2021).
    Keywords:  Cell Biology; Microscopy; Neuroscience
  29. Int J Biol Sci. 2022 ;18(3): 1107-1119
      The lamellar body (LB), a concentric structure loaded with surfactant proteins and phospholipids, is an organelle specific to type 2 alveolar epithelial cells (AT2). However, the origin of LBs has not been fully elucidated. We have previously reported that autophagy regulates Weibel-Palade bodies (WPBs) formation, and here we demonstrated that autophagy is involved in LB maturation, another lysosome-related organelle. We found that during development, LBs were transformed from autophagic vacuoles containing cytoplasmic contents such as glycogen. Fusion between LBs and autophagosomes was observed in wild-type neonate mice. Moreover, the markers of autophagic activity, microtubule-associated protein 1 light chain 3B (LC3B), largely co-localized on the limiting membrane of the LB. Both autophagy-related gene 7 (Atg7) global knockout and conditional Atg7 knockdown in AT2 cells in mice led to defects in LB maturation and surfactant protein B production. Additionally, changes in autophagic activity altered LB formation and surfactant protein B production. Taken together, these results suggest that autophagy plays a critical role in the regulation of LB formation during development and the maintenance of LB homeostasis during adulthood.
    Keywords:  Atg7; LC3B; autophagy; lamellar body; surfactant protein B; type 2 alveolar cells
  30. EMBO Rep. 2022 Feb 15. e53477
      The vacuole/lysosome plays essential roles in the growth and proliferation of many eukaryotic cells via the activation of target of rapamycin complex 1 (TORC1). Moreover, the yeast vacuole/lysosome is necessary for progression of the cell division cycle, in part via signaling through the TORC1 pathway. Here, we show that an essential cyclin-dependent kinase, Bur1, plays a critical role in cell cycle progression in cooperation with TORC1. A mutation in BUR1 combined with a defect in vacuole inheritance shows a synthetic growth defect. Importantly, the double mutant, as well as a bur1-267 mutant on its own, has a severe defect in cell cycle progression from G1 phase. In further support that BUR1 functions with TORC1, mutation of bur1 alone results in high sensitivity to rapamycin, a TORC1 inhibitor. Mechanistic insight for Bur1 function comes from the findings that Bur1 directly phosphorylates Sch9, a target of TORC1, and that both Bur1 and TORC1 are required for the activation of Sch9. Together, these discoveries suggest that multiple signals converge on Sch9 to promote cell cycle progression.
    Keywords:   SCH9 ; SGV1 ; lysosome; rapamycin; yeast
  31. Cell Biosci. 2022 Feb 14. 12(1): 17
      BACKGOUND: Autophagy controls levels of cellular components during normal and stress conditions; thus, it is a pivotal process for the maintenance of cell homeostasis. In cancer, autophagy protects cells from cancerous transformations that can result from genomic instability induced by reactive oxygen species or other damaged components, but it can also promote cancer survival by providing essential nutrients during the metabolic stress condition of cancer progression. However, the molecular mechanism underlying autophagy-dependent regulation of the epithelial to mesenchymal transition (EMT) and metastasis is still elusive.METHODS: The intracellular level of NOTCH1 intracellular domain (NICD) in several cancer cells was studied under starvation, treatment with chloroquine or ATG7-knockdown. The autophagy activity in these cells was assessed by immunocytochemistry and molecular analyses. Cancer cell migration and invasion under modulation of autophagy were determined by in vitro scratch and Matrigel assays.
    RESULTS: In the study, autophagy activation stimulated degradation of NICD, a key transcriptional regulator of the EMT and cancer metastasis. We also found that NICD binds directly to LC3 and that the NICD/LC3 complex associates with SNAI1 and sequestosome 1 (SQSTM1)/p62 proteins. Furthermore, the ATG7 knockdown significantly inhibited degradation of NICD under starvation independent of SQSTM1-associated proteasomal degradation. In addition, NICD degradation by autophagy associated with the cellular level of SNAI1. Indeed, autophagy inhibited nuclear translocation of NICD protein and consequently decreased the transcriptional activity of its target genes. Autophagy activation substantially suppressed in vitro cancer cell migration and invasion. We also observed that NICD and SNAI1 levels in tissues from human cervical and lung cancer patients correlated inversely with expression of autophagy-related proteins.
    CONCLUSIONS: These findings suggest that the cellular level of NICD is regulated by autophagy during cancer progression and that targeting autophagy-dependent NICD/SNAI1 degradation could be a strategy for the development of cancer therapeutics.
    Keywords:  Autophagy; EMT metastasis; NICD; SNAI1
  32. Aging Cell. 2022 Feb 15. e13559
      Aging is a risk factor for neurodegenerative disease, but precise mechanisms that influence this relationship are still under investigation. Work in Drosophila melanogaster identified the microRNA miR-34 as a modifier of aging and neurodegeneration in the brain. MiR-34 mutants present aspects of early aging, including reduced lifespan, neurodegeneration, and a buildup of the repressive histone mark H3K27me3. To better understand how miR-34 regulated pathways contribute to age-associated phenotypes in the brain, here we transcriptionally profiled the miR-34 mutant brain. This identified that genes associated with translation are dysregulated in the miR-34 mutant. The brains of these animals show increased translation activity, accumulation of protein aggregation markers, and altered autophagy activity. To determine if altered H3K27me3 was responsible for this proteostasis dysregulation, we studied the effects of increased H3K27me3 by mutating the histone demethylase Utx. Reduced Utx activity enhanced neurodegeneration and mimicked the protein accumulation seen in miR-34 mutant brains. However, unlike the miR-34 mutant, Utx mutant brains did not show similar altered autophagy or translation activity, suggesting that additional miR-34-targeted pathways are involved. Transcriptional analysis of predicted miR-34 targets identified Lst8, a subunit of Tor Complex 1 (TORC1), as a potential target. We confirmed that miR-34 regulates the 3' UTR of Lst8 and identified several additional predicted miR-34 targets that may be critical for maintaining proteostasis and brain health. Together, these results present novel understanding of the brain and the role of the conserved miRNA miR-34 in impacting proteostasis in the brain with age.
    Keywords:   miR-34 ; aging; autophagy; neurodegeneration; proteostasis; translation
  33. Nat Commun. 2022 Feb 16. 13(1): 904
      Targeted protein degradation allows targeting undruggable proteins for therapeutic applications as well as eliminating proteins of interest for research purposes. While several degraders that harness the proteasome or the lysosome have been developed, a technology that simultaneously degrades targets and accelerates cellular autophagic flux is still missing. In this study, we develop a general chemical tool and platform technology termed AUTOphagy-TArgeting Chimera (AUTOTAC), which employs bifunctional molecules composed of target-binding ligands linked to autophagy-targeting ligands. AUTOTACs bind the ZZ domain of the otherwise dormant autophagy receptor p62/Sequestosome-1/SQSTM1, which is activated into oligomeric bodies in complex with targets for their sequestration and degradation. We use AUTOTACs to degrade various oncoproteins and degradation-resistant aggregates in neurodegeneration at nanomolar DC50 values in vitro and in vivo. AUTOTAC provides a platform for selective proteolysis in basic research and drug development.
  34. Mol Cell Endocrinol. 2022 Feb 15. pii: S0303-7207(22)00046-6. [Epub ahead of print] 111599
      Uric acid (UA), the end-product of purine metabolism, is closely related to hepatic insulin resistance (IR). Autophagy is a conserved intracellular degradation process maintaining cellular homeostasis. Autophagy plays a protective role in obesity-related hepatic IR, but whether it occurs in high uric acid (HUA)-induced hepatic IR is unclear. In this study, spontaneously elevated UA level induced hepatic IR and facilitated hepatic autophagy degradation in uricase knockout (Uox-/-) mice. In vitro, HepG2 cells stimulated with HUA medium showed decreased glucose uptake and inhibition of insulin signaling pathways, concomitant with activation of autophagy, as manifested by increased conversion of LC3B-I to -II. Rapamycin, the autophagy activator, alleviated but the autophagy inhibitor trimethyl adenine (3-MA) aggravated HUA-induced IR in HepG2 cells. Similarly, rapamycin ameliorated and 3-MA worsened HUA-induced blood glucose level and hepatic IR in Uox-/- mice. Mechanistically, HUA enhanced AMPKα phosphorylation (p-AMPKα) and inhibited mammalian target of rapamycin phosphorylation (p-mTOR) in HepG2 cells. The levels of p-AMPKα and LC3B-II/I were downregulated in HepG2 cells transfected with small interfering RNA (siRNA) against AMPKα, which suggests that the AMPKα-mTOR pathway was involved in HUA-induced autophagy. Antioxidant N-acetyl-L-cysteine reversed elevated reactive oxygen species levels induced by HUA in HepG2 cells, and AMPKα level was also inhibited, which suggests that AMPKα activation may be derived from reactive oxygen species. Collectively, these findings demonstrate that HUA increased hepatic autophagy, and autophagy activation plays a protective role in hepatic IR, which may suggest a potential therapeutic target for hepatic IR derived from HUA.
    Keywords:  Autophagy; Hepatic insulin resistance; Uric acid
  35. Front Pharmacol. 2021 ;12 813703
      Gastric cancer (GC), second most leading cause of cancer-associated mortality globally, is the cancer of gastrointestinal tract in which malignant cells form in lining of the stomach, resulting in indigestion, pain, and stomach discomfort. Autophagy is an intracellular system in which misfolded, aggregated, and damaged proteins, as well as organelles, are degraded by the lysosomal pathway, and avoiding abnormal accumulation of huge quantities of harmful cellular constituents. However, the exact molecular mechanism of autophagy-mediated GC management has not been clearly elucidated. Here, we emphasized the role of autophagy in the modulation and development of GC transformation in addition to underlying the molecular mechanisms of autophagy-mediated regulation of GC. Accumulating evidences have revealed that targeting autophagy by small molecule activators or inhibitors has become one of the greatest auspicious approaches for GC managements. Particularly, it has been verified that phytochemicals play an important role in treatment as well as prevention of GC. However, use of combination therapies of autophagy modulators in order to overcome the drug resistance through GC treatment will provide novel opportunities to develop promising GC therapeutic approaches. In addition, investigations of the pathophysiological mechanism of GC with potential challenges are urgently needed, as well as limitations of the modulation of autophagy-mediated therapeutic strategies. Therefore, in this review, we would like to deliver an existing standard molecular treatment strategy focusing on the relationship between chemotherapeutic drugs and autophagy, which will help to improve the current treatments of GC patients.
    Keywords:  autophagy; autophagy modulator; autophagy-related genes; gastric cancer; phytochemical; tumorigenesis
  36. Cells. 2022 Feb 02. pii: 519. [Epub ahead of print]11(3):
      The maintenance of cellular homeostasis over time is essential to avoid the degeneration of biological systems leading to aging and disease. Several interconnected pathways are active in this kind of quality control. One of them is autophagy, the vacuolar degradation of cellular components. The absence of the sorting nexin PaATG24 (SNX4 in other organisms) has been demonstrated to result in impairments in different types of autophagy and lead to a shortened lifespan. In addition, the growth rate and the size of vacuoles are strongly reduced. Here, we report how an oleic acid diet leads to longevity of the wild type and a PaAtg24 deletion mutant (ΔPaAtg24). The lifespan extension is linked to altered membrane trafficking, which abrogates the observed autophagy defects in ΔPaAtg24 by restoring vacuole size and the proper localization of SNARE protein PaSNC1. In addition, an oleic acid diet leads to an altered use of the mitochondrial respiratory chain: complex I and II are bypassed, leading to reduced reactive oxygen species (ROS) production. Overall, our study uncovers multiple effects of an oleic acid diet, which extends the lifespan of P. anserina and provides perspectives to explain the positive nutritional effects on human aging.
    Keywords:  ATG24; ER; Podospora anserina; aging; autophagy; membrane trafficking; mitochondria; peroxisomes
  37. JCI Insight. 2022 Feb 15. pii: e154174. [Epub ahead of print]
      Dyslipidemia and autophagy have been implicated in the pathogenesis of blinding neovascular age-related macular degeneration (NV-AMD). Very low-density lipoprotein receptor (VLDLR), expressed in photoreceptors with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acids (FA). Since FA uptake is reduced in Vldlr-/- tissues, more remain in circulation, and the retina is fuel deficient, driving the formation in mice of neovascular lesions reminiscent of retinal angiomatous proliferation (RAP), a subtype of NV-AMD. Nutrient scarcity and energy failure are classically mitigated by increasing autophagy. We find that excess circulating lipids restrain retinal autophagy, which contributes to pathological angiogenesis in the Vldlr-/- RAP model. Triglyceride-derived FA sensed by free fatty acid receptor 1 (FFAR1) restricted autophagy and oxidative metabolism in photoreceptors. FFAR1 suppressed transcription factor EB (TFEB), a master regulator of autophagy and lipid metabolism. Reduced TFEB, in turn, decreased Sirtuin-3 expression and mitochondrial respiration. Metabolomic signatures of mouse RAP-like retinas were consistent with a role in promoting angiogenesis. This signature was also found in human NV-AMD vitreous. Restoring photoreceptor autophagy in Vldlr-/- retinas, either pharmacologically or by deleting Ffar1, enhanced metabolic efficiency and suppressed pathological angiogenesis. Dysregulated autophagy by circulating lipids might therefore contribute to the energy failure of photoreceptors driving neovascular eye diseases, and FFAR1 may be a target for intervention.
    Keywords:  Autophagy; Fatty acid oxidation; Ophthalmology; Retinopathy; Vascular Biology
  38. Int J Mol Sci. 2022 Jan 20. pii: 1131. [Epub ahead of print]23(3):
      Rab21 is a GTPase protein that is functional in intracellular trafficking and involved in the pathologies of many diseases, such as Alzheimer's disease (AD), glioma, cancer, etc. Our previous work has reported its interaction with the catalytic subunit of gamma-secretase, PS1, and it regulates the activity of PS1 via transferring it from the early endosome to the late endosome/lysosome. However, it is still unknown how Rab21 protein itself is regulated. This work revealed that Rab21 protein, either endogenously or exogenously, can be degraded by the ubiquitin-proteasome pathway and the autophagy-lysosome pathway. It is further observed that the ubiquitinated Rab21 is increased, but the total protein is unchanged in AD model mice. We further observed that overexpression of Rab21 leads to increased expression of a series of genes involved in the autophagy-lysosome pathway. We speculated that even though the ubiquitinated Rab21 is increased due to the impaired proteasome function in the AD model, the autophagy-lysosome pathway functions in parallel to degrade Rab21 to keep its protein level in homeostasis. In conclusion, understanding the characters of Rab21 protein itself help explore its potential as a target for therapeutic strategy in diseases.
    Keywords:  Rab21 protein; autophagy-lysosome pathway; ubiquitin-proteasome pathway
  39. Nutr Neurosci. 2022 Feb 14. 1-11
      Nutritional status affects cognitive function in many types of organisms. In the pond snail Lymnaea stagnalis, 1 day of food deprivation enhances taste aversion learning ability by decreasing the serotonin (5-hydroxytryptamin; 5-HT) content in the central nervous system (CNS). On the other hand, after 5 days of food deprivation, learning ability and the CNS 5-HT concentration return to basal levels. How food deprivation leads to alterations of 5-HT levels in the CNS, however, is unknown. Here, we measured the concentration of the 5-HT precursor tryptophan in the hemolymph and CNS, and demonstrated that the CNS tryptophan concentration was higher in 5-day food-deprived snails than in non-food-deprived or 1-day food-deprived snails, whereas the hemolymph tryptophan concentration was not affected by the duration of food deprivation. This finding suggests the existence of a mediator of the CNS tryptophan concentration independent of food deprivation. To identify the mediator, we investigated autophagic flux in the CNS under different food deprivation conditions. We found that autophagic flux was significantly upregulated by inhibition of the tropomyosin receptor kinase (Trk)-Akt-mechanistic target of rapamycin complex 1 (MTORC1) pathway in the CNS of 5-day food-deprived snails. Moreover, when autophagy was inhibited, the CNS 5-HT content was significantly downregulated in 5-day food-deprived snails. Our results suggest that the hemolymph tryptophan concentration and autophagic flux in the CNS cooperatively regulate learning ability affected by different durations of food deprivation. This mechanism may underlie the selection of behaviors appropriate for animal survival depending on the degree of nutrition.
    Keywords:  Lymnaea stagnalis; Serotonin; autophagy; conditioned taste aversion; food deprivation; learning enhancement; nutrition; tryptophan
  40. Int J Mol Sci. 2022 Feb 05. pii: 1825. [Epub ahead of print]23(3):
      Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.
    Keywords:  Akt; PI3K; extracellular matrix; integrin; mTOR; matrix stiffness; mechanotransduction; tumor mechanobiology
  41. Diabetes. 2022 Feb 18. pii: db210660. [Epub ahead of print]
      Endothelial nitric oxide synthase (eNOS) monomerization and uncoupling play crucial roles in mediating vascular dysfunction in diabetes mellitus although the underlying mechanisms are still incompletely understood. Growing evidence indicates that autophagic dysregulation is involved in the pathogenesis of diabetic endothelial dysfunction, however, whether autophagy regulates eNOS activity through controlling eNOS monomerization/dimerization remains elusive. The present study shows that autophagic flux was impaired in the endothelium of diabetic db/db mice and in human endothelial cells exposed to advanced glycation end products or oxidized low-density lipoprotein. Inhibition of autophagic flux by chloroquine or bafilomycin A1 were sufficient to induce eNOS monomerization and lowers nitric oxide bioavailability through raising mitochondrial reactive oxygen species (mtROS). Restoration of autophagic flux by overexpressing transcription factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, decreased endothelial cell oxidative stress, increased eNOS dimerization and improved endothelium-dependent relaxations (EDR) in db/db mouse aortas. Inhibition of mammalian target of rapamycin kinase (mTOR) increased TFEB nuclear localization, reduced mtROS accumulation, facilitated eNOS dimerization, and enhanced EDR in db/db mice. Moreover, calorie restriction also elevated TFEB expression, improved autophagic flux, and restored EDR in the aortas of db/db mice. Taken together, the present study reveals that mtROS-induced eNOS monomerization is closely associated with the impaired TFEB-autophagic flux axis leading to endothelial dysfunction in diabetic mice.
  42. Mini Rev Med Chem. 2022 Feb 14.
      Bisphenol A (4,4'-isopropylidenediphenol) is an organic compound, commonly used in the plastic bottles, packaging containers, beverages and resin industry. The adverse effects of bisphenol A were studied in various systems of the body. Autophagy is a lysosomal degradation process meant for the regeneration of new cells. The role of bisphenol A on autophagy modulation in the pathogenesis of diseases is still debatable. Few research studies showed that bisphenol A-induced adverse effects were associated with autophagy dysregulation, while few showed the activation of autophagy by bisphenol A. Such contrasting views make the subject more interesting and debatable. In the present review, we discuss the different steps of autophagy, genes involved, and the effect of bisphenol A in autophagy modulation on different systems of the body. We also discuss the methods for monitoring autophagy and the roles of drugs such as chloroquine, verteporfin, and rapamycin in autophagy. Proper understanding of the role of bisphenol A in the modulation of autophagy may be important for future treatment and drug discovery.
    Keywords:  Bisphenol A; apoptosis; autophagy; drugs; lysosome; molecular biology
  43. Cells. 2022 Jan 26. pii: 426. [Epub ahead of print]11(3):
      Metabolic reprogramming is a feature of cancers for which recent research has been particularly active, providing numerous insights into the mechanisms involved. It occurs across the entire cancer process, from development to resistance to therapies. Established tumors exhibit dependencies for metabolic pathways, constituting vulnerabilities that can be targeted in the clinic. This knowledge is of particular importance for cancers that are refractory to any therapeutic approach, such as Pancreatic Ductal Adenocarcinoma (PDAC). One of the metabolic pathways dysregulated in PDAC is autophagy, a survival process that feeds the tumor with recycled intracellular components, through both cell-autonomous (in tumor cells) and nonautonomous (from the local and distant environment) mechanisms. Autophagy is elevated in established PDAC tumors, contributing to aberrant proliferation and growth even in a nutrient-poor context. Critical elements link autophagy to PDAC including genetic alterations, mitochondrial metabolism, the tumor microenvironment (TME), and the immune system. Moreover, high autophagic activity in PDAC is markedly related to resistance to current therapies. In this context, combining autophagy inhibition with standard chemotherapy, and/or drugs targeting other vulnerabilities such as metabolic pathways or the immune response, is an ongoing clinical strategy for which there is still much to do through translational and multidisciplinary research.
    Keywords:  autophagy; cancer metabolism; mitochondrial metabolism; pancreatic ductal adenocarcinoma; therapeutic resistance
  44. Cells. 2022 Jan 29. pii: 466. [Epub ahead of print]11(3):
      To fight neurodegenerative diseases, several therapeutic strategies have been proposed that, to date, are either ineffective or at the early preclinical stages. Intracellular protein aggregates represent the cause of about 70% of neurodegenerative disorders, such as Alzheimer's disease. Thus, autophagy, i.e., lysosomal degradation of macromolecules, could be employed in this context as a therapeutic strategy. Searching for a compound that stimulates this process led us to the identification of a 37/67kDa laminin receptor inhibitor, NSC48478. We have analysed the effects of this small molecule on the autophagic process in mouse neuronal cells and found that NSC48478 induces the conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) into the LC3-phosphatidylethanolamine conjugate (LC3-II). Interestingly, upon NSC48478 treatment, the contribution of membranes to the autophagic process derived mainly from the non-canonical m-TOR-independent endocytic pathway, involving the Rab proteins that control endocytosis and vesicle recycling. Finally, qRT-PCR analysis suggests that, while the expression of key genes linked to canonical autophagy was unchanged, the main genes related to the positive regulation of endocytosis (pinocytosis and receptor mediated), along with genes regulating vesicle fusion and autolysosomal maturation, were upregulated under NSC48478 conditions. These results strongly suggest that 37/67 kDa inhibitor could be a useful tool for future studies in pathological conditions.
    Keywords:  37/67 kDa LR inhibitor; 37/67 kDa laminin receptor (LR); ATG proteins; LC3; Rab proteins; endocytic pathway; m-TOR-independent autophagy; non-canonical autophagy; ribosomal protein SA (RPSA)
  45. Cells. 2022 Jan 27. pii: 441. [Epub ahead of print]11(3):
      Autophagy is a widely conserved process in eukaryotes that is involved in a series of physiological and pathological events, including development, immunity, neurodegenerative disease, and tumorigenesis. It is regulated by nutrient deprivation, energy stress, and other unfavorable conditions through multiple pathways. In general, autophagy is synergistically governed at the RNA and protein levels. The upstream transcription factors trigger or inhibit the expression of autophagy- or lysosome-related genes to facilitate or reduce autophagy. Moreover, a significant number of non-coding RNAs (microRNA, circRNA, and lncRNA) are reported to participate in autophagy regulation. Finally, post-transcriptional modifications, such as RNA methylation, play a key role in controlling autophagy occurrence. In this review, we summarize the progress on autophagy research regarding transcriptional regulation, which will provide the foundations and directions for future studies on this self-eating process.
    Keywords:  RNA methylation; autophagy; ncRNA; regulatory mechanisms; transcription
  46. Int J Mol Cell Med. 2021 ;10(3): 181-189
      The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine-protein kinase that senses and combines various environmental signals to regulate the growth and homeostasis of human cells. This signaling pathway synchronizes many critical cellular processes and is involved in an increasing number of pathological conditions such as diabetes, cancer, obesity, and metabolic syndrome. Here, we review different complications of diabetes that are associated with mTOR complex 1 imbalance. We further discuss pharmacological approaches to treat diabetes complications linked to mTOR deregulation.
    Keywords:  Diabetes; complications; mTOR; mTOR complex 1; signaling
  47. Nat Commun. 2022 Feb 17. 13(1): 931
      Koolen-de Vries syndrome (KdVS) is a rare disorder caused by haploinsufficiency of KAT8 regulatory NSL complex subunit 1 (KANSL1), which is characterized by intellectual disability, heart failure, hypotonia, and congenital malformations. To date, no effective treatment has been found for KdVS, largely due to its unknown pathogenesis. Using siRNA screening, we identified KANSL1 as an essential gene for autophagy. Mechanistic study shows that KANSL1 modulates autophagosome-lysosome fusion for cargo degradation via transcriptional regulation of autophagosomal gene, STX17. Kansl1+/- mice exhibit impairment in the autophagic clearance of damaged mitochondria and accumulation of reactive oxygen species, thereby resulting in defective neuronal and cardiac functions. Moreover, we discovered that the FDA-approved drug 13-cis retinoic acid can reverse these mitophagic defects and neurobehavioral abnormalities in Kansl1+/- mice by promoting autophagosome-lysosome fusion. Hence, these findings demonstrate a critical role for KANSL1 in autophagy and indicate a potentially viable therapeutic strategy for KdVS.
  48. Int J Mol Sci. 2022 Feb 01. pii: 1693. [Epub ahead of print]23(3):
      The serine/threonine kinase mechanistic target of rapamycin (mTOR) plays a pivotal role in the regulation of cell proliferation, survival, and motility in response to availability of energy and nutrients as well as mitogens. The mTOR signaling axis regulates important biological processes, including cellular growth, metabolism, and survival in many tissues. In the skin, dysregulation of PI3K/AKT/mTOR pathway may lead to severe pathological conditions characterized by uncontrolled proliferation and inflammation, including skin hyperproliferative as well as malignant diseases. Herein, we provide an update on the current knowledge regarding the pathogenic implication of the mTOR pathway in skin diseases with inflammatory features (such as psoriasis, atopic dermatitis, pemphigus, and acne) and malignant characteristics (such as cutaneous T cell lymphoma and melanoma) while we critically discuss current and future perspectives for therapeutic targeting of mTOR axis in clinical practice.
    Keywords:  acne; atopic dermatitis; cutaneous T cell lymphoma; inhibitors; mTOR signaling pathway; melanoma; pemphigus; psoriasis; therapy
  49. Biochem Biophys Res Commun. 2022 Feb 08. pii: S0006-291X(22)00198-X. [Epub ahead of print]598 107-112
      Yeast Gtr1p is a GTPase that forms a heterodimer with Gtr2p, another GTPase; it is involved in regulating TORC1 activity in nutrient signaling, including amino acid availability and growth control. Gtr1p is a positive regulator of TORC1, a kinase that regulates various cellular functions (e.g., protein synthesis and autophagy) under specific nutrient and environmental conditions, including oxidative stress. In this study, we examined the roles of Gtr1p in oxidative stress responses. We found that yeast cells expressing guanosine diphosphatase (GDP)-bound Gtr1p (Gtr1-S20Lp) were resistant to hydrogen peroxide (H2O2), whereas guanosine triphosphate (GTP)-bound Gtr1p (Gtr1-Q65Lp) was sensitive to H2O2 compared with the wild type. Consistent with these findings, yeast cells lacking Iml1p, a component of the GTPase-activating protein complex for Gtr1p, exhibited the H2O2-sensitive phenotype. In gtr1S20L cells, autophagy was highly induced under oxidative stress. gtr1Q65L cells showed decreased expression of the SNQ2 gene, which encodes a multidrug transporter involved in resistance to oxidative stress, and the overexpression of SNQ2 rescued the oxidative stress sensitivity of gtr1Q65L cells. These results suggest that Gtr1p is involved in oxidative stress responses through mechanisms that include autophagy and SNQ2 expression.
    Keywords:  Autophagy; Gtr1p; Oxidative stress; SNQ2; TORC1
  50. Cancers (Basel). 2022 Feb 04. pii: 796. [Epub ahead of print]14(3):
      Protein kinase C iota (PKCι) functions as a bonafide human oncogene in lung and ovarian cancer and is required for KrasG12D-mediated lung cancer initiation and progression. PKCι expression is required for pancreatic cancer cell growth and maintenance of the transformed phenotype; however, nothing is known about the role of PKCι in pancreas development or pancreatic tumorigenesis. In this study, we investigated the effect of pancreas-specific ablation of PKCι expression on pancreatic cellular homeostasis, susceptibility to pancreatitis, and KrasG12D-mediated pancreatic cancer development. Knockout of pancreatic Prkci significantly increased pancreatic immune cell infiltration, acinar cell DNA damage, and apoptosis, but reduced sensitivity to caerulein-induced pancreatitis. Prkci-ablated pancreatic acinar cells exhibited P62 aggregation and a loss of autophagic vesicles. Loss of pancreatic Prkci promoted KrasG12D-mediated pancreatic intraepithelial neoplasia formation but blocked progression to adenocarcinoma, consistent with disruption of autophagy. Our results reveal a novel promotive role for PKCι in pancreatic epithelial cell autophagy and pancreatic cancer progression.
    Keywords:  autophagy; immune cell infiltration; pancreatic cancer; protein kinase C iota; tumor progression
  51. Cells. 2022 Jan 21. pii: 366. [Epub ahead of print]11(3):
      CLC proteins comprise Cl- channels and anion/H+ antiporters involved in several fundamental physiological processes. ClC-7 is a lysosomal Cl-/H+ antiporter that together with its beta subunit Ostm1 has a critical role in the ionic homeostasis of lysosomes and of the osteoclasts' resorption lacuna, although the specific underlying mechanism has so far remained elusive. Mutations in ClC-7 cause osteopetrosis, but also a form of lysosomal storage disease and neurodegeneration. Interestingly, both loss-of- and gain-of-function mutations of ClC-7 can be pathogenic, but the mechanistic implications of this finding are still unclear. This review will focus on the recent advances in our understanding of the biophysical properties of ClC-7 and of its role in human diseases with a focus on osteopetrosis and neurodegeneration.
    Keywords:  bone; chloride transport; lysosomal storage disease; lysosome; organellar transporter; osteoclast; osteopetrosis; proton transport
  52. Front Cell Dev Biol. 2021 ;9 782736
      Mechanical stimuli control cell behaviors that are crucial for bone tissue repair. Osteocytes sense extracellular mechanical stimuli then convert them into biochemical signals to harmonize bone remodeling. However, the mechanisms underlying this process remain unclear. Autophagy, which is an evolutionarily preserved process, that occurs at a basal level when stimulated by multiple environmental stresses. We postulated that mechanical stimulation upregulates osteocyte autophagy via AMPK-associated signaling, driving osteocyte-mediated osteogenesis. Using a murine model of orthodontic tooth movement, we show that osteocyte autophagy is triggered by mechanical tension, increasing the quantity of LC3B-positive osteocytes by 4-fold in the tension side. Both in vitro mechanical tension as well as the chemical autophagy agonist enhanced osteocyte Fibroblast growth factor 23 (FGF23) secretion, which is an osteogenenic related cytokine, by 2-and 3-fold, respectively. Conditioned media collected from tensioned osteocytes enhanced osteoblast viability. These results indicate that mechanical tension drives autophagy-mediated FGF23 secretion from osteocytes and promotes osteogenesis. Our findings highlight a potential strategy for accelerating osteogenesis in orthodontic clinical settings.
    Keywords:  FGF23; autophagy; mechanical tension; osteocytes; osteogenesis
  53. Front Cell Dev Biol. 2022 ;10 761080
      The key tumor suppressor protein p53, additionally known as p53, represents an attractive target for the development and management of anti-cancer therapies. p53 has been implicated as a tumor suppressor protein that has multiple aspects of biological function comprising energy metabolism, cell cycle arrest, apoptosis, growth and differentiation, senescence, oxidative stress, angiogenesis, and cancer biology. Autophagy, a cellular self-defense system, is an evolutionarily conserved catabolic process involved in various physiological processes that maintain cellular homeostasis. Numerous studies have found that p53 modulates autophagy, although the relationship between p53 and autophagy is relatively complex and not well understood. Recently, several experimental studies have been reported that p53 can act both an inhibitor and an activator of autophagy which depend on its cellular localization as well as its mode of action. Emerging evidences have been suggested that the dual role of p53 which suppresses and stimulates autophagy in various cencer cells. It has been found that p53 suppression and activation are important to modulate autophagy for tumor promotion and cancer treatment. On the other hand, activation of autophagy by p53 has been recommended as a protective function of p53. Therefore, elucidation of the new functions of p53 and autophagy could contribute to the development of novel therapeutic approaches in cancer biology. However, the underlying molecular mechanisms of p53 and autophagy shows reciprocal functional interaction that is a major importance for cancer treatment and manegement. Additionally, several synthetic drugs and phytochemicals have been targeted to modulate p53 signaling via regulation of autophagy pathway in cancer cells. This review emphasizes the current perspectives and the role of p53 as the main regulator of autophagy-mediated novel therapeutic approaches against cancer treatment and managements.
    Keywords:  apoptosis; autophagy; p53; phytochemical; synthetic drug; tumor suppressor
  54. Int J Biol Sci. 2022 ;18(3): 1150-1170
      In some cases of spontaneous miscarriage (SM), the exact etiology cannot be determined. Autophagy, which is responsible for cellular survival under stress conditions, has also been implicated in many diseases. Recently, it is also surmised to be correlated with SM. However, the detailed mechanism remains elusive. In fact, there are several essential steps during pregnancy establishment and maintenance: trophoblasts invasion, placentation, decidualization, enrichment and infiltration of decidua immune cells (e.g., natural killer, macrophage and T cells). Accordingly, upstream molecules and downstream effects of autophagy are discussed in these processes, respectively. Of note, autophagy regulates the crosstalk between these cells at the maternal-fetal interface as well. Aberrant autophagy is found in villi, decidual stromal cells, peripheral blood mononuclear cells in SM patients, although the findings are inconsistent among different studies. Furthermore, potential treatments targeting autophagy are included, during which rapamycin and vitamin D are hot-spots in recent literatures. To conclude, a moderately activated autophagy is deeply involved in pregnancy, suggesting that autophagy should be a regulator and promising target for treating SM.
    Keywords:  autophagy; decidual immune cells; decidualization; placentation; spontaneous miscarriage; trophoblast cells
  55. Front Neurosci. 2022 ;16 784880
      Mitochondrial network is constantly in a dynamic and regulated balance of fusion and fission processes, which is known as mitochondrial dynamics. Mitochondria make physical contacts with almost every other membrane in the cell thus impacting cellular functions. Mutations in mitochondrial dynamics genes are known to cause neurogenetic diseases. To better understand the consequences on the cellular phenotype and pathophysiology of neurogenetic diseases associated with defective mitochondrial dynamics, we have compared the fibroblasts phenotypes of (i) patients carrying pathogenic variants in genes involved in mitochondrial dynamics such as DRP1 (also known as DNM1L), GDAP1, OPA1, and MFN2, and (ii) patients carrying mutated genes that their dysfunction affects mitochondria or induces a mitochondrial phenotype, but that are not directly involved in mitochondrial dynamic network, such as FXN (encoding frataxin, located in the mitochondrial matrix), MED13 (hyperfission phenotype), and CHKB (enlarged mitochondria phenotype). We identified mitochondrial network alterations in all patients' fibroblasts except for CHKB Q198*/Q198*. Functionally, all fibroblasts showed mitochondrial oxidative stress, without membrane potential abnormalities. The lysosomal area and distribution were abnormal in GDAP1 W67L/W67L, DRP1 K75E/+, OPA1 F570L/+, and FXN R165C/GAA fibroblasts. These lysosomal alterations correlated with mitochondria-lysosome membrane contact sites (MCSs) defects in GDAP1 W67L/W67L exclusively. The study of mitochondrial contacts in all samples further revealed a significant decrease in MFN2 R104W/+ fibroblasts. GDAP1 and MFN2 are outer mitochondrial membrane (OMM) proteins and both are related to Charcot-Marie Tooth neuropathy. Here we identified their constitutive interaction as well as MFN2 interaction with LAMP-1. Therefore MFN2 is a new mitochondria-lysosome MCSs protein. Interestingly, GDAP1 W67L/W67L and MFN2 R104W/+ fibroblasts carry pathogenic changes that occur in their catalytic domains thus suggesting a functional role of GDAP1 and MFN2 in mitochondria-lysosome MCSs. Finally, we observed starvation-induced autophagy alterations in DRP1 K75E/+, GDAP1 W67L/W67L, OPA1 F570L/+, MFN2 R104W/+, and CHKB Q198*/Q198* fibroblasts. These genes are related to mitochondrial membrane structure or lipid composition, which would associate the OMM with starvation-induced autophagy. In conclusion, the study of mitochondrial dynamics and mitochondria-lysosome axis in a group of patients with different neurogenetic diseases has deciphered common and unique cellular phenotypes of degrading and non-degrading pathways that shed light on pathophysiological events, new biomarkers and pharmacological targets for these disorders.
    Keywords:  lysosome; membrane contact sites (MCSs); mitochondria; mitochondrial dynamics; neurogenetic diseases
  56. Front Mol Biosci. 2021 ;8 804097
      The endoplasmic reticulum is a central player in liver pathophysiology. Chronic injury to the ER through increased lipid content, alcohol metabolism, or accumulation of misfolded proteins causes ER stress, dysregulated hepatocyte function, inflammation, and worsened disease pathogenesis. A key adaptation of the ER to resolve stress is the removal of excess or misfolded proteins. Degradation of intra-luminal or ER membrane proteins occurs through distinct mechanisms that include ER-associated Degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD), which includes macro-ER-phagy, micro-ER-phagy, and Atg8/LC-3-dependent vesicular delivery. All three of these processes are critical for removing misfolded or unfolded protein aggregates, and re-establishing ER homeostasis following expansion/stress, which is critical for liver function and adaptation to injury. Despite playing a key role in resolving ER stress, the contribution of these degradative processes to liver physiology and pathophysiology is understudied. Analysis of publicly available datasets from diseased livers revealed that numerous genes involved in ER-related degradative pathways are dysregulated; however, their roles and regulation in disease progression are not well defined. Here we discuss the dynamic regulation of ER-related protein disposal pathways in chronic liver disease and cell-type specific roles, as well as potentially targetable mechanisms for treatment of chronic liver disease.
    Keywords:  ER associated degradation; ER-lysosomal degradation; ER-phagy; alcoholic liver disease; alpha-1 antitrypsin disease; fibrosis; non-alcoholic fatty liver disease; non-alcoholic steatohepatitis
  57. Transl Neurodegener. 2022 02 14. 11(1): 10
      Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are one of the most frequent genetic causes of both familial and sporadic Parkinson's disease (PD). Mounting evidence has demonstrated pathological similarities between LRRK2-associated PD (LRRK2-PD) and sporadic PD, suggesting that LRRK2 is a potential disease modulator and a therapeutic target in PD. LRRK2 mutant knock-in (KI) mouse models display subtle alterations in pathological aspects that mirror early-stage PD, including increased susceptibility of nigrostriatal neurotransmission, development of motor and non-motor symptoms, mitochondrial and autophagy-lysosomal defects and synucleinopathies. This review provides a rationale for the use of LRRK2 KI mice to investigate the LRRK2-mediated pathogenesis of PD and implications from current findings from different LRRK2 KI mouse models, and ultimately discusses the therapeutic potentials against LRRK2-associated pathologies in PD.
    Keywords:  Autophagy; Hyperkinase activity; Knock-in mouse model; LRRK2; LRRK2 inhibitor; Lysosome; Mitochondrial dysfunction; Motor dysfunction; Neurotransmission; Parkinson’s disease; Synucleinopathy
  58. Autophagy. 2022 Feb 17. 1-2
      Endometrial cancer (EC), the most common gynecological cancer, is usually resistant to chemotherapy when the EC patients are advanced or recurrent. Immunotherapy is a promising approach to treat advanced or recurrent EC patients. The innate immune molecule NLRC5 (NLR family CARD domain containing 5) is a major histocompatibility complex class I (MHC-I) transactivator, which is intimately associated with tumor antigen presentation. The absence of NLRC5 expression in cancer results in immune evasion and resistance to immunotherapy. Previously, we found that NLRC5 was downregulated in EC patients, suggesting that NLRC5 is a target for immune evasion in EC. In our recent study, we indicated that autophagy inhibits NLRC5 and NLRC5-mediated MHC-I gene expression in vitro. Of special note is that autophagy protein MAP1LC3/LC3 interacts with NLRC5 to inhibit the NLRC5-mediated MHC-I antigen presentation pathway in vitro and in vivo, which presents a novel mechanism underlying NLRC5-mediated immune evasion by autophagy in EC. Our results reveal a previously unknown mechanism of autophagy protein LC3 in the regulation of NLRC5-mediated MHC-I antigen presentation in EC, and highlight a potential immunotherapy approach in EC patients by inhibiting LC3 and promoting NLRC5.
    Keywords:  Antigen presentation; NLRC5; autophagy; endometrial cancer; immunotherapy
  59. Front Cell Dev Biol. 2021 ;9 806258
      Guanine nucleotide exchange factors (GEFs) activate GTPases by stimulating the release of guanosine diphosphate to permit the binding of guanosine triphosphate. ARHGEF3 or XPLN (exchange factor found in platelets, leukemic, and neuronal tissues) is a selective guanine nucleotide exchange factor for Rho GTPases (RhoGEFs) that activates RhoA and RhoB but not RhoC, RhoG, Rac1, or Cdc42. ARHGEF3 contains the diffuse B-cell lymphoma homology and pleckstrin homology domains but lacks similarity with other known functional domains. ARHGEF3 also binds the mammalian target of rapamycin complex 2 (mTORC2) and subsequently inhibits mTORC2 and Akt. In vivo investigation has also indicated the communication between ARHGEF3 and autophagy-related muscle pathologies. Moreover, studies on genetic variation in ARHGEF3 and genome-wide association studies have predicted exciting novel roles of ARHGEF3 in controlling bone mineral density, platelet formation and differentiation, and Hirschsprung disease. In conclusion, we hypothesized that additional biochemical and functional studies are required to elucidate the detailed mechanism of ARHGEF3-related pathologies and therapeutics.
    Keywords:  ARHGEF3; Akt; XPLN; mTORC2; rho guanine nucleotide exchange factors
  60. Life Sci Alliance. 2022 May;pii: e202201369. [Epub ahead of print]5(5):
      Lymphangioleiomyomatosis (LAM) is a rare progressive disease, characterized by mutations in the tuberous sclerosis complex genes (TSC1 or TSC2) and hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1). Here, we report that E26 transformation-specific (ETS) variant transcription factor 2 (ETV2) is a critical regulator of Tsc2-deficient cell survival. ETV2 nuclear localization in Tsc2-deficient cells is mTORC1-independent and is enhanced by spleen tyrosine kinase (Syk) inhibition. In the nucleus, ETV2 transcriptionally regulates poly(ADP-ribose) polymerase 1 binding protein (PARPBP) mRNA and protein expression, partially reversing the observed down-regulation of PARPBP expression induced by mTORC1 blockade during treatment with both Syk and mTORC1 inhibitors. In addition, silencing Etv2 or Parpbp in Tsc2-deficient cells induced ER stress and increased cell death in vitro and in vivo. We also found ETV2 expression in human cells with loss of heterozygosity for TSC2, lending support to the translational relevance of our findings. In conclusion, we report a novel ETV2 signaling axis unique to Syk inhibition that promotes a cytocidal response in Tsc2-deficient cells and therefore maybe a potential alternative therapeutic target in LAM.
  61. Mil Med Res. 2022 Feb 14. 9(1): 9
      BACKGROUND: Ultrasound-triggered microbubble destruction (UTMD) is a widely used noninvasive technology in both military and civilian medicine, which could enhance radiosensitivity of various tumors. However, little information is available regarding the effects of UTMD on radiotherapy for glioblastoma or the underlying mechanism. This study aimed to delineate the effect of UTMD on the radiosensitivity of glioblastoma and the potential involvement of autophagy.METHODS: GL261, U251 cells and orthotopic glioblastoma-bearing mice were treated with ionizing radiation (IR) or IR plus UTMD. Autophagy was observed by confocal microscopy and transmission electron microscopy. Western blotting and immunofluorescence analysis were used to detect progesterone receptor membrane component 1 (PGRMC1), light chain 3 beta 2 (LC3B2) and sequestosome 1 (SQSTM1/p62) levels. Lentiviral vectors or siRNAs transfection, and fluorescent probes staining were used to explore the underlying mechanism.
    RESULTS: UTMD enhanced the radiosensitivity of glioblastoma in vitro and in vivo (P < 0.01). UTMD inhibited autophagic flux by disrupting autophagosome-lysosome fusion without impairing lysosomal function or autophagosome synthesis in IR-treated glioblastoma cells. Suppression of autophagy by 3-methyladenine, bafilomycin A1 or ATG5 siRNA had no significant effect on UTMD-induced radiosensitization in glioblastoma cells (P < 0.05). Similar results were found when autophagy was induced by rapamycin or ATG5 overexpression (P > 0.05). Furthermore, UTMD inhibited PGRMC1 expression and binding with LC3B2 in IR-exposed glioblastoma cells (P < 0.01). PGRMC1 inhibitor AG-205 or PGRMC1 siRNA pretreatment enhanced UTMD-induced LC3B2 and p62 accumulation in IR-exposed glioblastoma cells, thereby promoting UTMD-mediated radiosensitization (P < 0.05). Moreover, PGRMC1 overexpression abolished UTMD-caused blockade of autophagic degradation, subsequently inhibiting UTMD-induced radiosensitization of glioblastoma cells. Finally, compared with IR plus UTMD group, PGRMC1 overexpression significantly increased tumor size [(3.8 ± 1.1) mm2 vs. (8.0 ± 1.9) mm2, P < 0.05] and decreased survival time [(67.2 ± 2.6) d vs. (40.0 ± 1.2) d, P = 0.0026] in glioblastoma-bearing mice.
    CONCLUSION: UTMD enhanced the radiosensitivity of glioblastoma partially by disrupting PGRMC1-mediated autophagy.
    Keywords:  Autophagy; Glioblastoma; Progesterone receptor membrane component 1; Radiosensitization; Ultrasound-triggered microbubble destruction
  62. Exp Eye Res. 2022 Feb 12. pii: S0014-4835(22)00062-8. [Epub ahead of print] 108981
      The retinal pigment epithelium is a pigmented monolayer of cells that help maintain a healthy retina. Loss of this essential cell layer is implicated in a number of visual disorders, including age-related macular degeneration (AMD). Utilizing primary RPE cultures to investigate disease is an important step in understanding disease mechanisms. However, the use of primary RPE cultures presents a number of challenges, including the limited number of cells available and the presence of auto-fluorescent pigment that interferes with quantifying fluorescent probes. Additionally, primary RPE are difficult to transfect with exogenous nucleic acids traditionally used for fluorescent imaging. To overcome these challenges, we used an adeno-associated viral (AAV) vector to express a pH sensitive fluorescent protein, mKeima, fused to the mitochondrial targeting sequence of cytochrome oxidase subunit 8A (mKeima-mito). mKeima-mito allows for quantification of mitochondrial autophagy (mitophagy) in live cell time lapse imaging experiments. We also developed an image analysis pipeline to selectively quantify mKeima-mito while removing the signal of auto-fluorescent pigment from the dataset by utilizing information from the mKeima fluorescent channels. These techniques are demonstrated in primary RPE cultures expressing mKeima-mito treated with 2-[2-[4-(trifluoromethoxy)phenyl]hydrazinylidene]-propanedinitrile (FCCP), an uncoupler that depolarizes the mitochondrial membrane and leads to mitochondrial fragmentation and mitophagy. The techniques outlined provide a roadmap for investigating disease mechanisms or the effect of treatments utilizing fluorescent probes in an important cell culture model.
  63. Cells. 2022 Jan 24. pii: 385. [Epub ahead of print]11(3):
      Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
    Keywords:  edgotype; intracellular peptides; mTORC1; protein–protein interaction