bims-almceb Biomed News
on Acute Leukemia Metabolism and Cell Biology
Issue of 2023‒03‒26
nine papers selected by
Camila Kehl Dias
Federal University of Rio Grande do Sul


  1. Front Oncol. 2023 ;13 1143798
      Glutamine, the most abundant non-essential amino acid in human blood, is crucial for cancer cell growth and cancer progression. Glutamine mainly functions as a carbon and nitrogen source for biosynthesis, energy metabolism, and redox homeostasis maintenance in cancer cells. Dysregulated glutamine metabolism is a notable metabolic characteristic of cancer cells. Some carcinogen-driven cancers exhibit a marked dependence on glutamine, also known as glutamine addiction, which has rendered the glutamine metabolic pathway a breakpoint in cancer therapeutics. However, some cancer cells can adapt to the glutamine unavailability by reprogramming metabolism, thus limiting the success of this therapeutic approach. Given the complexity of metabolic networks and the limited impact of inhibiting glutamine metabolism alone, the combination of glutamine metabolism inhibition and other therapeutic methods may outperform corresponding monotherapies in the treatment of cancers. This review summarizes the uptake, transport, and metabolic characteristics of glutamine, as well as the regulation of glutamine dependence by some important oncogenes in various cancers to emphasize the therapeutic potential of targeting glutamine metabolism. Furthermore, we discuss a glutamine metabolic pathway, the glutaminase II pathway, that has been substantially overlooked. Finally, we discuss the applicability of polytherapeutic strategies targeting glutamine metabolism to provide a new perspective on cancer therapeutics.
    Keywords:  cancer therapy; glutamine addiction; glutamine metabolism; metabolism inhibiton; oncogene
    DOI:  https://doi.org/10.3389/fonc.2023.1143798
  2. Blood. 2023 Mar 22. pii: blood.2022017152. [Epub ahead of print]
      Chronic or recurrent episodes of acute inflammation cause attrition of normal hematopoietic stem cells (HSCs) that can lead to hematopoietic failure, but they drive progression in myeloid malignancies and their precursor clonal hematopoiesis (CH). Mechanistic parallels exist between hematopoiesis in chronic inflammation and the continuously increased proliferation of myeloid malignancies, particularly myeloproliferative neoplasms (MPNs). The ability to enter dormancy, a state of deep quiescence characterized by low oxidative phosphorylation, low glycolysis, reduced protein synthesis, and increased autophagy is central to the preservation of long term HSCs and likely MPN SCs. The metabolic features of dormancy resemble those of diapause, a state of arrested embryonic development triggered by adverse environmental conditions. To outcompete their normal counterparts in the inflammatory MPN environment, MPN SCs co-opt mechanisms used by HSCs to avoid exhaustion, including signal attenuation by negative regulators, insulation from activating cytokine signals, anti-inflammatory signaling, and epigenetic reprogramming. We propose that new therapeutic strategies may be derived from conceptualizing myeloid malignancies as an ecosystem out of balance, where residual normal and malignant hematopoietic cells interact in multiple ways, only few of which have been characterized in detail. Disrupting MPN SC insulation to overcome dormancy, interfering with aberrant cytokines circuits that favor MPN cells and directly boosting residual normal HSCs are potential strategies to tip the balance in favor of normal hematopoiesis. While eradicating the malignant cell clones remains the goal of therapy, this may be a more attainable objective in the short term.
    DOI:  https://doi.org/10.1182/blood.2022017152
  3. Stem Cell Rev Rep. 2023 Mar 23.
      Intra-tumoral heterogeneity is maintained by cancer stem cells (CSCs) with dysregulated self-renewal and asymmetric cell division (ACD). According to the cancer stem cell theory, by ACD a CSC can generate two daughter progenies with different fates such as one cancer stem cell and one differentiated cell. Therefore, this type of mitotic division supports vital process of the maintenance of CSC population. But this CSC pool reservation by ACD complicates the treatment of cancer patients, as CSCs give rise to aggressive clones which are prone to metastasis and drug-insensitivity. Hence, identification of therapeutic modalities which can target ACD of cancer stem cell is an intriguing part of cancer research. In this review, other than the discussion about the extrinsic inducers of ACD role of different proteins, miRNAs and lncRNAs in this type of cell division is also mentioned. Other than these, mode of action of the proven and potential drugs targeting ACD of CSC is also discussed here.
    Keywords:  Asymmetric division; Cancer stem cell; Drug resistance; Recurrence; Targeted therapy
    DOI:  https://doi.org/10.1007/s12015-023-10523-3
  4. Signal Transduct Target Ther. 2023 Mar 22. 8(1): 137
      Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.
    DOI:  https://doi.org/10.1038/s41392-023-01380-0
  5. Front Immunol. 2023 ;14 1139517
      Introduction: Despite accumulated evidence in T-cell exhaustion in acute myeloid leukemia (AML), the immunotherapeutic targeting exhausted T cells such as programmed cell death protein 1 (PD-1) blockade in AML failed to achieve satisfying efficacy. Characteristics of exhausted T cells in AML remained to be explored.Methods: Phenotypic analysis of T cells in bone marrow (BM) using flow cytometry combining senescent and exhausted markers was performed in de novo AML patients and healthy donors as well as AML patients with complete remission (CR). Functional analysis of T-cell subsets was also performed in de novo AML patients using flow cytometry.
    Results: T cells experienced a phenotypic shift to terminal differentiation characterized by increased loss of CD28 expression and decrease of naïve T cells. Additionally, lack of CD28 expression could help define a severely exhausted subset from generally exhausted T cells (PD-1+TIGIT+). Moreover, CD28- subsets rather than CD28+ subsets predominantly contributed to the significant accumulation of PD-1+TIGIT+ T cells in AML patients. Further comparison of de novo and CR AML patients showed that T-cell exhaustion status was improved after disease remission, especially in CD28+ subsets. Notably, higher frequency of CD28-TIGIT-CD4+ T cells correlated with the presence of minimal residual disease in AML-CR group. However, the correlation between CD28- exhausted T cells and cytogenetic risk or white blood cell count was not observed, except for that CD28- exhausted CD4+ T cells correlated with lymphocyte counts. Intriguingly, larger amount of CD28-TGITI+CD8+ T cells at diagnosis was associated with poor treatment response and shorter leukemia free survival.
    Discussion: In summary, lack of CD28 expression defined a severely exhausted status from exhausted T cells. Accumulation of CD28- exhausted T cells was linked to occurrence of AML, and correlated to poor clinical outcome. Our data might facilitate the development of combinatory strategies to improve the efficacy of PD-1 blockade in AML.
    Keywords:  CD28; T cell; acute myeloid leukemia; exhaustion; senescence
    DOI:  https://doi.org/10.3389/fimmu.2023.1139517
  6. Tumori. 2023 Mar 24. 3008916231158411
      The cancer stem cell model hopes to explain solid tumour carcinogenesis, tumour progression and treatment failure in cancers. However, the cancer stem cell model has led to minimal clinical translation to cancer stem cell biomarkers and targeted therapies in solid tumours. Many reasons underlie the challenges, one being the imperfect understanding of the cancer stem cell model. This review hopes to spur further research into clinically translatable cancer stem cell biomarkers through first defining cancer stem cells and their associated models. With a better understanding of these models there would be a development of more accurate biomarkers. Making the clinical translation of biomarkers into diagnostic tools and therapeutic agents more feasible.
    Keywords:  Cancer stem cells; biomarkers; cancer stem cell models; cancer therapy; solid tumours; targeted treatment
    DOI:  https://doi.org/10.1177/03008916231158411
  7. Zhonghua Xue Ye Xue Za Zhi. 2023 Feb 14. 44(2): 132-136
      Objective: To assess the clinical characteristics and prognosis of patients with SIL-TAL1-positive T-cell acute lymphoblastic leukemia (T-ALL) . Methods: The clinical data of 19 SIL-TAL1-positive T-ALL patients admitted to the First Affiliated Hospital of Soochow University between January 2014 and February 2022 were retrospectively computed and contrasted with SIL-TAL1-negative T-ALL patients. Results: The median age of the 19 SIL-TAL1-positive T-ALL patients was 15 (7 to 41 years) , including 16 males (84.2%) . SIL-TAL1-positive T-ALL patients had younger age, higher WBC, and hemoglobin compared with SIL-TAL1-negative T-ALL patients. There was no discrepancy in gender distribution, PLT, chromosome abnormality distribution, immunophenotyping, and complete remission (CR) rate. The 3-year overall survival (OS) was 60.9% and 74.4%, respectively (HR=2.070, P=0.071) . The 3-year relapse-free survival (RFS) was 49.2% and 70.6%, respectively (HR=2.275, P=0.040) . The 3-year RFS rate of SIL-TAL1-positive T-ALL patients was considerably lower than SIL-TAL1-negative T-ALL patients. Conclusion: SIL-TAL1-positive T-ALL patients were connected to younger age, higher WBC, higher HGB, and poor outcome.
    Keywords:  Hematopoietic stem cell transplantation; Leukemia, T lymphocytic, acute; Prognosis; SIL-TAL1 fusion gene
    DOI:  https://doi.org/10.3760/cma.j.issn.0253-2727.2023.02.008
  8. Trends Cancer. 2023 Mar 17. pii: S2405-8033(23)00028-6. [Epub ahead of print]
      Cancer is a systemic disease that involves malignant cell-intrinsic and -extrinsic metabolic adaptations. Most studies have tended to focus on elucidating the metabolic vulnerabilities in the primary tumor microenvironment, leaving the metastatic microenvironment less explored. In this opinion article, we discuss the current understanding of the metabolic crosstalk between the cancer cells and the tumor microenvironment, both at local and systemic levels. We explore the possible influence of the primary tumor secretome to metabolically and epigenetically rewire the nonmalignant distant organs during prometastatic niche formation and successful metastatic colonization by the cancer cells. In an attempt to understand the process of prometastatic niche formation, we have speculated how cancer may hijack the inherent regenerative propensity of tissue parenchyma during metastatic colonization.
    Keywords:  metabolism; metastasis; prometastatic niche; stroma; tissue regeneration; wound response
    DOI:  https://doi.org/10.1016/j.trecan.2023.02.005
  9. Am J Blood Res. 2023 ;13(1): 12-27
      Acute myeloid leukemia (AML) is a heterogenous and challenging hematological malignancy with suboptimal outcomes. The implications of advanced technologies in the genetic characterization of AML have enhanced the understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. A comprehensive study of novel mutations is essential to moderate the complicacies in patient management and achieve optimal outcomes in AML. In this review, we summarized the clinical relevance of important novel mutations, including TET2, ETV6, SATB1, EZH2, PTPN11, and U2AF1, which impact the prognosis of AML. TET2 mutation can lead to DNA hypermethylation, and gene fusion, and mutation in ETV6 disrupts hematopoietic transcription machinery, SATB1 downregulation aggravates the disease, and EZH2 mutation confers resistance to chemotherapy. PTPN11 mutation influences the RAS-MAPK signaling pathway, and U2AF1 alters the splicing of downstream mRNA. The systemic influence of these mutations has adverse consequences. Therefore, extensive research on novel mutations and their mechanism of action in the pathogenesis of AML is vital. This study lays out the perspective of expanding the apprehension about AML and novel drug targets. The combination of advanced genetic techniques, risk stratification, ongoing improvements, and innovations in treatment strategy will undoubtedly lead to improved survival outcomes in AML.
    Keywords:  Acute myeloid leukemia; genetic mutations; next-generation sequencing; risk-stratification; survival; targeted therapy