bims-almceb Biomed News
on Acute Leukemia Metabolism and Cell Biology
Issue of 2021‒11‒07
eight papers selected by
Camila Kehl Dias
Federal University of Rio Grande do Sul


  1. Bio Protoc. 2021 Oct 05. 11(19): e4171
      Once thought to be a mere consequence of the state of a cell, intermediary metabolism is now recognized as a key regulator of mammalian cell fate and function. In addition, cell metabolism is often disturbed in malignancies such as cancer, and targeting metabolic pathways can provide new therapeutic options. Cell metabolism is mostly studied in cell cultures in vitro, using techniques such as metabolomics, stable isotope tracing, and biochemical assays. Increasing evidence however shows that the metabolic profile of cells is highly dependent on the microenvironment, and metabolic vulnerabilities identified in vitro do not always translate to in vivo settings. Here, we provide a detailed protocol on how to perform in vivo stable isotope tracing in leukemia cells in mice, focusing on glutamine metabolism in acute myeloid leukemia (AML) cells. This method allows studying the metabolic profile of leukemia cells in their native bone marrow niche.
    Keywords:  Cancer biology; Cell metabolism; Glutamine; Leukemia; Metabolic tracing; Mouse models
    DOI:  https://doi.org/10.21769/BioProtoc.4171
  2. Bull Math Biol. 2021 Oct 31. 83(12): 120
      Metabolic behaviours of proliferating cells are often explained as a consequence of rational optimization of cellular growth rate, whereas microeconomics formulates consumption behaviours as optimization problems. Here, we pushed beyond the analogy to precisely map metabolism onto the theory of consumer choice. We thereby revealed the correspondence between long-standing mysteries in both fields: the Warburg effect, a seemingly wasteful but ubiquitous strategy where cells favour aerobic glycolysis over more energetically efficient oxidative phosphorylation, and Giffen behaviour, the unexpected consumer behaviour where a good is demanded more as its price rises. We identified the minimal, universal requirements for the Warburg effect: a trade-off between oxidative phosphorylation and aerobic glycolysis and complementarity, i.e. impossibility of substitution for different metabolites. Thus, various hypotheses for the Warburg effect are integrated into an identical optimization problem with the same universal structure. Besides, the correspondence between the Warburg effect and Giffen behaviour implies that oxidative phosphorylation is counter-intuitively stimulated when its efficiency is decreased by metabolic perturbations such as drug administration or mitochondrial dysfunction; the concept of Giffen behaviour bridges the Warburg effect and the reverse Warburg effect. This highlights that the application of microeconomics to metabolism can offer new predictions and paradigms for both biology and economics.
    Keywords:  Metabolic systems; Overflow metabolism; Reverse Warburg effect; Theory of consumer choice
    DOI:  https://doi.org/10.1007/s11538-021-00952-x
  3. Front Immunol. 2021 ;12 775128
      Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults. While complete remission can be obtained with intensive chemotherapy in young and fit patients, relapse is frequent and prognosis remains poor. Leukemic cells are thought to arise from a pool of leukemic stem cells (LSCs) which sit at the top of the hierarchy. Since their discovery, more than 30 years ago, LSCs have been a topic of intense research and their identification paved the way for cancer stem cell research. LSCs are defined by their ability to self-renew, to engraft into recipient mice and to give rise to leukemia. Compared to healthy hematopoietic stem cells (HSCs), LSCs display specific mutations, epigenetic modifications, and a specific metabolic profile. LSCs are usually considered resistant to chemotherapy and are therefore the drivers of relapse. Similar to their HSC counterpart, LSCs reside in a highly specialized microenvironment referred to as the "niche". Bidirectional interactions between leukemic cells and the microenvironment favor leukemic progression at the expense of healthy hematopoiesis. Within the niche, LSCs are thought to be protected from genotoxic insults. Improvement in our understanding of LSC gene expression profile and phenotype has led to the development of prognosis signatures and the identification of potential therapeutic targets. In this review, we will discuss LSC biology in the context of their specific microenvironment and how a better understanding of LSC niche biology could pave the way for new therapies that target AML.
    Keywords:  acute myeloid leukemia; genetic heterogeneity; leukemic stem cell (LSC); stem cell niche; therapeutic targets
    DOI:  https://doi.org/10.3389/fimmu.2021.775128
  4. Neoplasia. 2021 Oct 29. pii: S1476-5586(21)00088-9. [Epub ahead of print]23(12): 1167-1178
      The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy.
    Keywords:  Adenosine triphosphate; Lipid metabolism; Metabolism; Neoplasms; Protein processing, Post-translational; STAT3 transcription factor
    DOI:  https://doi.org/10.1016/j.neo.2021.10.003
  5. Front Immunol. 2021 ;12 746492
      B-cell acute lymphoblastic leukemia (B-ALL) results from the expansion of malignant lymphoid precursors within the bone marrow (BM), where hematopoietic niches and microenvironmental signals provide leukemia-initiating cells (LICs) the conditions to survive, proliferate, initiate disease, and relapse. Normal and malignant lymphopoiesis are highly dependent on the BM microenvironment, particularly on CXCL12-abundant Reticular (CAR) cells, which provide a niche for maintenance of primitive cells. During B-ALL, leukemic cells hijack BM niches, creating a proinflammatory milieu incompetent to support normal hematopoiesis but favoring leukemic proliferation. Although the lack of a phenotypic stem cell hierarchy is apparent in B-ALL, LICs are a rare and quiescent population potentially responsible for chemoresistance and relapse. Here, we developed novel patient-derived leukemia spheroids (PDLS), an ex vivo avatar model, from mesenchymal stromal cells (MSCs) and primary B-ALL cells, to mimic specialized niche structures and cell-to-cell intercommunication promoting normal and malignant hematopoiesis in pediatric B-ALL. 3D MSC spheroids can recapitulate CAR niche-like hypoxic structures that produce high levels of CXCL10 and CXCL11. We found that PDLS were preferentially enriched with leukemia cells displaying functional properties of LICs, such as quiescence, low reactive oxygen species, drug resistance, high engraftment in immunodeficient mice, and long-term leukemogenesis. Moreover, the combination of PDLS and patient-derived xenografts confirmed a microenvironment-driven hierarchy in their leukemic potential. Importantly, transcriptional profiles of MSC derived from primary patient samples revealed two unique signatures (1), a CXCL12low inflammatory and leukemia expansion (ILE)-like niche, that likely supports leukemic burden, and (2) a CXCL11hi immune-suppressive and leukemia-initiating cell (SLIC)-like niche, where LICs are likely sustained. Interestingly, the CXCL11+ hypoxic zones were recapitulated within the PDLS that are capable of supporting LIC functions. Taken together, we have implemented a novel PDLS system that enriches and supports leukemia cells with stem cell features driven by CXCL11+ MSCs within hypoxic microenvironments capable of recapitulating key features, such as tumor reemergence after exposure to chemotherapy and tumor initiation. This system represents a unique opportunity for designing ex vivo personalized avatars for B-ALL patients to evaluate their own LIC pathobiology and drug sensitivity in the context of the tumor microenvironment.
    Keywords:  B-cell development; acute lymphoblastic leukemia; bone marrow niche; leukemia-initiating cell; mesenchymal stromal cells; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2021.746492
  6. Front Immunol. 2021 ;12 730672
      At sites of inflammation, monocytes carry out specific immune functions while facing challenging metabolic restrictions. Here, we investigated the potential of human monocytes to adapt to conditions of gradually inhibited oxidative phosphorylation (OXPHOS) under glucose free conditions. We used myxothiazol, an inhibitor of mitochondrial respiration, to adjust two different levels of decreased mitochondrial ATP production. At these levels, and compared to uninhibited OXPHOS, we assessed phagocytosis, production of reactive oxygen species (ROS) through NADPH oxidase (NOX), expression of surface activation markers CD16, CD80, CD11b, HLA-DR, and production of the inflammatory cytokines IL-1β, IL-6 and TNF-α in human monocytes. We found phagocytosis and the production of IL-6 to be least sensitive to metabolic restrictions while surface expression of CD11b, HLA-DR, production of TNF-α, IL-1β and production of ROS through NOX were most compromised by inhibition of OXPHOS in the absence of glucose. Our data demonstrate a short-term hierarchy of immune functions in human monocytes, which represents novel knowledge potentially leading to the development of new therapeutics in monocyte-mediated inflammatory diseases.
    Keywords:  ATP; IL-6; bioenergetics; energy; human monocytes; immunometabolism; lack of glucose availability; phagocytosis
    DOI:  https://doi.org/10.3389/fimmu.2021.730672
  7. Cell Stem Cell. 2021 Nov 04. pii: S1934-5909(21)00419-7. [Epub ahead of print]28(11): 1887-1889
      Expanding hematopoietic stem cells (HSCs) ex vivo has historically been a very challenging process. In this issue of Cell Stem Cell, Kruta et al. (2021) identify heat shock factor 1 (Hsf1) as a new target to maintain HSC fitness and protein homeostasis, not only in culture conditions but also upon aging.
    DOI:  https://doi.org/10.1016/j.stem.2021.10.007
  8. Front Cell Dev Biol. 2021 ;9 751301
      The role of metabolism in tumor growth and chemoresistance has received considerable attention, however, the contribution of mitochondrial bioenergetics in migration, invasion, and metastasis is recently being understood. Migrating cancer cells adapt their energy needs to fluctuating changes in the microenvironment, exhibiting high metabolic plasticity. This occurs due to dynamic changes in the contributions of metabolic pathways to promote localized ATP production in lamellipodia and control signaling mediated by mitochondrial reactive oxygen species. Recent evidence has shown that metabolic shifts toward a mitochondrial metabolism based on the reductive carboxylation, glutaminolysis, and phosphocreatine-creatine kinase pathways promote resistance to anoikis, migration, and invasion in cancer cells. The PGC1a-driven metabolic adaptations with increased electron transport chain activity and superoxide levels are essential for metastasis in several cancer models. Notably, these metabolic changes can be determined by the composition and density of the extracellular matrix (ECM). ECM stiffness, integrins, and small Rho GTPases promote mitochondrial fragmentation, mitochondrial localization in focal adhesion complexes, and metabolic plasticity, supporting enhanced migration and metastasis. Here, we discuss the role of ECM in regulating mitochondrial metabolism during migration and metastasis, highlighting the therapeutic potential of compounds affecting mitochondrial function and selectively block cancer cell migration.
    Keywords:  ECM stiffness; OXPHOS (oxidative phosphorylation); TCA cycle; integrin; metabolic shift; migrastatics; migrating cancer cells
    DOI:  https://doi.org/10.3389/fcell.2021.751301