bims-unfpre Biomed news
on Unfolded protein response
Issue of 2019‒02‒17
sixteen papers selected by
Susan Logue
Apoptosis Research Centre

  1. J Cell Sci. 2019 Feb 15. pii: jcs217216. [Epub ahead of print]132(5):
    Mitra S, Ryoo HD.
      Eukaryotic cells respond to an overload of unfolded proteins in the endoplasmic reticulum (ER) by activating signaling pathways that are referred to as the unfolded protein response (UPR). Much UPR research has been conducted in cultured cells that exhibit no baseline UPR activity until they are challenged by ER stress initiated by chemicals or mutant proteins. At the same time, many genes that mediate UPR signaling are essential for the development of organisms ranging from Drosophila and fish to mice and humans, indicating that there is physiological ER stress that requires UPR in normally developing animal tissues. Recent studies have elucidated the tissue-specific roles of all three branches of UPR in distinct developing tissues of Drosophila, fish and mammals. As discussed in this Review, these studies not only reveal the physiological functions of the UPR pathways but also highlight a surprising degree of specificity associated with each UPR branch in development.
    Keywords:  ATF4; ATF6; Endoplasmic reticulum; Eye; IRE1; PERK; Pancreas; Unfolded protein response; XBP1; eIF2α
  2. Cell Death Dis. 2019 Feb 15. 10(3): 155
    Abhari BA, McCarthy N, Le Berre M, Kilcoyne M, Joshi L, Agostinis P, Fulda S.
      Since Inhibitor of Apoptosis (IAP) proteins have been implicated in cellular adaptation to endoplasmic reticulum (ER) stress, we investigated the regulation of ER stress-induced apoptosis by small-molecule second mitochondria-derived activator of caspase (Smac) mimetics that antagonize IAP proteins. Here, we discover that Smac mimetic suppresses tunicamycin (TM)-induced apoptosis via resolution of the unfolded protein response (UPR) and ER stress. Smac mimetics such as BV6 selectively inhibit apoptosis triggered by pharmacological or genetic inhibition of protein N-glycosylation using TM or knockdown of DPAGT1, the enzyme that catalyzes the first step of protein N-glycosylation. In contrast, BV6 does not rescue cell death induced by other typical ER stressors (i.e., thapsigargin (TG), dithiothreitol, brefeldin A, bortezomib, or 2-deoxyglucose). The protection from TM-triggered apoptosis is found for structurally different Smac mimetics and for genetic knockdown of cellular IAP (cIAP) proteins in several cancer types, underlining the broader relevance. Interestingly, lectin microarray profiling reveals that BV6 counteracts TM-imposed inhibition of protein glycosylation. BV6 consistently abolishes TM-stimulated accumulation of ER stress markers such as glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) and reduces protein kinase RNA-like ER kinase (PERK) phosphorylation and X box-binding protein 1 (XBP1) splicing upon TM treatment. BV6-stimulated activation of nuclear factor-κB (NF-κB) contributes to the resolution of ER stress, since NF-κB inhibition by overexpression of dominant-negative IκBα superrepressor counteracts the suppression of TM-stimulated transcriptional activation of CHOP and GRP78 by BV6. Thus, our study is the first to show that Smac mimetic protects from TM-triggered apoptosis by resolving the UPR and ER stress. This provides new insights into the regulation of cellular stress responses by Smac mimetics.
  3. Cell Death Dis. 2019 Feb 12. 10(2): 132
    Dauer P, Sharma NS, Gupta VK, Durden B, Hadad R, Banerjee S, Dudeja V, Saluja A, Banerjee S.
      Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) signaling have been shown to be dysregulated in multiple cancer types. Glucose regulatory protein 78 (GRP78), the master regulator of the UPR, plays a role in proliferation, invasion, and metastasis in cancer. Cancer stem cells (CSCs) make up a crucial component of the tumor heterogeneity in pancreatic cancer, as well as other cancers. "Stemness" in pancreatic cancer defines a population of cells within the tumor that have increased therapeutic resistance as well as survival advantage. In the current study, we investigated how GRP78 was responsible for maintaining "stemness" in pancreatic cancer thereby contributing to its aggressive biology. We determined that GRP78 downregulation decreased clonogenicity and self-renewal properties in pancreatic cancer cell lines in vitro. In vivo studies resulted in delayed tumor initiation frequency, as well as smaller tumor volume in the shGRP78 groups. Additionally, downregulation of GRP78 resulted in dysregulated fatty acid metabolism in pancreatic tumors as well as the cells. Further, our results showed that shGRP78 dysregulates multiple transcriptomic and proteomic pathways that involve DNA damage, oxidative stress, and cell death, that were reversed upon treatment with a ROS inhibitor, N-acetylcysteine. This study thus demonstrates for the first time that the heightened UPR in pancreatic cancer may be responsible for maintenance of the "stemness" properties in these cells that are attributed to aggressive properties like chemoresistance and metastasis.
  4. Cell Death Dis. 2019 Feb 12. 10(2): 135
    Yang J, Kim KS, Iyirhiaro GO, Marcogliese PC, Callaghan SM, Qu D, Kim WJ, Slack RS, Park DS.
      The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.
  5. Cell Death Dis. 2019 Feb 13. 10(2): 142
    Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L.
      Pancreatic cancer is one of the most aggressive tumors and patients have poor survival rates. Fisetin, a natural flavonoid, was recently reported to have antitumor effects in various cancer models. Autophagy is a conserved catabolic process that maintains cellular homoeostasis in response to stress, and together with apoptosis, determines cell fate. Herein, we examined the effect of fisetin on pancreatic cancer. We reveal that fisetin inhibits PANC-1 cell proliferation using a real-time cell analysis system. Moreover, the in vivo antitumor effect of fisetin was verified in pancreatic cancer using a luciferase-expressing murine xenograft pancreatic cancer model. We found that the AMPK/mTOR signaling pathway was enhanced after fisetin treatment; however, autophagy was not diminished by adding the AMPK inhibitor compound C. Thus, we hypothesized that an another autophagy regulating pathway existed. RNA-seq analysis revealed that the unfolded protein response pathway, which is activated by ER stress, was enriched. We also found that the stress-induced transcription factor p8 was increased in fisetin-treated PANC-1 cells, and that fisetin-induced autophagy was blocked by silencing p8. We revealed that p8-dependent autophagy was AMPK-independent, and that p8 regulated ATF6, ATF4, and PERK in response to ER stress via p53/PKC-α-mediated signaling. Furthermore, mitophagy was associated with Parkin and PINK1 in response to mitochondrial stress. Interestingly, ATF4 and ATF6 were increased in cells treated with fisetin and compound C. Moreover, inhibiting the AMPK/mTOR pathway with compound C may upregulate p8-dependent autophagy. Thus, there may be crosstalk between the AMPK/mTOR and p8-dependent pathways.
  6. Cancer Cell. 2019 Feb 11. pii: S1535-6108(19)30040-6. [Epub ahead of print]35(2): 204-220.e9
    Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson FS, Tepper J, Chen Z, Lovisa S, Svelto M, Amin S, Srinivasan S, Del Poggetto E, Loponte S, Puca F, Dey P, Malouf GG, Su X, Li L, Lopez-Terrada D, Rakheja D, Lazar AJ, Netto GJ, Rao P, Sgambato A, Maitra A, Tripathi DN, Walker CL, Karam JA, Heffernan TP, Viale A, Roberts CWM, Msaouel P, Tannir NM, Draetta GF, Genovese G.
      Alterations in chromatin remodeling genes have been increasingly implicated in human oncogenesis. Specifically, the biallelic inactivation of the SWI/SNF subunit SMARCB1 results in the emergence of extremely aggressive pediatric malignancies. Here, we developed embryonic mosaic mouse models of malignant rhabdoid tumors (MRTs) that faithfully recapitulate the clinical-pathological features of the human disease. We demonstrated that SMARCB1-deficient malignancies exhibit dramatic activation of the unfolded protein response (UPR) and ER stress response via a genetically intact MYC-p19ARF-p53 axis. As a consequence, these tumors display an exquisite sensitivity to agents inducing proteotoxic stress and inhibition of the autophagic machinery. In conclusion, our findings provide a rationale for drug repositioning trials investigating combinations of agents targeting the UPR and autophagy in SMARCB1-deficient MRTs.
    Keywords:  BIRC5; ER stress; MYC; SMARCB1; autophagy; embryonic mosaic GEM models; p53; proteasome inhibitors; renal medullary carcinoma; rhabdoid tumors
  7. J Cell Mol Med. 2019 Feb 12.
    Tian H, Li Y, Kang P, Wang Z, Yue F, Jiao P, Yang N, Qin S, Yao S.
      This study was designed to explore the inductive effect of glycated high-density lipoprotein (gly-HDL) on endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP)-mediated macrophage apoptosis and its relationship with autophagy. Our results showed that gly-HDL caused macrophage apoptosis with concomitant activation of ER stress pathway, including nuclear translocation of activating transcription factor 6, phosphorylation of protein kinase-like ER kinase (PERK) and eukaryotic translation initiation factor 2α, and CHOP up-regulation, which were inhibited by 4-phenylbutyric acid (PBA, an ER stress inhibitor) and the gene silencing of PERK and CHOP. Similar data were obtained from macrophages treated by HDL isolated from diabetic patients. Gly-HDL induced macrophage autophagy as assessed by up-regulation of beclin-1, autophagy-related gene 5 and microtubule-associated protein one light chain 3-II, which were depressed by PBA and PERK siRNA. Gly-HDL-induced apoptosis, PERK phosphorylation and CHOP up-regulation were suppressed by rapamycin (an autophagy inducer), whereas aggravated by 3-methyladenine (an autophagy inhibitor) and beclin-1 siRNA. Administration of diabetic apoE-/- mice with rapamycin attenuated MOMA-2 and CHOP up-regulation and apoptosis in atherosclerotic lesions. These data indicate that gly-HDL may induce macrophage apoptosis through activating ER stress-CHOP pathway and ER stress mediates gly-HDL-induced autophagy, which in turn protects macrophages against apoptosis by alleviating CHOP pathway.
    Keywords:  C/EBP homologous protein; apoptosis; autophagy; endoplasmic reticulum stress; glycated high-density lipoprotein; macrophage
  8. Sci Rep. 2019 Feb 14. 9(1): 2059
    Correll RN, Grimes KM, Prasad V, Lynch JM, Khalil H, Molkentin JD.
      Hemodynamic stress on the mammalian heart results in compensatory hypertrophy and activation of the unfolded protein response through activating transcription factor 6α (ATF6α) in cardiac myocytes, but the roles of ATF6α or the related transcription factor ATF6β in regulating this hypertrophic response are not well-understood. Here we examined the effects of loss of ATF6α or ATF6β on the cardiac response to pressure overload. Mice gene-deleted for Atf6 or Atf6b were subjected to 2 weeks of transverse aortic constriction, and each showed a significant reduction in hypertrophy with reduced expression of endoplasmic reticulum (ER) stress-associated proteins compared with controls. However, with long-term pressure overload both Atf6 and Atf6b null mice showed enhanced decompensation typified by increased heart weight, pulmonary edema and reduced function compared to control mice. Our subsequent studies using cardiac-specific transgenic mice expressing the transcriptionally active N-terminus of ATF6α or ATF6β revealed that these factors control overlapping gene expression networks that include numerous ER protein chaperones and ER associated degradation components. This work reveals previously unappreciated roles for ATF6α and ATF6β in regulating the pressure overload induced cardiac hypertrophic response and in controlling the expression of genes that condition the ER during hemodynamic stress.
  9. Cell Death Dis. 2019 Feb 15. 10(3): 152
    Xu K, Han B, Bai Y, Ma XY, Ji ZN, Xiong Y, Miao SK, Zhang YY, Zhou LM.
      The global morbidity and mortality of colorectal cancer (CRC) are ranked the third among gastrointestinal tumors in the world. MiR-451a is associated with several types of cancer, including CRC. However, the roles and mechanisms of miR-451a in CRC have not been elucidated. BAP31 is a predicted target gene of miR-451a in our suppression subtractive hybridization library. Its relationship with miR-451a and function in CRC are unclear. We hypothesized that miR-451a could induce apoptosis through suppressing BAP31 in CRC. Immunohistochemistry and real-time PCR were used to measure BAP31 expressions in CRC tissues and pericarcinous tissues from 57 CRC patients and CRC cell lines. Dual-luciferase reporter assay was used to detect the binding of miR-451a to BAP31. The expression of BAP31 protein in CRC tissues was significantly higher than that in pericarcinous tissues, which was correlated with distant metastasis and advanced clinical stages of CRC patients. The expression of BAP31 was higher in HCT116, HT29, SW620, and DLD cells than that in the normal colonic epithelial cell line NCM460. The expression of BAP31 was absolutely down-regulated when over-expressing miR-451a in HCT116 and SW620 cells compared with control cells. Mir-451a inhibited the expression of BAP31 by binding to its 5'-UTR. Over-expressing miR-451a or silencing BAP31 suppressed the proliferation and apoptosis of CRC cells by increasing the expressions of endoplasmic reticulum stress (ERS)-associated proteins, including GRP78/BIP, BAX, and PERK/elF2α/ATF4/CHOP, which resulted in increased ERS, cytoplasmic calcium ion flowing, and apoptosis of CRC cells. These changes resulting from over-expressing miR-451a were reversed by over-expressing BAP31 with mutated miR-451a-binding sites. Over-expressing miR-451a or silencing BAP31 inhibited tumor growth by inducing ERS. The present study demonstrated that miR-451a can inhibit proliferation and increase apoptosis through inducing ERS by binding to the 5'-UTR of BAP31 in CRC.
  10. J Cell Physiol. 2019 Feb 11.
    Ji T, Han Y, Yang W, Xu B, Sun M, Jiang S, Yu Y, Jin Z, Ma Z, Yang Y, Hu W.
      When endoplasmic reticulum (ER) homeostasis is disrupted, known as ER stress (ERS), the ER generates an adaptive signaling pathway called the unfolded protein response to maintain the homeostasis of this organelle. However, if homeostasis is not restored, the ER initiates death signaling pathways, which contribute to the pathogenesis of various disorders. The activation of inflammatory mechanisms is also emerging as a crucial component of cardiovascular and metabolic disorders. Furthermore, the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has attracted more attention than others and is the best-characterized member of the NLR family of inflammasomes to date. ERS intersects with many different inflammatory pathways, particularly the NLRP3 inflammasome. In this review, we focus on the interactions between ERS and the NLRP3 inflammasome. The pharmacologic and nonpharmaceutical manipulation of these two processes may offer novel opportunities for the treatment of cardiovascular and metabolic disorders.
    Keywords:  NLRP3 inflammasome; cardiovascular disorders; endoplasmic reticulum stress; metabolic disorders; reactive oxygen species
  11. J Mol Cell Biol. 2019 Feb 12.
    Zhu Y, Sun Y, Zhou Y, Zhang Y, Zhang T, Li Y, You W, Chang X, Yuan L, Han X.
      Current research indicates that beta cell loss in type 2 diabetes may be attributed to beta cell dedifferentiation rather than apoptosis; however, the mechanisms by which this occurs remain poorly understood. Our previous study demonstrated that elevation of microRNA-24 (miR-24) in a diabetic setting caused beta cell dysfunction and replicative deficiency. In this study, we focused on the role of miR-24 in beta cell apoptosis and dedifferentiation under endoplasmic reticulum (ER) stress conditions. We found that miR-24 overabundance protected beta cells from thapsigargin (TG)-induced apoptosis at the cost of accelerating the impairment of glucose-stimulated insulin secretion (GSIS) and enhancing the presence of dedifferentiation markers. Ingenuity® Pathway Analysis (IPA) revealed that elevation of miR-24 had an inhibitory effect on XBP1 and ATF4, which are downstream effectors of two key branches of ER stress, by inhibiting its direct target, Ire1α. Notably, elevated miR-24 initiated another pathway that targeted Mafa and decreased GSIS function in surviving beta cells, thus guiding their dedifferentiation under ER stress conditions. Our results demonstrated that the elevated miR-24, to the utmost extent, preserves beta cell mass by inhibiting apoptosis and inducing dedifferentiation. This study not only provides a novel mechanism by which miR-24 dominates beta cell turnover under persistent metabolic stress but also offers a therapeutic consideration for treating diabetes by inducing dedifferentiated beta cells to re-differentiation.
  12. Sci Rep. 2019 Feb 14. 9(1): 2096
    Leonard A, Grose V, Paton AW, Paton JC, Yule DI, Rahman A, Fazal F.
      The role of Endoplasmic Reticulum Chaperone and Signaling Regulator BiP/GRP78 in acute inflammatory injury, particularly in the context of lung endothelium, is poorly defined. In his study, we monitored the effect of SubAB, a holoenzyme that cleaves and specifically inactivates BiP/GRP78 and its inactive mutant SubAA272B on lung inflammatory injury in an aerosolized LPS inhalation mouse model of acute lung injury (ALI). Analysis of lung homogenates and bronchoalveolar lavage (BAL) fluid showed that LPS-induced lung inflammation and injury were significantly inhibited in SubAB- but not in SubAA272B-treated mice. SubAB-treated mice were also protected from LPS-induced decrease in lung compliance. Gene transfer of dominant negative mutant of BiP in the lung endothelium protected against LPS-induced lung inflammatory responses. Consistent with this, stimulation of endothelial cells (EC) with thrombin caused an increase in BiP/GRP78 levels and inhibition of ER stress with 4-phenylbutyric acid (4-PBA) prevented this response as well as increase in VCAM-1, ICAM-1, IL-6, and IL-8 levels. Importantly, thrombin-induced Ca2+ signaling and EC permeability were also prevented upon BiP/GRP78 inactivation. The above EC responses are mediated by intracellular BiP/GRP78 and not by cell surface BiP/GRP78. Together, these data identify intracellular BiP/GRP78 as a novel regulator of endothelial dysfunction associated with ALI.
  13. Pancreas. 2019 Feb 08.
    Wang EM, Akasaka H, Zhao J, Varadhachary GR, Lee JE, Maitra A, Fleming JB, Hung MC, Wang H, Katz MHG.
      OBJECTIVES: Endoplasmic reticulum stress and subsequent phosphorylation of eukaryotic initiation factor 2α (eIF2α) by protein kinase R-like endoplasmic reticulum kinase (PERK) plays an important role in the development and chemoresistance of pancreatic ductal adenocarcinoma (PDAC). However, the expression and significance of phosphorylated eIF2α (p-eIF2α) and PERK in PDAC have not been examined.METHODS: We examined p-eIF2α and PERK expression in 84 PDAC and paired normal pancreas samples by immunohistochemistry and Western blotting and correlated the results with clinicopathologic parameters and survival.
    RESULTS: Mean PERK H score was 140.8 in PDAC compared with 82.1 in normal pancreas (P < 0.001). High p-eIF2α expression was present in 56% of PDACs versus 7.6% of normal pancreases (P < 0.001). High PERK and p-eIF2α expression correlated with shorter overall survival (P = 0.048 and P = 0.03, respectively). By multivariate analysis, high p-eIF2α (P = 0.01), positive margin (P = 0.002), and lymph node metastasis (P = 0.01) were independent prognosticators for survival.
    CONCLUSIONS: The expression levels of PERK and p-eIF2α are higher in PDAC than those in normal pancreas. High levels of PERK and p-eIF2α are predictors of shorter survival in PDAC patients, suggesting that PERK and eIF2α could be promising targets in PDAC.
  14. Cell Death Dis. 2019 Feb 11. 10(2): 118
    Zhu ZC, Liu JW, Yang C, Li MJ, Wu RJ, Xiong ZQ.
      Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with potential anticancer effect, but innate and adaptive TRAIL resistance in majority of cancers limit its clinical application. Karyopherin β1 (KPNB1) inhibition in cancer cells has been reported to abrogate the nuclear import of TRAIL receptor DR5 and facilitate its localization on the cell surface ready for TRAIL stimulation. However, our study reveals a more complicated mechanism. Genetic or pharmacological inhibition of KPNB1 potentiated TRAIL-induced apoptosis selectively in glioblastoma cells mainly by unfolded protein response (UPR). First, it augmented ATF4-mediated DR5 expression and promoted the assembly of death-inducing signaling complex (DISC). Second, it freed Bax and Bak from Mcl-1. Third, it downregulated FLIPL and FLIPS, inhibitors of caspase-8 cleavage, partly through upregulating ATF4-induced 4E-BP1 expression and disrupting the cap-dependent translation initiation. Meanwhile, KPNB1 inhibition-induced undesirable autophagy and accelerated cleaved caspase-8 clearance. Inhibition of autophagic flux maintained cleaved caspase-8 and aggravated apoptosis induced by KPNB1 inhibitor plus TRAIL, which were abolished by caspase-8 inhibitor. These results unveil new molecular mechanism for optimizing TRAIL-directed therapeutic efficacy against cancer.
  15. Cancer Lett. 2019 Feb 09. pii: S0304-3835(19)30076-X. [Epub ahead of print]
    Zhang L, Wang Y, Zhang L, Xia X, Chao Y, He R, Han C, Zhao W.
      Many studies have uncovered the essential role of ZBTB7A in regulating tumourigenesis. However, its functional significance in cell responses to endoplasmic reticulum stress (ER stress) remains poorly understood. Here we report that ZBTB7A functions as an important prosurvival factor in osteosarcoma cells undergoing pharmacological ER stress-induced by tunicamycin (TM) or thapsigargin (TG). The downregulation of ZBTB7A expression by ER stress promoted cell apoptosis in vitro and in vivo. ZBTB7A expression levels were increased in osteosarcoma tissues and elevated ZBTB7A was associated with osteosarcoma metastasis. Further mechanistic studies revealed that miR-663a induced by ER stress directly bound to the 3'UTR of ZBTB7A and contributed to ER stress-induced ZBTB7A downregulation in osteosarcoma cells. Additionally, our data revealed that ZBTB7A bound to the promoter of LncRNA GAS5 and transcriptionally suppressed LncRNA GAS5 expression, leading to a decline in ER stress-induced cell apoptosis. Collectively, our findings reveal the prosurvival role of ZBTB7A in osteosarcoma adaptation to ER stress and suggest that the miR-663a-ZBTB7A-LncRNAGAS5 pathway is essential for the survival of human osteosarcoma cells under ER stress.
  16. J Med Chem. 2019 Feb 13.
    Yang S, Shergalis A, Lu D, Kyani A, Lu Z, Ljungman M, Neamati N.
      Protein disulfide isomerase (PDI) is responsible for nascent protein folding in the endoplasmic reticulum (ER) and is critical for glioblastoma survival. To improve the potency of lead PDI inhibitor BAP2 ((E)-3-(3-(4-hydroxyphenyl)-3-oxoprop-1-en-1-yl)benzonitrile), we designed and synthesized 67 novel analogues. We determined that PDI inhibition relied on the A ring hydroxyl group of the chalcone scaffold and cLogP increase in the sulfonamide chain improved potency. Docking studies revealed that BAP2 and analogues bind to His256 in the b' domain of PDI, and mutation of His256 to Ala abolishes BAP2 analogue activity. BAP2 and optimized analogue 59 have modest thiol reactivity; however, we propose that PDI inhibition by BAP2 analogues depends on the b' domain. Importantly, analogues inhibit glioblastoma cell growth, induce ER stress, increase expression of G2M checkpoint proteins, and reduce expression of DNA repair proteins. Cumulatively, our results support inhibition of PDI as a novel strategy to treat glioblastoma.