bims-nurfca Biomed News
on NRF2 and Cancer
Issue of 2023‒09‒17
eleven papers selected by
Caner Geyik, Istinye University



  1. Cancer Res. 2023 Sep 15.
      The KEAP1-NRF2 axis is the principal regulator of cellular responses to oxidative and electrophilic stressors. NRF2 hyperactivation is frequently observed in many types of cancer and promotes cancer initiation, progression, metastasis, and resistance to various therapies. Here, we determined that dipeptidyl peptidase 9 (DPP9) is a regulator of the KEAP1-NRF2 pathway in clear cell renal cell carcinoma (ccRCC). DPP9 was markedly overexpressed at the mRNA and protein levels in ccRCC, and high DPP9 expression levels correlated with advanced tumor stage and poor prognosis in ccRCC patients. Protein affinity purification to identify functional partners of DPP9 revealed that it bound to KEAP1 via a conserved ESGE motif. DPP9 disrupted KEAP1-NRF2 binding by competing with NRF2 for binding to KEAP1 in an enzyme-independent manner. Upregulation of DPP9 led to stabilization of NRF2, driving NRF2-dependent transcription and thereby decreasing cellular reactive oxygen species (ROS) levels. Moreover, DPP9 overexpression suppressed ferroptosis and induced resistance to sorafenib in ccRCC cells, which was largely dependent on the NRF2 transcriptional target SLC7A11. Collectively, these findings indicate that the accumulation of DPP9 results in hyperactivation of the NRF2 pathway to promote tumorigenesis and intrinsic drug resistance in ccRCC.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-22-4001
  2. Cell Rep. 2023 Sep 12. pii: S2211-1247(23)01115-4. [Epub ahead of print]42(9): 113104
      NRF2 (nuclear factor erythroid 2-related factor 2) is a master regulator of protective responses in healthy tissues. However, when it is active in tumor cells, it can result in drug resistance. KEAP1, the endogenous NRF2 inhibitor, binds NRF2 and redirects it to proteasomal degradation, so the KEAP1/NRF2 interaction is critical for maintaining NRF2 at a basal level. A number of clinically relevant KEAP1 mutations were shown to disrupt this critical KEAP1/NRF2 interaction, leading to elevated NRF2 levels and drug resistance. Here, we describe a small-molecule NRF2 inhibitor, R16, that selectively binds KEAP1 mutants and restores their NRF2-inhibitory function by repairing the disrupted KEAP1/NRF2 interactions. R16 substantially sensitizes KEAP1-mutated tumor cells to cisplatin and gefitinib, but does not do so for wild-type KEAP1 cells, and sensitizes KEAP1 G333C-mutated xenograft to cisplatin. We developed a BRET2-based biosensor system to detect the KEAP1/NRF2 interaction and classify KEAP1 mutations. This strategy would identify drug-resistant KEAP1 somatic mutations in clinical molecular profiling of tumors.
    Keywords:  CP: Cancer; KEAP1/NRF2; drug resistance
    DOI:  https://doi.org/10.1016/j.celrep.2023.113104
  3. Free Radic Biol Med. 2023 Sep 13. pii: S0891-5849(23)00627-5. [Epub ahead of print]
      Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) is the principal determinant of the cellular redox homeostasis, contributing to mitochondrial function, integrity and bioenergetics. The main negative regulator of Nrf2 is Kelch-like ECH associated protein 1 (Keap1), a substrate adaptor for Cul3/Rbx1 ubiquitin ligase, which continuously targets Nrf2 for ubiquitination and proteasomal degradation. Loss-of-function mutations in Keap1 occur frequently in lung cancer, leading to constitutive Nrf2 activation. We used the human lung cancer cell line A549 and its CRISPR/Cas9-generated homozygous Nrf2-knockout (Nrf2-KO) counterpart to assess the role of Nrf2 on mitochondrial health. To confirm that the observed effects of Nrf2 deficiency are not due to clonal selection or long-term adaptation to the absence of Nrf2, we also depleted Nrf2 by siRNA (siNFE2L2), thus creating populations of Nrf2-knockdown (Nrf2-KD) A549 cells. Nrf2 deficiency decreased mitochondrial respiration, but increased the mitochondrial membrane potential, mass, DNA content, and the number of mitolysosomes. The proportion of ATG7 and ATG3 within their respective LC3B conjugates was increased in Nrf2-deficient cells with mutant Keap1, whereas the formation of new autophagosomes was not affected. Thus, in lung cancer cells with loss-of-function Keap1, Nrf2 facilitates mitolysosome degradation thereby ensuring timely clearance of damaged mitochondria.
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2023.09.009
  4. Nan Fang Yi Ke Da Xue Xue Bao. 2023 Aug 20. 43(8): 1356-1362
      OBJECTIVE: To observe the effects of curcumin on migration and invasion of papillary thyriod cancer B-CPAP cells.METHODS: B-CPAP cells were treated with 5, 10, 15, or 20 μmol/L curcumin, and the changes in cell survival, migration and invasion were examined using MTT assay and Transwell assay. ROS levels in the treated cells were detected with a DCFH-DA probe. The expression levels of Nrf2 and Keap1 in the cells were determined using Western blotting and qRT-PCR.
    RESULTS: Treatment with curcumin dose- and time-dependently suppressed the viability of B-CPAP cells (P < 0.05 or P < 0.01). Curcumin inhibited the migration and invasion (P < 0.001) and promoted ROS production in B-CPAP cells in a dose-dependent manner, and application of NAC effectively reversed curcumin- induced increase of ROS. Curcumin at 20 μmol/L significantly decreased the protein and mRNA expressions of Nrf2 and increased the expressions of Keap1 protein and mRNA (P < 0.05 or P < 0.01), causing also significantly reduced expression of Nrf2 protein in the cell nuclei (P < 0.05) without obviously affecting its expression in the cytoplasm (P > 0.05).
    CONCLUSION: Curcumin inhibits the proliferation, migration and invasion of papillary thyriod cancer B-CPAP cells probably via the Keap1-Nrf2 signaling pathway.
    Keywords:  B-CPAP; Keap1-Nrf2 pathway; curcumin; papillary thyriod cancer
    DOI:  https://doi.org/10.12122/j.issn.1673-4254.2023.08.12
  5. Biochem Biophys Rep. 2023 Sep;35 101537
      Introduction: A growing body of evidence indicated that Alantolactone (ALT) promotes Reactive Oxygen Species (ROS) generation exclusively in cancer cells. Therefore, the aim of this study was to investigate the effect of ALT on the molecular mechanism of oxeiptosis, as a novel cell death pathway due to the high levels of intracellular ROS in ovarian cancer.Methods: MTT assay was used to evaluate the effect of ALT on SKOV3 cell viability. mRNA and protein expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2), KEAP1 (Kelch-like ECH-associated protein 1), PGAM5 (phosphoglycerate mutase family member 5), AIFM1 (Mitochondrial Apoptosis-Inducing Factor), Glutathione synthetase (GSS) and glutathione peroxidase (GPX) were analyzed by real time PCR and western blotting methods respectively.
    Results: Our findings showed that ALT inhibits the proliferation of skov3 cells in a time and dose dependent manner and IC50 was 32 μM at 24h.A significant down-regulation of Nrf2, GSH and GPX mRNA levels was seen in skov3 cells incubated with 32 and 64 μM of ALT in comparison with control group, while, mRNA expression levels of PGAM5 and KEAP1 were increased.Western blot analysis showed that ALT significantly decreases protein levels of Nrf2 and increases PGAM5 and KEAP1.ALT dephosphorylated PS116-AIFM1 and total AIFM1 protein level was elevated.
    Conclusion: Our results provided evidence that ALT could be a potential option for ovarian cancer treatment by ROS-mediated oxeiptosis.
    Keywords:  Alantolactone; Nrf2 signaling pathway; Ovarian cancer; Oxeiptosis
    DOI:  https://doi.org/10.1016/j.bbrep.2023.101537
  6. Am J Cancer Res. 2023 ;13(8): 3384-3400
      Numerous studies have demonstrated that long non-coding RNAs (lncRNAs) play crucial roles in tumor progression. This study aimed to identify lncRNAs associated with overall survival (OS) and progression-free interval (PFI) in prostate cancer (PCa) patients and to elucidate the driving mechanisms and functions of these lncRNAs. We utilized the TCGA database to screen for lncRNAs linked with OS and PFI. KM survival analysis, ROC curve analysis, and Cox survival analysis were employed to assess the prognostic significance of lncRNAs in PCa patients. We conducted a loss-of-function assay to explore the role of lncRNAs in PCa. Correlation analysis was performed to study the relationship between lncRNAs and immune cell infiltration. Lasso regression analysis was performed to screen proteins which might interact with lncRNAs, while rescue experiments verified the integrity of the signaling pathway. LMNTD2-AS1 was found to be the only lncRNA in PCa patients associated with both OS and PFI with significantly elevated levels in PCa. Elevated LMNTD2-AS1 expression was significantly linked to advanced stage, grade, primary treatment outcomes, residual tumors, and Gleason scores in PCa patients. Moreover, multivariate Cox regression analysis revealed that high LMNTD2-AS1 expression independently predicted PFI in PCa patients. The AUC of LMNTD2-AS1 for predicting 3-year OS and 5-year OS in PCa patients was 0.877 and 0.807, respectively, while for 3-year PFI and 5-year PFI it was 0.751 and 0.727, respectively. Overexpression of LMNTD2-AS1 correlated with infiltration of neutrophils, macrophages, pDC, NK CD56bright cells, and other immune cells. Furthermore, FUS and NRF2 are both potential binding proteins and related signaling pathways downstream of LMNTD2-AS1. Functional experiments demonstrated that LMNTD2-AS1 knockdown significantly inhibited migration, invasion, and proliferation of PCa cells while overexpression of FUS was found to rescue the functional inhibition caused by LMNTD2-AS1 knockdown. LMNTD2-AS1 functions as an oncogene in PCa, influencing patient prognosis and the immune microenvironment; it may regulate immune cell infiltration and promote PCa progression by interacting with the NRF2 signaling pathway via FUS binding.
    Keywords:  FUS; LMNTD2-AS1; Prostate cancer; immune cell infiltration
  7. Redox Biol. 2023 Sep 05. pii: S2213-2317(23)00273-2. [Epub ahead of print]67 102872
      The mechanistic target of the rapamycin (mTOR) pathway, which participates in the regulation of cellular growth and metabolism, is aberrantly regulated in various cancer types. The mTOR complex 2 (mTORC2), which consists of the core components mTOR, Rictor, mSin1, and mLST8, primarily responds to growth signals. However, the coordination between mTORC2 assembly and activity remains poorly understood. Keap1, a major sensor of oxidative stress in cells, functions as a substrate adaptor for Cullin 3-RING E3 ubiquitin ligase (CRL3) to promote proteasomal degradation of NF-E2-related factor 2 (NRF2), which is a transcription factor that protects cells against oxidative and electrophilic stress. In the present study, we demonstrate that Keap1 binds to mLST8 via a conserved ETGE motif. The CRL3Keap1 ubiquitin ligase complex promotes non-degradative ubiquitination of mLST8, thus reducing mTORC2 complex integrity and mTORC2-AKT activation. However, this effect can be prevented by oxidative/electrophilic stresses and growth factor signaling-induced reactive oxygen species (ROS) burst. Cancer-derived Keap1 or mLST8 mutations disrupt the Keap1-mLST8 interaction and allow mLST8 to evade Keap1-mediated ubiquitination, thereby enhancing mTORC2-AKT activation and promoting cell malignancy and remodeling cell metabolism. Our findings provide new insights into the molecular mechanisms of Keap1/mLST8 mutation-driven tumorigenesis by promoting mTORC2-AKT activation, which is independent of the canonical NRF2 pathway.
    Keywords:  AKT; Keap1; Lung cancer; ROS; Ubiquitination; mTORC2
    DOI:  https://doi.org/10.1016/j.redox.2023.102872
  8. ACS Nano. 2023 Sep 10.
      Inflammatory bowel disease (IBD) is one of the main factors leading to colitis-associated colorectal cancer (CAC). Therefore, it is critical to develop an effective treatment for IBD to prevent secondary colorectal carcinogenesis. M2 macrophages play crucial roles in the resolution phase of intestinal inflammation. However, traditional drugs rarely target intestinal M2 macrophages, and they are not easily cleared. Gold nanoclusters are known for their in vivo safety and intrinsic biomedical activities. In this study, a glutathione-protected gold nanocluster is synthesized and evaluated, namely, GA. Interestingly, GA specifically accumulates in the colon during IBD. Furthermore, GA not only promotes M2 differentiation of IL-4-treated peritoneal macrophages but also reprograms macrophage polarization from M1 to M2 in a pro-inflammatory environment. Mechanistically, this regulatory effect is exerted through activating the antioxidant Nrf2 signaling pathway, but not traditional STAT6. When applied in IBD mice, we found that GA elevates M2 macrophages and alleviates IBD in an Nrf2-dependent manner, evidenced by the abolished therapeutic effect upon Nrf2 inhibitor treatment. Most importantly, GA administration significantly suppresses AOM/DSS-induced CAC, without causing obvious tissue damage, providing critical evidence for the potential application of gold nanoclusters as nanomedicine for the treatment of IBD and CAC.
    Keywords:  M2 macrophages; Nrf2; colitis-associated colorectal cancer; gold nanoclusters; inflammatory bowel disease; macrophage polarization; nanomedicine
    DOI:  https://doi.org/10.1021/acsnano.3c06025
  9. Naunyn Schmiedebergs Arch Pharmacol. 2023 Sep 15.
      Fibrotic kidney injury from hepatocarcinogenesis seriously impacts treatment effect. Astragaloside IV (AS-IV), an extract of Astragalus membranaceus, has several pharmacological activities, which are useful in the treatment of edema and fibrosis. Nrf2/HO-1 is a key antioxidant stress pathway and help treatment of kidney injury. Smad3 phosphorylation is implicated in hepatocarcinogenesis. Our previous study clarified that Smad3 is differentially regulated by different phosphorylated forms of Smad3 on hepatocarcinogenesis. Therefore, we investigated the contribution of AS-IV on the therapy of kidney fibrosis from hepatocarcinogenesis. And the focus was on whether the phosphorylation of Smad3 and the regulation of Nrf2/HO-1 pathway were involved during AS-IV therapy and whether there is an effect of Nrf2 knockout on the phosphorylation of Smad3. We performed TGF-β1 stimulation on HK-2 cells and intervened with AS-IV. Furtherly, we investigated renal injury of AS-IV on Nrf2 knockout mice during hepatocarcinogenesis and its mechanism of action. On the one hand, in vitro results showed that AS-IV reduced the ROS and α-SMA expression of HK-2 by promoting the expression pSmad3C/p21 of and Nrf2/HO-1 and suppressed the expression of pSmad3L/PAI-1. On the other hand, the in vivo results of histopathological features, serological biomarkers, and oxidative damage indicators showed that Nrf2 knockout aggravated renal injury. Besides, Nrf2 deletion decreased the nephroprotective effect of AS-IV by suppressing the pSmad3C/p21 pathway and promoting the pSmad3L/PAI-1 pathway. The experimental results were as we suspected. And we identify for the first time that Nrf2 deficiency increases renal fibrosis from hepatocarcinogenesis and attenuates the therapeutic effects of AS-IV via regulating pSmad3C/3L signal pathway.
    Keywords:  Astragaloside IV; Kidney fibrosis; Nrf2/HO-1; pSamd3L; pSmad3C
    DOI:  https://doi.org/10.1007/s00210-023-02711-2
  10. Lung Cancer. 2023 Sep 09. pii: S0169-5002(23)00899-1. [Epub ahead of print]184 107361
      OBJECTIVES: Mutations in STK11 (STK11MUT) and KEAP1 (KEAP1MUT) occur frequently in non-small cell lung cancer (NSCLC) and are often co-mutated with KRAS. Several studies linked the co-occurrence of KRASMUT + STK11MUT, as well as KRASMUT + KEAP1MUT to reduced response to immune checkpoint inhibitors (ICI) and even a negative impact on survival. Data focusing STK11 + KEAP1 co-mutations or the triple mutation (KRAS + STK11 + KEAP1) are scarce. The recent availability of KRAS-G12C inhibitors increases the clinical relevance of those co-mutations in KRAS-mutated NSCLC.MATERIALS AND METHODS: We present a comprehensive bioinformatic analysis encompassing six datasets retrieved from cBioPortal.
    RESULTS: Independent of the treatment, triple mutations and STK11MUT + KEAP1MUT were significantly associated with a reduced overall survival (OS). Across treatments, OS of patients with a KRAS G12C triple mutation was significantly reduced compared to patients with KRAS G12C-only. Under ICI-therapy, there was no significant difference in OS between patients harboring the KRAS G12C-only and patients with the KRAS G12C triple mutation, but a significant difference between patients harboring KRAS non-G12C and KRAS non-G12C triple mutations. Triple mutated primary tumors showed a significantly increased frequency of distant metastases to bone and adrenal glands compared to KRAS-only mutated tumors. Additionally, our drug response analysis in cancer cell lines harboring the triple mutations revealed the WNT pathway inhibitor XAV-939 as a potential future drug candidate for this mutational situation.
    CONCLUSION: The triple mutation status may serve as a negative prognostic and predictive factor across treatments compared to KRASMUT-only. KRAS G12C generally seems to be a negative predictive marker for ICI-therapy.
    DOI:  https://doi.org/10.1016/j.lungcan.2023.107361
  11. Trends Cell Biol. 2023 Sep 12. pii: S0962-8924(23)00167-8. [Epub ahead of print]
      In addition to immune cells and fibroblasts, the tumor microenvironment (TME) comprises an extracellular matrix (ECM) which contains collagens (COLs) whose architecture and remodeling dictate cancer development and progression. COL receptors expressed by cancer cells sense signals generated by microenvironmental alterations in COL state to regulate cell behavior and metabolism. Discoidin domain receptor 1 (DDR1) is a key sensor of COL fiber state and composition that controls tumor cell metabolism and growth, response to therapy, and patient survival. This review focuses on DDR1 to NRF2 signaling, its modulation of autophagy and macropinocytosis (MP), and its role in cancer and other diseases. Elucidating the regulation of DDR1 activity and expression under different pathophysiological conditions will facilitate the discovery of new therapeutics.
    Keywords:  DDR1; autophagy; cancer; collagen; collagen receptors; macropinocytosis
    DOI:  https://doi.org/10.1016/j.tcb.2023.08.003