bims-mirbon Biomed News
on MicroRNAs in bone
Issue of 2022‒01‒16
nine papers selected by
Japneet Kaur
Mayo Clinic


  1. Bioengineered. 2022 Feb;13(2): 2181-2193
      Circular RNA (circRNA) is a crucial regulator in multiple human diseases, including osteoporosis (OP). However, the function of numerous circRNAs remains unclear. This study aimed to explore the role and mechanism of circ_0019693 in bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteogenesis-coupled angiogenesis. The expression of circ_0019693, miR-942-5p and purkinje cell protein 4 (PCP4) was measured using quantitative real-time PCR (qPCR) or Western blot. Osteogenic differentiation was monitored according to the protein levels of RUNX family transcription factor 2 (RUNX2), osteopontin (OPN) and osteocalcin (OCN) by Western blot analysis, and the activity of alkaline phosphatase (ALP). Angiogenesis was evaluated by tube formation assay. The targeting relationship between miR-942-5p and circ_0019693 or PCP4 was identified using pull-down, dual-luciferase reporter, and RNA immunoprecipitation assays. Circ_0019693 was downregulated in serum samples and bone tissues from OP patients relative to normal subjects. Circ_0019693 expression was enhanced in the stages of BMSC osteogenic differentiation. Circ_0019693 overexpression enhanced the activity of ALP and the expression of RUNX2, OPN and OCN, and its overexpression also promoted angiogenesis. However, circ_0019693 knockdown played the opposite effects. MiR-942-5p was ensured to be a target of circ_0019693, and miR-942-5p enrichment reversed the effects of circ_0019693. In addition, PCP4 was a target of miR-942-5p, and miR-942-5p inhibitor-promoted BMSC osteogenic differentiation and angiogenesis were partly repressed by PCP4 knockdown. In conclusion, circ_0019693 promotes BMSC osteogenic differentiation osteogenesis-coupled angiogenesis via regulating miR-942-5p-targeted PCP4, thus blocking the development of OP.
    Keywords:  Circ_0019693; MiR-942-5p; PCP4; angiogenesis; osteogenic differentiation; osteoporosis
    DOI:  https://doi.org/10.1080/21655979.2021.2023982
  2. Cell Death Discov. 2022 Jan 10. 8(1): 2
      Osteogenic differentiation is a vital process for growth, repair, and remodeling of bones. Accumulating evidence have suggested that microRNAs (miRNAs or miRs) play a crucial role in osteogenic differentiation of mesenchymal stem cells (MSCs). Hence, the current study set out to elucidate the role of miR-149 in osteogenic differentiation of MSCs and the underlying mechanism. First, rat models of bone differentiation were established using the Masquelet-induced membrane technique, and MSCs were isolated. The expression of miR-149 and AKT1 in the rats and cells was detected with RT-qPCR and western blot analysis. The relationships among miR-149, AKT1, and Twist1 were further predicted by online bioinformatics prediction and verified using dual luciferase reporter gene assay. Alteration of miR-149, AKT1, or Twist1 was performed to further explore their effect on osteogenic differentiation of MSCs. miR-149 was poorly expressed in the process of osteogenic differentiation of MSCs, while AKT1 was highly expressed. miR-149 negatively regulated the expression of AKT1, which in turn diminished the protein levels of Twist1 and promoted the phosphorylation levels of Twist1. Lastly, miR-149 acted as an inhibitor of osteogenic differentiation of MSCs, which could be reversed by AKT1. To sum up, miR-149 silencing promoted osteogenic differentiation of MSCs by enhancing Twist1 degradation through AKT1 upregulation, representing a new method for bone repair treatment.
    DOI:  https://doi.org/10.1038/s41420-021-00618-6
  3. J Nanobiotechnology. 2022 Jan 10. 20(1): 29
      BACKGROUND: Acute myeloid leukemia (AML) is a malignant clonal disease of hematopoietic stem- and progenitor-cell origin. AML features massive proliferation of abnormal blasts and leukemia cells in the bone marrow and the inhibition of normal hematopoiesis at onset. Exosomes containing proteins or nucleic acids are secreted by cells; they participate in intercellular communication and serve as key modulators of hematopoiesis. The purpose of this study was to investigate the effects of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) on the regulation of AML and the underlying mechanisms mediated by microRNA (miRNA).METHODS: Dysregulated miR-7-5p in AML patients was identified using qRT-PCR and its clinical significance was explored. Bioinformatic analysis revealed the target gene OSBPL11 that could be regulated by miR-7-5p. The findings were validated using a dual-luciferase reporter assay and western blotting. The functional genes of the PI3K/AKT/mTOR signaling pathway were identified, and the functional significance of miR-7-5p in AML cells was determined using a functional recovery assay. AML cells were co-cultured with exosomes originating from BMSCs overexpressing miR-7-5p to determine cell-cell regulation by Exo-miR-7-5p, as well as in vitro and in vivo functional validation via gain- and loss-of-function methods.
    RESULTS: Expression of miR-7-5p was decreased in AML patients and cells. Overexpression of miR-7-5p curbed cellular proliferation and promoted apoptosis. Overexpression of OSBPL11 reversed the tumorigenic properties of miR-7-5p in AML cells in vitro. Exo-miR-7-5p derived from BMSCs induced formation of AML cells prone to apoptosis and a low survival rate, with OSBPL11 expression inhibited through the PI3K/AKT/mTOR signaling pathway. Exo-miR-7-5p derived from BMSCs exhibited tumor homing effects in vitro and in vivo, and inhibited AML development.
    CONCLUSIONS: Exo-miR-7-5p derived from BMSCs negatively regulates OSBPL11 by suppressing the phosphorylation of the PI3K/AKT/mTOR signaling pathway, thereby inhibiting AML proliferation and promoting apoptosis. The data will inform the development of AML therapies based on BMSC-derived exosomes.
    Keywords:  Acute myeloid leukemia; Bone marrow mesenchymal stem cells; Exosome; OSBPL11; PI3K/AKT/mTOR; miR-7-5p
    DOI:  https://doi.org/10.1186/s12951-021-01206-7
  4. Saudi Pharm J. 2021 Dec;29(12): 1405-1415
      Icariin is commonly used for the clinical treatment of osteonecrosis of the femoral head (ONFH). miR-23a-3p plays a vital role in regulating the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). The present study aimed to investigate the roles of icariin and miR-23a-3p in the osteogenic differentiation of BMSCs and an ONFH model. BMSCs were isolated and cultured in vitro using icariin-containing serum at various concentrations, and BMSCs were also transfected with a miR-23a inhibitor. The alkaline phosphatase (ALP) activity and cell viability as well as BMP-2/Smad5/Runx2 and WNT/β-catenin pathway-related mRNA and protein expression were measured in BMSCs. Additionally, a dual-luciferase reporter assay and pathway inhibitors were used to verify the relationship of icariin treatment/miR-23a and the above pathways. An ONFH rat model was established in vivo, and a 28-day gavage treatment and lentivirus transfection of miR-23a-3p inhibitor were performed. Then, bone biochemical markers (ELISA kits) in serum, femoral head (HE staining and Digital Radiography, DR) and the above pathway-related proteins were detected. Our results revealed that icariin treatment/miR-23a knockdown promoted BMSC viability and osteogenic differentiation as well as increased the mRNA and protein expression of BMP-2, BMP-4, Runx2, p-Smad5, Wnt1 and β-catenin in BMSCs and ONFH model rats. In addition, icariin treatment/miR-23a knockdown increased bone biochemical markers (ACP-5, BAP, NTXI, CTXI and OC) and improved ONFH in ONFH model rats. In addition, a dual-luciferase reporter assay verified that Runx2 was a direct target of miR-23a-3p. These data indicated that icariin promotes BMSC viability and osteogenic differentiation as well as improves ONFH by decreasing miR-23a-3p levels and regulating the BMP-2/Smad5/Runx2 and WNT/β-catenin pathways.
    Keywords:  BAP, bone-specific alkaline phosphatase; BMP-2, bone morphogenetic protein-2; BMP-2/Smad5/Runx2 pathway; BMP-4, bone morphogenetic protein-4; BMSCs, bone marrow-derived mesenchymal stem cells; CTX-1, C-terminal telopeptides of type I collagen; DMEM, Dulbecco’s modified Eagle’s medium; DR, Digital Radiography; FBS, fetal bovine serum; HE, Hematoxylin‐eosin; Icariin; LPS, lipopolysaccharide; NTX-1, N-terminal telopeptides of type I collagen; OC, osteocalcin; ONFH, osteonecrosis of the femoral head; Osteonecrosis of the femoral head; RT-PCR, Real time PCR; SI, icariin-containing serum; TRACP-5b, tartrate-resistant acid phosphatase 5b; WNT/β-catenin pathway; miR-23a-3p
    DOI:  https://doi.org/10.1016/j.jsps.2021.10.009
  5. Int J Neuropsychopharmacol. 2022 Jan 07. pii: pyab096. [Epub ahead of print]
      BACKGROUND: It is documented that mesenchymal stem cells (MSCs) secretes extracellular vesicles (EVs) to modulate subarachnoid hemorrhage (SAH) development. miR-140-5p expression has been detected in MSC-derived EVs, while it remains enigmatic about the mechanism of MSC-derived EVs containing miR-140-5p in SAH. We aim to fill this void by establishing SAH mouse models and extracting MSCs and MSC-EVs.METHODS: After ALK5 was silenced in SAH mice, neurological function was evaluated, neuron apoptosis was detected by NeuN/TUNEL staining, and expression of serum inflammatory factors (IL-6, IL-1β, and TNF-α) was determined by ELISA. Effect of ALK5 on NOX2 expression was assessed by western blot analysis. Targeting relationship between miR-140-5p and ALK5 was evaluated by dual luciferase assay. Following extraction of MSCs and MSC-EVs, EVs and miR-140-5p were labeled by PKH67 and Cy3 respectively to identify the transferring of miR-140-5p by MSC-EVs. SAH mice were treated with EVs from miR-140-5p mimic/inhibitor-transfected MSCs to detect effects of MSC-EV-miR-140-5p on brain injury and microglial polarization.
    RESULTS: ALK5 silencing increased neurological score, and reduced neuron apoptosis and neuroinflammation in SAH mice. ALK5 silencing inhibited M1 microglia activation by inactivating NOX2. ALK5 was a target gene of miR-140-5p. MSC-derived EVs contained miR-140-5p and transferred miR-140-5p into microglia. MSC-EV-delivered miR-140-3p reduced ALK5 expression to contribute to repression of brain injury and M1 microglia activation in SAH mice.
    CONCLUSIONS: MSC-derived EVs transferred miR-140-5p into microglia to downregulate ALK5 and NOX2, thus inhibiting M1 microglia activation in SAH mice.
    Keywords:  ALK5; Brain injury; Extracellular vesicles; M1 microglia activation; Mesenchymal stem cells; NOX2; Subarachnoid hemorrhage; microRNA-140-5p
    DOI:  https://doi.org/10.1093/ijnp/pyab096
  6. Exp Cell Res. 2022 Jan 10. pii: S0014-4827(22)00019-2. [Epub ahead of print] 113026
      Bone marrow-derived mesenchymal stem cells (BM-MSCs) are well-established as vital regulators of fracture healing, whereas angiogenesis is one of the critical processes during the course of bone healing. Accordingly, the current study sought to determine the functions of microRNA (miR)-29b-3p from BM-MSCs-derived extracellular vesicles (EVs) on the angiogenesis of fracture healing via the PTEN/PI3K/AKT axis. Firstly, BM-MSCs-EVs were extracted and identified. The lentiviral protocol was adopted to construct miR-29b-3pKD-BMSCs or miR-negative control-BMSCs, which were then co-cultured with human umbilical vein endothelial cells (HUVECs) in vitro to determine the roles of EVs-encapsulated miR-29b-3p on the proliferation, migration, and angiogenesis of HUVECs in vitro with the help of a CCK-8 assay, scratch test, and tube formation assay. Subsequent database prediction, luciferase activity assay, RT-qPCR, and Western blot assay findings identified the downstream target gene of miR-29b-3p, PTEN, and a signaling pathway, PI3K/AKT. Furthermore, the application of si-PTEN attenuated the effects induced by miR-29b-3pKD-EVs. Finally, a mouse model of femoral fracture was established with a locally instilled injection of equal volumes of BM-MSCs-EVs and miR-29b-3pKD-BM-MSCs-EVs. Notably, the mice treated with BMSC-EVs presented with enhanced neovascularization at the fracture site, in addition to increased bone volume (BV), BV/tissue volume, and mean bone mineral density; whereas miR-29b-3pKD-BMSCs-EVs-treated mice exhibited decreased vessel density with poor fracture healing capacity. Collectively, our findings elicited that BM-MSCs-EVs carrying miR-29b-3p were endocytosed by HUVECs, which consequently suppressed the PTEN expression and activated the PI3K/AKT pathway, thereby promoting HUVEC proliferation, migration, and angiogenesis, and ultimately facilitating fracture healing.
    Keywords:  Bone marrow‐derived mesenchymal stem cells; Extracellular vesicles; Fracture healing; PI3K/AKT pathway; PTEN; microRNA-29b-3p
    DOI:  https://doi.org/10.1016/j.yexcr.2022.113026
  7. Mol Biotechnol. 2022 Jan 10.
      Liver fibrosis is a hallmark feature of many chronic liver diseases, which is the leading cause of morbidity and mortality worldwide. Bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles have been applied in many diseases. In this study, we aimed to explore the specific mechanism of extracellular vesicles from BMSCs in liver fibrosis. Bioinformatics analysis was employed to screen miRNA and its target mRNA. Sirius Red staining was carried out to examine fibrosis in liver tissues. Extracellular vesicle morphology was assessed using Transmission Electron Microscopy. Quantitative real-time PCR (qRT-PCR) and western blotting analysis were performed to detect the expressions of miR-148a-5p, Smad4, transforming growth factor-β1 (TGF-β1), tissue inhibitor of metalloproteinase 1 (TIMP-1), Collagen I, α-smooth muscle actin (α-SMA), and extracellular vesicle markers CD9, TSG101, CD63, and calnexin. Dual-luciferase report gene assay was used for the luciferase activity analysis. Bioinformatics analysis revealed miR-148a-5p as a regulator in liver fibrosis. QRT-PCR results indicated that miR-148a-5p was lowly expressed in both thioacetamide (TAA)-induced mice and TGF-β1-activated hepatic stellate cells. Extracellular vesicles from miR-148a-5p enriched BMSCs downregulated the mRNA and protein levels of TGF-β1, TIMP-1, Collagen I, and α-SMA. Further bioinformatics analysis indicated that Smad4 was related to liver fibrosis. Furthermore, the dual-luciferase report gene assay confirmed the binding relationship between miR-148a-5p and Smad4. Extracellular vesicles from miR-148a-5p enriched BMSCs attenuated hepatic fibrosis in liver fibrosis by targeting Smad4.
    Keywords:  Extracellular vesicle; Liver fibrosis; Smad4; miR-148a-5p
    DOI:  https://doi.org/10.1007/s12033-021-00441-5
  8. Chin J Dent Res. 2022 Jan 14. 24(4): 235-249
      OBJECTIVE: To explore the effect of TRIB3 on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hASCs) and reveal the potential role of TRIB3 in bone regeneration.METHODS: TRIB3-knockdown and TRIB3-overexpression hASCs were used to explore the effect of TRIB3 on osteogenic differentiation by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and heterotopic bone formation. The regulation of miR-24-3p on TRIB3 was detected by qRT-PCR and western blot. Ribonucleic acid (RNA) sequencing was performed to investigate the downstream regulatory network of TRIB3.
    RESULTS: TRIB3 promoted the osteogenic differentiation of hASCs both in vitro and in vivo. This process was regulated epigenetically by the post-transcriptional regulation of miR-24-3p, which could bind directly to the three prime untranslated region (3'UTR) of TRIB3 and inhibit TRIB3 expression. The downstream regulatory network of TRIB3-mediated osteogenic differentiation was related to calcium ion binding and cell metabolism, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and nuclear factor-κB (NF-κB) signalling pathways.
    CONCLUSION: TRIB3 is a promising therapeutic target for hASC-based bone tissue engineering and the epigenetic regulation of TRIB3 through miR-24-3p permits regulatory controllability, thus promoting osteogenesis through an important metabolic target while obtaining a safe and controllable effect via post-transcriptional epigenetic regulation.
    Keywords:  TRIB3; epigenetic regulation; human adipose-derived mesenchymal stem cells; miR-24-3p; osteogenic differentiation
    DOI:  https://doi.org/10.3290/j.cjdr.b2440815
  9. BMB Rep. 2022 Jan 10. pii: 5528. [Epub ahead of print]
      Methods used to restore damaged cells or tissue function via regeneration, repair or replacement in regenerative medicine ultimately use stem cells or their derivatives to induce response to disease and dysfunction. Stem cell-derived extracellular vesicles (EVs) are recognized as an attractive source of enriched exogenous microRNAs (miRNAs) by targeting pathological cells and overcome the obstacles faced by current cell therapy agents. However, there are some limitations that need to be addressed before using miRNA-enriched EVs derived from stem cells for multiplexed therapeutic targeting in many diseases. Here, we review the various strategies to induce effective and stable functional improvement of stem cell-derived EVs. In addition, we analyze the implications of several miRNA-enriched EV therapies improved by multiplexed targeting in diseases involving the circulatory system and nervous system. This systematic review may offer potential insights into the role of stem cell-derived therapeutics via multiplexed targeting mechanisms.