bims-mirbon Biomed News
on MicroRNAs in bone
Issue of 2021‒11‒28
fourteen papers selected by
Japneet Kaur
Mayo Clinic


  1. Bioengineered. 2021 Nov 24.
      MicroRNAs (miRNAs) regulate osteogenic differentiation and influence osteoporosis (OP). The aim of this study was to determine the potential role of miR-874-3p in OP. The expression levels of miR-874-3p and leptin (LEP) in the femoral neck trabeculae of 35 patients with or without OP were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The effects of miR-874-3p or LEP on the cell proliferation and alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osterix (OSX) levels were observed by upregulating miR-874-3p in human bone marrow mesenchymal stem cells (hBMSCs). Additionally, calcium deposition levels were evaluated using alizarin red staining (ARS). Molecular mechanisms of miR-874-3p and LEP underlying the osteogenic differentiation of hBMSCs were also evaluated using bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays. The miR-874-3p levels were significantly lower in the femoral neck trabeculae of patients with OP than those of the control group, while the opposite was observed regarding the levels of LEP. Expression levels of miR-874-3p in hBMSCs were upregulated during osteogenic differentiation, while those of LEP were downregulated. Moreover, miR-874-3p upregulation promoted ALP, RUNX2, OCN, and OSX mRNA expression, cell proliferation, and calcium deposition in hBMSCs. LEP was found to be a target gene of miR-874-3p. Overexpression of LEP inhibited the expression of osteoblast markers and reversed the effect of osteogenic differentiation induced by the upregulation of miR-874-3p. In conclusion, miR-874-3p promoted the proliferation and differentiation of hBMSCs by downregulating the expression of LEP, thus inhibiting OP.
    Keywords:  LEP; hBMSCs; miR-874-3p; osteoblast differentiation; osteoporosis
    DOI:  https://doi.org/10.1080/21655979.2021.2009618
  2. Environ Toxicol. 2021 Nov 24.
      Traditionally, hyperthyroid-associated osteoporosis has been considered to be the result of increased thyroid hormone levels. The pathogenesis of hyperthyroid-associated osteoporosis remains unclear. Thyroid stimulating hormone receptor (TSHR) is closely associated with osteoporosis. Our study aimed to explore the role of TSHR and its upstream microRNA (miRNA) in hyperthyroid-associated osteoporosis. Bioinformatics analysis (starBase and Targetscan) and a wide range of experiments including reverse-transcription quantitative polymerase chain reaction, luciferase reporter, western blot analysis of osteogenic differentiation markers including OSX, OCN, ALP, OPN, and COL1, hematoxylin and eosin staining, Alizarin Red staining assays were used to explore the function and mechanism of TSHR in hyperthyroid-associated osteoporosis. First, we observed that TSHR was downregulated in bone marrow mesenchymal stem cells (BMSCs) isolated from rats after culture in osteogenic medium for 7 days. Functionally, overexpression of TSHR accelerates BMSC osteogenic differentiation. Mechanistically, we predicted four potential miRNAs for TSHR. MiR-577 was validated to bind with TSHR. Rescue assays showed that miR-577 overexpression inhibited BMSC osteogenic differentiation via targeting TSHR. In vivo experiments showed that miR-577 aggravated bone loss and bone remodeling and our data showed that it is achieved by targeting TSHR in hyperthyroid-associated osteoporosis. This finding may deep our understanding of the pathogenesis of hyperthyroid-associated osteoporosis.
    Keywords:  MiR-577; hyperthyroid-associated osteoporosis; thyroid stimulating hormone receptor
    DOI:  https://doi.org/10.1002/tox.23419
  3. Tissue Cell. 2021 Nov 22. pii: S0040-8166(21)00194-4. [Epub ahead of print]74 101678
      At present, much more studies have focused on the therapeutic effect of exosome-delivered microRNAs on diseases. Previous study has shown that miR-455-5p is downregulated in ischemic stroke, but little is known about the role of exosome-delivered miR-455-5p in spinal cord ischemia reperfusion (SCIR) injury. Herein, we isolated exosomes from bone marrow mesenchymal stem cells (BMSCs) transfected with lentivirus vectors containing miR-455-5p. SCIR rat model was established after the intrathecal injection of exosomes containing miR-455-5p. The expression level of miR-455-5p was downregulated after SCIR, administration of exosomal miR-455-5p enhanced the level of miR-455-5p in the injured spinal cord. Hind-limb motor function scores indicated that exosomal miR-455-5p improved the recovery of hind-limb function of SCIR rats. HE staining and Nissl staining showed that miR-455-5p enriched exosomes reduced histopathological abnormalities after SCIR. Double immunofluorescence staining revealed that exosomes containing miR-455-5p reduced apoptosis of neurons, and activated autophagy in neurons after SCIR. We observed that the expression of Nogo-A, a direct target of miR-455-5p, was decreased in the spinal cord of exosomal miR-455-5p administrated SCIR rats. Targeting relationship between miR-455-5p and Nogo-A was verified by dual-luciferase reporter assay. In summary, exosomes containing miR-455-5p had the neuroprotective effects on SCIR injury by promoting autophagy and inhibiting apoptosis of neurons.
    Keywords:  Apoptosis; Autophagy; Exosomes; Ischemia reperfusion; Spinal cord; miR-455-5p
    DOI:  https://doi.org/10.1016/j.tice.2021.101678
  4. J Bioenerg Biomembr. 2021 Nov 22.
      Diabetic nephropathy (DN) is a severe complication of diabetes lethal for end-stage renal disease, with less treatment methodologies and uncertain pathogenesis. In the current study, we determined the role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing microRNA (miR)-15b-5p in DN. After extraction and identification of MSC-derived EVs, mouse podocyte line MPC5 was selected to establish an in vitro high-glucose (HG) cell model, where expression of miR-15b-5p, pyruvate dehydrogenase kinase 4 (PDK4) and VEGFA expression in tissues and cells were determined. The loss- and gain- function assays were conducted to determine the roles of miR-15b-5p, PDK4 and VEGFA. MPC5 cells were then co-cultured with MSC-derived EVs and their biological behaviors were detected by Western blot, CCK-8 assay, and flow cytometry. The binding relationship between miR-15b-5p and PDK43 by dual luciferase reporter gene assay. The expression of miR-15b-5p was downregulated in podocytes under HG environment, but highly expressed in mouse MSCs-derived EVs. EVs-derived miR-15b-5p could protect MPC5 cell apoptosis and inflammation. miR-15b-5p inhibited the expression of PDK4 by directly bound to the 3'UTR region of PDK4 gene. miR-15b-5p inhibits VEGF expression by binding to PDK4. Inhibition of PDK4 decreased VEGFA expression and reduced apoptosis and inflammation. Collectively, miR-15b-5p shuttled by MSC-derived EV can play protective roles in HG-induced mouse podocyte injury, possibly by targeting PDK4 and decreasing the VEGFA expression.
    Keywords:  Apoptosis; Diabetes; EVs; Inflammation; MPC5 cell; MSCs; PDK4; VEGFA; miR-15b-5p
    DOI:  https://doi.org/10.1007/s10863-021-09919-y
  5. Hum Cell. 2021 Nov 25.
      MCM3AP-AS1 regulates the cartilage repair in osteoarthritis, but how it regulates osteogenic differentiation of dental pulp stem cells (DPSCs) remains to be determined. DPSCs were isolated and induced for osteogenic differentiation. MCM3AP-AS1 expression was increased along with the osteogenic differentiation of DPSCs, whose expression was positive correlated with those of OCN, alkaline phosphatase (ALP) and RUNX2. On contrary, miR-143-3p expression was decreased along with the osteogenic differentiation and was negatively correlated with those of OCN, ALP and RUNX2. Dual-luciferase reporter gene assay showed that miR-143-3p can be negatively regulated by MCM3AP-AS1 and can regulate IGFBP5. MCM3AP-AS1 overexpression increased the expression levels of osteogenesis-specific genes, ALP activity and mineralized nodules during DPSC osteogenic differentiation, while IGFBP5 knockdown or miR-143-3p overexpression counteracted the effect of MCM3AP-AS1 overexpression in DPSCs. Therefore, this study demonstrated the role of MCM3AP-AS1/miR-143-3p/IGFBP5 axis in regulating DPSC osteogenic differentiation.
    Keywords:  Dental pulp stem cell; IGFBP5; MCM3AP-AS1; Osteogenic differentiation; miR-143-3p
    DOI:  https://doi.org/10.1007/s13577-021-00648-3
  6. J Tissue Eng Regen Med. 2021 Nov 23.
      BACKGROUND: Myocardial infraction (MI) is a severe disease with great mortality. Mesenchymal stem cells (MSCs)-derived exosomes display protection against MI. MicroRNA-129-5p was reported to exert anti-inflammation activity by targeting high mobility group box 1 (HMGB1). In the present study, the effects of MSCs-derived exosomes overexpressing miR-129-5p on MI were evaluated.METHODS: Bone marrow mesenchymal stem cells (BMSCs) were transfected with miR-129-5p for exosomes isolation. MI mice model was established and administrated exosomes overexpressing miR-129-5p. The cardiac function, expression of HMGB1,inflammatory cytokines, apoptosis and fibrosis in heart tissues were measured.
    RESUTLS: MiR-129-5p inhibited HMGB1 expression in BMSCs. MI mice treated with exosomes overexpressing miR-129-5p had enhanced cardiac function and decreased expression of HMGB1 and production of inflammatory cytokines. Exosomes overexpressing miR-129-5p further prevented apoptosis and fibrosis.
    CONCLUSION: Exosome-mediated transfer of miR-129-5p suppressed inflammation in MI mice by targeting HMGB1. This article is protected by copyright. All rights reserved.
    Keywords:  Exosomes; HMGB1; inflammation; miRNA; myocardial infarction
    DOI:  https://doi.org/10.1002/term.3268
  7. Cancer Lett. 2021 Nov 19. pii: S0304-3835(21)00584-X. [Epub ahead of print]526 76-90
      Most prostate cancer (PCa)-related deaths are caused by progression to bone metastasis. Recently, the importance of extracellular vesicles (EVs) in pre-metastatic niche formation has been reported. However, whether and how tumor-derived EVs interact with bone marrow macrophages (BMMs) to release EV-delivered microRNAs to promote osteolysis and induce pre-metastatic niche formation for PCa bone metastasis remain unclear. Our in vitro and in vivo functional and mechanistic assays revealed that EV-mediated release of miR-378a-3p from tumor cells was upregulated in bone-metastatic PCa, maintaining low intracellular miR-378a-3p concentration to promote proliferation and MAOA-mediated epithelial-to-mesenchymal transition. Moreover, miR-378a-3p enrichment in tumor-derived EVs was induced by hnRNPA2B1 (a transfer chaperone) overexpression. After tumor-derived EVs were taken in by BMMs, enriched miR-378a-3p promoted osteolytic progression by inhibiting Dyrk1a to improve Nfatc1 (an osteolysis-related transcription factor) nuclear translocation, to activate the expression of downstream target gene Angptl2. As a feedback, increased Angptl2 secretion into the tumor environment promoted PCa progression. In conclusion, tumor-derived miR-378a-3p-containing EVs play a significant role in PCa bone metastasis by activating the Dyrk1a/Nfatc1/Angptl2 axis in BMMs to induce osteolytic progression, making miR-378a-3p a potential predictor of metastatic PCa. Reducing the release of miR-378a-3p-containing EVs or inhibiting the recruitment of miR-378a-3p into EVs can be a therapeutic strategy against PCa metastasis.
    Keywords:  Bone metastasis; Extracellular vesicle; Osteolytic progression; Prostate cancer; miR-378a-3p
    DOI:  https://doi.org/10.1016/j.canlet.2021.11.017
  8. Cells. 2021 Oct 26. pii: 2887. [Epub ahead of print]10(11):
      Osteoarthritis (OA) is a common degenerative disease that can lead to persistent pain and motion restriction. In the last decade, stem cells, particularly mesenchymal stem cells (MSCs), have been explored as a potential alternative OA therapy due to their regenerative capacity. Furthermore, it has been shown that trophic factors enveloped in extracellular vesicles (EVs), including exosomes, are a crucial aspect of MSC-based treatment for OA. Evidently, EVs derived from different MSC sources might rescue the OA phenotype by targeting many biological processes associated with cartilage extracellular matrix (ECM) degradation and exerting protective effects on different joint cell types. Despite this advancement, different studies employing EV treatment for OA have revealed reverse outcomes depending on the EV cargo, cell source, and pathological condition. Hence, in this review, we aim to summarize and discuss the possible effects of MSC-derived EVs based on recent findings at different stages of OA development, including effects on cartilage ECM, chondrocyte biology, osteocytes and bone homeostasis, inflammation, and pain management. Additionally, we discuss further strategies and technical advances for manipulating EVs to specifically target OA to bring the therapy closer to clinical use.
    Keywords:  bone homeostasis; chondrocytes; extracellular vesicles; inflammation; mesenchymal stem cells; osteoarthritis
    DOI:  https://doi.org/10.3390/cells10112887
  9. Int J Biol Sci. 2021 ;17(15): 4238-4253
      Background: Congenital anomalies are increasingly becoming a global pediatric health concern, which requires immediate attention to its early diagnosis, preventive strategies, and efficient treatments. Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 3 (Gnai3) gene mutation has been demonstrated to cause congenital small jaw deformity, but the functions of Gnai3 in the disease-specific microRNA (miRNA) upregulations and their downstream signaling pathways during osteogenesis have not yet been reported. Our previous studies found that the expression of Mir24-2-5p was significantly downregulated in the serum of young people with overgrowing mandibular, and bioinformatics analysis suggested possible binding sites of Mir24-2-5p in the Gnai3 3'UTR region. Therefore, this study was designed to investigate the mechanism of Mir24-2-5p-mediated regulation of Gnai3 gene expression and explore the possibility of potential treatment strategies for bone defects. Methods: Synthetic miRNA mimics and inhibitors were transduced into osteoblast precursor cells to regulate Mir24-2-5p expression. Dual-luciferase reporter assay was utilized to identify the direct binding of Gnai3 and its regulator Mir24-2-5p. Gnai3 levels in osteoblast precursor cells were downregulated by shRNA (shGnai3). Agomir, Morpholino Oligo (MO), and mRNA were microinjected into zebrafish embryos to control mir24-2-5p and gnai3 expression. Relevant expression levels were determined by the qRT-PCR and Western blotting. CCK-8 assay, flow cytometry, and transwell migration assays were performed to assess cell proliferation, apoptosis, and migration. ALP, ARS and Von Kossa staining were performed to observe osteogenic differentiation. Alcian blue staining and calcein immersions were performed to evaluate the embryonic development and calcification of zebrafish. Results: The expression of Mir24-2-5p was reduced throughout the mineralization process of osteoblast precursor cells. miRNA inhibitors and mimics were transfected into osteoblast precursor cells. Cell proliferation, migration, osteogenic differentiation, and mineralization processes were measured, which showed a reverse correlation with the expression of Mir24-2-5p. Dual-luciferase reporter gene detection assay confirmed the direct interaction between Mir24-2-5p and Gnai3 mRNA. Moreover, in osteoblast precursor cells treated with Mir24-2-5p inhibitor, the expression of Gnai3 gene was increased, suggesting that Mir24-2-5p negatively targeted Gnai3. Silencing of Gnai3 inhibited osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization. Promoting effects of osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization by low expression of Mir24-2-5p was partially rescued upon silencing of Gnai3. In vivo, mir24-2-5p Agomir microinjection into zebrafish embryo resulted in shorter body length, smaller and retruded mandible, decreased cartilage development, and vertebral calcification, which was partially rescued by microinjecting gnai3 mRNA. Notably, quite similar phenotypic outcomes were observed in gnai3 MO embryos, which were also partially rescued by mir24-2-5p MO. Besides, the expression of phospho-JNK (p-JNK) and p-p38 were increased upon Mir24-2-5p inhibitor treatment and decreased upon shGnai3-mediated Gnai3 downregulation in osteoblast precursor cells. Osteogenic differentiation and mineralization abilities of shGnai3-treated osteoblast precursor cells were promoted by p-JNK and p-p38 pathway activators, suggesting that Gnai3 might regulate the differentiation and mineralization processes in osteoblast precursor cells through the MAPK signaling pathway. Conclusions: In this study, we investigated the regulatory mechanism of Mir24-2-5p on Gnai3 expression regulation in osteoblast precursor cells and provided a new idea of improving the prevention and treatment strategies for congenital mandibular defects and mandibular protrusion.
    Keywords:  Craniofacial deformity; G protein family; Gene expression regulation; MicroRNA; Osteogenic differentiation
    DOI:  https://doi.org/10.7150/ijbs.60536
  10. Biology (Basel). 2021 Oct 22. pii: 1080. [Epub ahead of print]10(11):
      Differentiation of macrophages toward osteoclasts is crucial for bone homeostasis but can be detrimental in disease states, including osteoporosis and cancer. Therefore, understanding the osteoclast differentiation process and the underlying regulatory mechanisms may facilitate the identification of new therapeutic targets. Hereby, we tried to reveal new miRNAs potentially involved in the regulation of early steps of osteoclastogenesis, with a particular focus on those possibly correlated with NFATc1 expression, by studying miRNAs profiling. During the first 24 h of osteoclastogenesis, 38 miRNAs were differentially expressed between undifferentiated and RANKL-stimulated RAW264.7 cells, while 10 miRNAs were differentially expressed between RANKL-stimulated cells transfected with negative control or NFATc1-siRNAs. Among others, the expression levels of miR-411, miR-144 and members of miR-29, miR-30, and miR-23 families changed after RANKL stimulation. Moreover, the potential role of miR-124 during osteoclastogenesis was explored by transient cell transfection with anti-miR-124 or miR-124-mimic. Two relatively unknown miRNAs, miR-880-3p and miR-295-3p, were differentially expressed between RANKL-stimulated/wild-type and RANKL-stimulated/NFATc1-silenced cells, suggesting their possible correlation with NFATc1. KEGG enrichment analyses showed that kinase and phosphatase enzymes were among the predicted targets for many of the studied miRNAs. In conclusion, our study provides new data on the potential role and possible targets of new miRNAs during osteoclastogenesis.
    Keywords:  MAPK pathway; NFATc1; PCR arrays; differential expression; osteoclastogenesis; siRNA transfection
    DOI:  https://doi.org/10.3390/biology10111080
  11. Int J Mol Sci. 2021 Nov 18. pii: 12453. [Epub ahead of print]22(22):
      Cleft lip with or without cleft palate (CL/P) is one of the most common congenital birth defects. This study aims to identify novel pathogenic microRNAs associated with cleft palate (CP). Through data analyses of miRNA-sequencing for developing palatal shelves of C57BL/6J mice, we found that miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p were significantly upregulated, and that miR-19a-3p, miR-130a-3p, miR-301a-3p, and miR-486b-5p were significantly downregulated, at embryonic day E14.5 compared to E13.5. Among them, overexpression of the miR-449 family (miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p) and miR-486b-5p resulted in reduced cell proliferation in primary mouse embryonic palatal mesenchymal (MEPM) cells and mouse cranial neural crest cell line O9-1. On the other hand, inhibitors of miR-130a-3p and miR-301a-3p significantly reduced cell proliferation in MEPM and O9-1 cells. Notably, we found that treatment with dexamethasone, a glucocorticoid known to induce CP in mice, suppressed miR-130a-3p expression in both MEPM and O9-1 cells. Moreover, a miR-130a-3p mimic could ameliorate the cell proliferation defect induced by dexamethasone through normalization of Slc24a2 expression. Taken together, our results suggest that miR-130-3p plays a crucial role in dexamethasone-induced CP in mice.
    Keywords:  birth defect; cell proliferation; cleft palate; environmental factor; gene regulation; microRNA
    DOI:  https://doi.org/10.3390/ijms222212453
  12. Pharmaceuticals (Basel). 2021 Oct 28. pii: 1093. [Epub ahead of print]14(11):
      Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.
    Keywords:  cartilage; chondrocyte; exosomes; microRNA; osteoarthritis
    DOI:  https://doi.org/10.3390/ph14111093
  13. Mol Med Rep. 2022 Jan;pii: 27. [Epub ahead of print]25(1):
      Aplastic anemia (AA) is a bone marrow failure syndrome with high morbidity and mortality. Bone marrow (BM)‑mesenchymal stem cells (MSCs) are the main components of the BM microenvironment, and dysregulation of BM‑MSC adipogenic differentiation is a pathologic hallmark of AA. MicroRNAs (miRNAs/miRs) are crucial regulators of multiple pathological processes such as AA. However, the role of miR‑30a‑5p in the modulation of BM‑MSC adipogenic differentiation in AA remains unclear. The present study aimed to explore the effect of miR‑30a‑5p on AA BM‑MSC adipogenic differentiation and the underlying mechanism. The levels of miR‑30a‑5p expression and family with sequence similarity 13, member A (FAM13A) mRNA expression in BM‑MSCs were quantified using reverse transcription‑quantitative (RT‑q) PCR. The mRNA expression levels of adipogenesis‑associated factors [fatty acid‑binding protein 4 (FABP4), lipoprotein lipase (LPL), perilipin‑1 (PLIN1), peroxisome proliferator‑activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)] were analyzed using RT‑qPCR. Lipid droplet accumulation was evaluated using Oil Red O staining in BM‑MSCs. The interaction between miR‑30a‑5p and the FAM13A 3'‑untranslated region was identified by TargetScan, and a dual‑luciferase reporter assay was used to confirm the interaction. The expression levels of FAM13A and Wnt/β‑catenin pathway‑related proteins were examined via western blotting. The results showed that miR‑30a‑5p expression levels were significantly elevated in BM‑MSCs from patients with AA compared with those in control subjects (iron deficiency anemia). miR‑30a‑5p expression levels were also significantly increased in adipose‑induced BM‑MSCs in a time‑dependent manner. miR‑30a‑5p significantly promoted AA BM‑MSC adipogenic differentiation, and significantly enhanced the mRNA expression levels of FABP4, LPL, PLIN1, PPARγ and C/EBPα as well as lipid droplet accumulation. miR‑30a‑5p was also demonstrated to target FAM13A in AA BM‑MSCs. FAM13A significantly reduced BM‑MSC adipogenic differentiation by activating the Wnt/β‑catenin signaling pathway. In conclusion, miR‑30a‑5p was demonstrated to serve a role in AA BM‑MSC adipogenic differentiation by targeting the FAM13A/Wnt/β‑catenin signaling pathway. These findings suggest that miR‑30a‑5p may be a therapeutic target for AA.
    Keywords:  AA; BM‑MSCs; FAM13A; Wnt/β‑catenin signaling; adipogenic differentiation; miR‑30a‑5p
    DOI:  https://doi.org/10.3892/mmr.2021.12543
  14. Int J Mol Sci. 2021 Nov 16. pii: 12373. [Epub ahead of print]22(22):
      Healing of ruptured tendons remains a clinical challenge because of its slow progress and relatively weak mechanical force at an early stage. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have therapeutic potential for tissue regeneration. In this study, we isolated EVs from adipose-derived stem cells (ADSCs) and evaluated their ability to promote tendon regeneration. Our results indicated that ADSC-EVs significantly enhanced the proliferation and migration of tenocytes in vitro. To further study the roles of ADSC-EVs in tendon regeneration, ADSC-EVs were used in Achilles tendon repair in rabbits. The mechanical strength, histology, and protein expression in the injured tendon tissues significantly improved 4 weeks after ADSC-EV treatment. Decorin and biglycan were significantly upregulated in comparison to the untreated controls. In summary, ADSC-EVs stimulated the proliferation and migration of tenocytes and improved the mechanical strength of repaired tendons, suggesting that ADSC-EV treatment is a potential highly potent therapeutic strategy for tendon injuries.
    Keywords:  adipose-derived stem cells; extracellular vesicles; tendon healing; tendon regeneration
    DOI:  https://doi.org/10.3390/ijms222212373