bims-hypusi Biomed News
on Hypusine and eIF5A
Issue of 2023‒05‒07
two papers selected by
Sebastian J. Hofer
University of Graz


  1. Reprod Biomed Online. 2023 Mar 27. pii: S1472-6483(23)00200-6. [Epub ahead of print]
      RESEARCH QUESTION: Is the hypusinated form of the eukaryotic translation initiation factor 5A (EIF5A) present in human myometrium, leiomyoma and leiomyosarcoma, and does it regulate cell proliferation and fibrosis?DESIGN: The hypusination status of eIF5A in myometrial and leiomyoma patient-matched tissues was evaluated by immunohistochemistry and Western blotting as well as in leiomyosarcoma tissues by immunohistochemistry. Myometrial, leiomyoma and leiomyosarcoma cell lines were treated with N1-guanyl-1,7-diaminoheptane (GC-7), responsible for the inhibition of the first step of eIF5A hypunization, and the proliferation rate was determined by MTT assay; fibronectin expression was analysed by Western blotting. Finally, expression of fibronectin in leiomyosarcoma tissues was detected by immunohistochemistry.
    RESULTS: The hypusinated form of eIF5A was present in all tissues examined, with an increasing trend of hypusinated eIF5A levels from normal myometrium to neoplastic benign leiomyoma up to neoplastic malignant leiomyosarcoma. The higher levels in leiomyoma compared with myometrium were confirmed by Western blotting (P = 0.0046). The inhibition of eIF5A hypusination, with GC-7 treatment at 100 nM, reduced the cell proliferation in myometrium (P = 0.0429), leiomyoma (P = 0.0030) and leiomyosarcoma (P = 0.0044) cell lines and reduced the expression of fibronectin in leiomyoma (P = 0.0077) and leiomyosarcoma (P = 0.0280) cells. The immunohistochemical staining of leiomyosarcoma tissue revealed that fibronectin was highly expressed in the malignant aggressive (central) part of the leiomyosarcoma lesion, where hypusinated eIF5A was also highly represented.
    CONCLUSIONS: These data support the hypothesis that eIF5A may be involved in the pathogenesis of myometrial benign and malignant pathologies.
    Keywords:  fibronectin; hypusinated eIF5A; leiomyoma; leiomyosarcoma; myometrium
    DOI:  https://doi.org/10.1016/j.rbmo.2023.03.017
  2. Int J Cancer. 2023 May 04.
      Glioblastoma (GB) is the most aggressive neoplasm of the brain. Poor prognosis is mainly attributed to tumor heterogeneity, invasiveness and drug resistance. Only a small fraction of GB patients survives longer than 24 months from the time of diagnosis (ie, long-term survivors [LTS]). In our study, we aimed to identify molecular markers associated with favorable GB prognosis as a basis to develop therapeutic applications to improve patients' outcome. We have recently assembled a proteogenomic dataset of 87 GB clinical samples of varying survival rates. Following RNA-seq and mass spectrometry (MS)-based proteomics analysis, we identified several differentially expressed genes and proteins, including some known cancer-related pathways and some less established that showed higher expression in short-term (<6 months) survivors (STS) compared to LTS. One such target found was deoxyhypusine hydroxylase (DOHH), which is known to be involved in the biosynthesis of hypusine, an unusual amino acid essential for the function of the eukaryotic translation initiation factor 5A (eIF5A), which promotes tumor growth. We consequently validated DOHH overexpression in STS samples by quantitative polymerase chain reaction (qPCR) and immunohistochemistry. We further showed robust inhibition of proliferation, migration and invasion of GB cells following silencing of DOHH with short hairpin RNA (shRNA) or inhibition of its activity with small molecules, ciclopirox and deferiprone. Moreover, DOHH silencing led to significant inhibition of tumor progression and prolonged survival in GB mouse models. Searching for a potential mechanism by which DOHH promotes tumor aggressiveness, we found that it supports the transition of GB cells to a more invasive phenotype via epithelial-mesenchymal transition (EMT)-related pathways.
    Keywords:  deoxyhypusine hydroxylase (DOHH); glioblastoma; long-term survivors; proteogenomics; short-term survivors
    DOI:  https://doi.org/10.1002/ijc.34545