bims-cadres Biomed News
on Cancer drug resistance
Issue of 2022‒09‒04
eleven papers selected by
Rana Gbyli
Yale University


  1. Stem Cell Res Ther. 2022 Aug 30. 13(1): 432
      Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem cell properties that sustain cancers, which may be responsible for cancer metastasis or recurrence. Lipid rafts are cholesterol- and sphingolipid-enriched microdomains in the plasma membrane that mediate various intracellular signaling. The occurrence and progression of cancer are closely related to lipid rafts. Emerging evidence indicates that lipid raft levels are significantly enriched in CSCs compared to cancer cells and that most CSC markers such as CD24, CD44, and CD133 are located in lipid rafts. Furthermore, lipid rafts play an essential role in CSCs, specifically in CSC self-renewal, epithelial-mesenchymal transition, drug resistance, and CSC niche. Therefore, lipid rafts are critical regulatory platforms for CSCs and promising therapeutic targets for cancer therapy.
    Keywords:  Cancer; Cancer stem cell; Cancer stem cell niche; Drug resistance; Epithelial-mesenchymal transition; Lipid raft; Self-renewal
    DOI:  https://doi.org/10.1186/s13287-022-03111-8
  2. Cell Death Dis. 2022 Aug 30. 13(8): 749
      Triple-negative breast cancer (TNBC), an aggressive histological subtype of breast cancer, exhibits a high risk of early recurrence rate and a poor prognosis, and it is primarily associated with the abundance of cancer stem cells (CSCs). At present, the strategies for effectively eradicating or inhibiting TNBC CSCs are still limited, which makes the development of novel drugs with anti-CSCs function be of great value for the treatment of TNBC, especially the refractory TNBC. In this study, we found that the small-molecule tyrosine kinase inhibitor DCC-2036 suppressed TNBC stem cells by inhibiting the tyrosine kinase AXL and the transcription factor KLF5. DCC-2036 downregulated the expression of KLF5 by decreasing the protein stability of KLF5 via the AXL-Akt-GSK3β signal axis, and in turn, the downregulation of KLF5 further reduced the expression of AXL via binding to its promotor (-171 to -162 bp). In addition, p-AXL/AXL levels were positively correlated with KLF5 expression in human TNBC specimens. These findings indicated that DCC-2036 is able to suppress the CSCs in TNBC by targeting the AXL-KLF5 positive feedback loop. Moreover, our findings indicated that DCC-2036 increased the sensitivity of TNBC chemotherapy. Therefore, this study proposes a potential drug candidate and several targets for the treatment of refractory TNBC.
    DOI:  https://doi.org/10.1038/s41419-022-05185-x
  3. Mol Cancer. 2022 Aug 30. 21(1): 171
      BACKGROUND: CDK4/6 inhibitors combined with endocrine therapy has become the preferred treatment approach for patients with estrogen receptor-positive metastatic breast cancer. However, the predictive biomarkers and mechanisms of innate resistance to CDK4/6 inhibitors remain largely unknown. We sought to elucidate the molecular hallmarks and therapeutically actionable features of patients with resistance to CDK4/6 inhibitors.METHODS: A total of 36 patients received palbociclib and endocrine therapy were included in this study as the discovery cohort. Next-generation sequencing of circulating tumour DNA in these patients was performed to evaluate somatic alterations associated with innate resistance to palbociclib. Then the candidate biomarker was validated in another independent cohort of 104 patients and publicly available datasets. The resistance was verified in parental MCF-7 and T47D cells, as well as their derivatives with small interfering RNA transfection and lentivirus infection. The relevant mechanism was examined by RNA sequencing, chromatin immunoprecipitation and luciferase assay. Patient-derived organoid and patient-derived xenografts studies were utilized to evaluated the antitumor activity of rational combinations.
    RESULTS: In the discovery cohort, S6K1 amplification (3/35, 9%) was identified as an important reason for innate resistance to CDK4/6 inhibitors. In the independent cohort, S6K1 was overexpressed in 15/104 (14%) patients. In those who had received palbociclib treatment, patients with high-expressed S6K1 had significantly worse progression free survival than those with low S6K1 expression (hazard ratio = 3.0, P = 0.0072). Meta-analysis of public data revealed that patients with S6K1 amplification accounted for 12% of breast cancers. Breast cancer patients with high S6K1 expression had significantly worse relapse-free survival (hazard ratio = 1.31, P < 0.0001). In breast cancer cells, S6K1 overexpression, caused by gene amplification, was sufficient to promote resistance to palbociclib. Mechanistically, S6K1 overexpression increased the expression levels of G1/S transition-related proteins and the phosphorylation of Rb, mainly through the activation of c-Myc pathway. Notably, this resistance could be abrogated by the addition of mTOR inhibitor, which blocked the upstream of S6K1, in vitro and in vivo.
    CONCLUSIONS: S6K1 amplification is an important mechanism of innate resistance to palbociclib in breast cancers. Breast cancers with S6K1 amplification could be considered for combinations of CDK4/6 and S6K1 antagonists.
    Keywords:  Breast cancer; CDK4/6 inhibitors; Circulating tumour DNA; Drug resistance; S6K1
    DOI:  https://doi.org/10.1186/s12943-022-01642-5
  4. Cell Biol Int. 2022 Aug 28.
      Malignantly transformed cells must alter their metabolic status to stay viable in a harsh microenvironment and maintain their ability to invade and spread. Anoikis, a specific detachment-related form of apoptotic cell death, is a potential barrier to cancer cell metastasis. Several molecular/pathway alterations have been implicated in preventing anoikis in metastatic cancers. Specific alterations in the lipid metabolism machinery (such as an increase in fatty acid uptake and synthesis) and modifications in the carbohydrate and amino acid metabolism are partially identified mechanisms associated with the anoikis resistance in various types of cancers, among other survival benefits. Following a summary of the molecular basis of the anoikis pathway, its resistance mechanisms, and the fundamentals of lipid metabolism in cancer, this article aims to elucidate the impact of lipid metabolism deviations recruited by cancer cells to escape anoikis.
    Keywords:  anoikis; fatty acids; lipogenesis; malignancy; metastasis
    DOI:  https://doi.org/10.1002/cbin.11896
  5. J Transl Med. 2022 Aug 29. 20(1): 383
      BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most severe cancers and is characterized by chemotherapy resistance and poor prognosis associated with epithelial-mesenchymal transition (EMT). In a previous study, a low mitochondrial DNA (mtDNA) copy number was associated with poorer prognosis and induced EMT in ESCC. However, the detailed mechanism related to mtDNA copy number and EMT is unclear. The aim of this study was to clarify the mechanism by which a change in mtDNA copy number contributes to EMT and to examine treatment of chemotherapy resistance in ESCC.METHODS: The association between low mtDNA copy number and chemotherapy resistance was investigated using specimens from 88 patients who underwent surgery after neoadjuvant chemotherapy. Then, the mtDNA content of human ESCC cell lines, TE8 and TE11, was depleted by knockdown of mitochondrial transcription factor A expression. The present study focused on modulation of mitochondrial membrane potential (MMP) and DNA methylation as the mechanisms by which mtDNA copy number affects EMT. mRNA and protein expression, chemotherapy sensitivity, proliferation, MMP and DNA methylation were evaluated, and in vitro and in vivo assays were conducted to clarify these mechanisms.
    RESULTS: ESCC patients with decreased mtDNA copy number who underwent R0 resection after neoadjuvant chemotherapy had significantly worse pathological response and recurrence-free survival. Additionally, low mtDNA copy number was associated with resistance to chemotherapy in vitro and in vivo. mtDNA controlled MMP, and MMP depolarization induced EMT. Depletion of mtDNA and low MMP induced DNA methylation via a DNA methylation transcription factor (DNMT), and a DNMT inhibitor suppressed EMT and improved chemotherapy sensitivity in mtDNA-depleted ESCC cells, as shown by in vitro and in vivo assays.
    CONCLUSION: This study showed that decreased mtDNA copy number induced EMT via modulation of MMP and DNA methylation in ESCC. Therapeutic strategies increasing mtDNA copy number and DNMT inhibitors may be effective in preventing EMT and chemosensitivity resistance.
    Keywords:  Chemotherapy; DNA methylation; Epithelial-mesenchymal transition; Esophageal cancer; Mitochondrial DNA; Mitochondrial membrane potential
    DOI:  https://doi.org/10.1186/s12967-022-03594-2
  6. Sci Rep. 2022 Aug 29. 12(1): 14713
      Glioblastoma brain tumors form in the brain's white matter and remain one of the most lethal cancers despite intensive therapy and surgery. The complex morphology of these tumors includes infiltrative growth and gain of cell motility. Therefore, various brain-mimetic model systems have been developed to investigate invasion dynamics. Despite this, exactly how gradients of cell density, chemical signals and metabolites influence individual cells' migratory behavior remains elusive. Here we show that the gradient field induced by the spheroid-accelerates cells' invasion of the extracellular matrix. We show that cells are pushed away from the spheroid along a radial gradient, as predicted by a biased persistent random walk. Thus, our results grasp in a simple model the complex behavior of metastasizing cells. We anticipate that this well-defined and quantitative assay could be instrumental in the development of new anti-cancer strategies.
    DOI:  https://doi.org/10.1038/s41598-022-18950-x
  7. Cancer Discov. 2022 Sep 02. OF1
      Elevated JAK/FGFR activity supports lineage plasticity and antiandrogen resistance in prostate cancer.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2022-159
  8. Biochem Pharmacol. 2022 Aug 27. pii: S0006-2952(22)00327-6. [Epub ahead of print] 115233
      Antiestrogen resistance of breast cancer has been related to enhanced growth factor receptor expression and activation. We have previously shown that ectopic expression and subsequent activation of the insulin-like growth factor-1 receptor (IGF1R) or the epidermal growth factor receptor (EGFR) in MCF7 or T47D breast cancer cells results in antiestrogen resistance. In order to identify novel therapeutic targets to prevent this antiestrogen resistance, we performed kinase inhibitor screens with 273 different inhibitors in MCF7 cells overexpressing IGF1R or EGFR. Kinase inhibitors that antagonized antiestrogen resistance but are not directly involved in IGF1R or EGFR signaling were prioritized for further analyses. Various ALK (anaplastic lymphoma receptor tyrosine kinase) inhibitors inhibited cell proliferation in IGF1R expressing cells under normal and antiestrogen resistance conditions by preventing IGF1R activation and subsequent downstream signaling; the ALK inhibitors did not affect EGFR signaling. On the other hand, MEK (mitogen-activated protein kinase kinase)1/2 inhibitors, including PD0325901, selumetinib, trametinib and TAK733, selectively antagonized IGF1R signaling-mediated antiestrogen resistance but did not affect cell proliferation under normal growth conditions. RNAseq analysis revealed that MEK inhibitors PD0325901 and selumetinib drastically altered cell cycle progression and cell migration networks under IGF1R signaling-mediated antiestrogen resistance. In a group of 219 patients with metastasized ER+ breast cancer, strong pMEK staining showed a significant correlation with no clinical benefit of first-line tamoxifen treatment. We propose a critical role for MEK activation in IGF1R signaling-mediated antiestrogen resistance and anticipate that dual-targeted therapy with a MEK inhibitor and antiestrogen could improve treatment outcome.
    Keywords:  Breast cancer; EGFR; IGF1R; MEK inhibitors; selumetinib; tamoxifen resistance
    DOI:  https://doi.org/10.1016/j.bcp.2022.115233
  9. Explor Target Antitumor Ther. 2022 ;3(3): 297-320
      The development of endocrine resistance is a common reason for the failure of endocrine therapies in hormone receptor-positive breast cancer. This review provides an overview of the different types of in vitro models that have been developed as tools for studying endocrine resistance. In vitro models include cell lines that have been rendered endocrine-resistant by ex vivo treatment; cell lines with de novo resistance mechanisms, including genetic alterations; three-dimensional (3D) spheroid, co-culture, and mammosphere techniques; and patient-derived organoid models. In each case, the key discoveries, different analysis strategies that are suitable, and strengths and weaknesses are discussed. Certain recently developed methodologies that can be used to further characterize the biological changes involved in endocrine resistance are then emphasized, along with a commentary on the types of research outcomes that using these techniques can support. Finally, a discussion anticipates how these recent developments will shape future trends in the field. We hope this overview will serve as a useful resource for investigators that are interested in understanding and testing hypotheses related to mechanisms of endocrine therapy resistance.
    Keywords:  Endocrine therapy resistance; breast cancer; cell line models; oestrogen receptor
    DOI:  https://doi.org/10.37349/etat.2022.00084
  10. Front Pharmacol. 2022 ;13 944773
      Cancer is a systemic heterogeneous disease that can undergo several rounds of latency and activation. Tumor progression evolves by increasing diversity, adaptation to signals from the microenvironment and escape mechanisms from therapy. These dynamic processes indicate necessity for cell plasticity. Epithelial-mesenchymal transition (EMT) plays a major role in facilitating cell plasticity in solid tumors by inducing dedifferentiation and cell type transitions. These two practices, plasticity and dedifferentiation enhance tumor heterogeneity creating a key challenge in cancer treatment. In this review we will explore cancer cell plasticity and elaborate treatment modalities that aspire to overcome such dynamic processes in solid tumors. We will further discuss the therapeutic potential of utilizing enhanced cell plasticity for differentiation therapy.
    Keywords:  EMT; TGFb signaling; cancer cell plasticity; differentiation therapy; solid tumors; trans-differentiation
    DOI:  https://doi.org/10.3389/fphar.2022.944773
  11. Clin Epigenetics. 2022 Aug 27. 14(1): 107
      Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
    Keywords:  CpG island; Epigenetics; Methylated cytosine; MinION; Nanopore sequencing; Oxford nanopore; Tumor heterogeneity
    DOI:  https://doi.org/10.1186/s13148-022-01323-6